Invariant Submanifolds in an Indefinite Trans-Sasakian Manifold

Nanditha S Matad
New Horizon College, Marathalli, Bangalore-560103, Karnataka, INDIA.

Abstract: In this paper, invariant submanifolds in an indefinite trans-Sasakian manifold are studied. Necessary and sufficient conditions are given on a submanifold of an indefinite trans-Sasakian manifold to be an invariant submanifold. Here we show that an invariant submanifold of an indefinite trans-Sasakian manifold is totally geodesic.

AMS Subject Classification: 53C15, 53C17, 53C20, 53C25.
Keywords: Indefinite trans-Sasakian manifold, Invariant submanifold, Covariant differentiation, Bianchi identity, totally geodesic.

I. Introduction

II. Preliminaries

Let \(\overline{M} \) be an \((2n+1)\)-dimensional indefinite almost contact metric manifold with indefinite almost contact metric structure \((\phi, \xi, \eta, g)\) then they satisfy:

\[
\begin{align*}
\phi^2 &= -I + \eta \otimes \xi, \\
\eta(\xi) &= 1, \quad \phi \xi = 0, \\
g(\phi X, \phi Y) &= g(X, Y) - \alpha \eta(X) \eta(Y), \\
g(X, \xi) &= \eta(X),
\end{align*}
\]

where \(X, Y \) are vector fields on \(\overline{M} \) and where \(\epsilon = g(\xi, \xi) = \pm 1 \).

An indefinite almost contact metric structure \((\phi, \xi, \eta, g)\) on \(M \) is called indefinite trans-Sasakian if

\[
(\overline{\nabla}_X \phi)(Y) = \alpha \{g(X, Y) \xi - \epsilon \eta(Y) X\} + \beta \{ \eta(\phi X, Y) \xi - \epsilon \eta(Y) \phi X \}
\]

where \(\alpha \) and \(\beta \) are non zero scalar functions on \(\overline{M} \) of type \((\alpha, \beta)\). \(\overline{\nabla} \) is a Riemannian connection on \(\overline{M} \). In particular, an indefinite trans-Sasakian manifold is normal.

From above formula, one easily obtains

\[
\overline{\nabla}_X \xi = - \alpha \epsilon \phi X + \beta \{ \epsilon X - \epsilon \eta(X) \xi \},
\]

Let \(M \) be an \((2m+1)\) dimensional \((n > m)\) manifold imbedded in \(\overline{M} \). The induced metric \(g \) of \(M \) is given by

\[
g(X, Y) = \overline{g}(\overline{X}, \overline{Y})
\]

for any vector fields \(X, Y \) on \(M \).

Let \(T_x(M) \) and \(T_x(M)^\perp \) denote that tangent and normal bundles of \(M \) and \(x \in M \). Let \(\nabla_X \) denote the Riemannian connection on \(M \) determined by the induced metric \(g \) and \(R \) denote the Riemannian curvature tensor of \(M \). Then Gauss-Weingarten formula is given by:

\[
\nabla_X Y = \nabla_X g(Y, Z) + g(\nabla_X Z, Y) - R(X, Y) Z + R(Z, X) Y - R(Y, Z) X - R(Z, X) Y
\]
Invariant Submanifolds in a Indefinite Trans-Sasakian Manifold

(2.7) \[\nabla_X Y = \nabla_X Y + B(X, Y). \]

(2.8) \[\nabla_X N = -A_N(X) + D_N N \]
for any vector fields \(X, Y \) tangent to \(M \) and any vector field \(N \) normal to \(M \), where \(D \) is the operator of covariant differentiation with respect to the linear connection induced in the normal bundle \(T_x(M) \). Both \(A \) and \(B \) are called the second fundamental forms of \(M \) satisfy

\[g(B(X, Y), N) = g(A_N(X, Y)). \]

A submanifold \(M \) of \(\overline{M} \) is said to be invariant if \(\xi \) is tangent to \(M \) everywhere on \(M \) and \(\overline{\phi} X \) is tangent to \(M \) for any tangent vector \(X \) to \(M \). An invariant submanifold \(M \) has the induced structure tensor \((\phi, \xi, \eta, g) \).

III. Invariant Submanifolds in Indefinite Trans-Sasakian Manifold

Let \(\overline{M} \) be a \((2n+1)\) dimensional indefinite trans-Sasakian manifold and \(M \) a \((2m+1)\) dimensional \((n > m)\) manifold imbedded in \(\overline{M} \). For the second fundamental form \(B \) of an invariant submanifold \(M \) of a indefinite trans-Sasakian manifold. We define its covariant derivative \((\nabla_X B) \) by

\begin{equation}
(3.1) \quad \nabla_X B(Y, Z) = D_X(B(Y, Z)) - B(\nabla_X Y, Z) - B(Y, \nabla_X Z),
\end{equation}

where \(X, Y, Z \in \chi(M) \) - the set of all differential vector field on \(M \).

Then by (2.7). We obtain

\begin{equation}
\end{equation}

Lemma 3.1. If \(M \) is an invariant submanifold of a indefinite trans-Sasakian manifold \(\overline{M} \), then its second fundamental form \(B \) satisfies \(B(X, \xi) = 0 \), for any \(X \in \chi(M) \).

Proof: Since \(\xi \) is tangent to \(M \) everywhere on \(M \), we have

\[\nabla_X \xi = \nabla_X \xi = \nabla_X \xi + B(X, \xi). \]

Since by equation,

\[\nabla_X \xi = \nabla_X \xi = -\alpha \varepsilon \phi X + \beta (\varepsilon X - \epsilon \eta(X) \xi) \]

\[\nabla_X \xi = \nabla_X \xi + B(X, \xi). \]

then by taking the normal parts of (3.3) we get \(B(X, \xi) = 0 \).

Lemma 3.2. Any invariant submanifolds \(M \) with induced structure tensors of a indefinite trans-Sasakian manifold \(\overline{M} \) is also indefinite trans-Sasakian manifold.

Proof: From (3.2) and lemma (3.1), we have

\begin{equation}
(3.4) \quad \overline{R}(X, \xi) \xi = \overline{R}(X, \xi)\xi + (\nabla_X B)(\xi, \xi) - (\nabla_{\xi} B)(X, \xi).
\end{equation}

Again from equation From (3.1) and lemma (3.1), we get

\begin{equation}
(3.5) \quad (\nabla_X B)(\xi, \xi) = 0, \quad (\nabla_X B)(X, \xi) = 0.
\end{equation}

Finally using From (3.5) in (3.4), we obtain

\[\overline{R}(X, \xi) \xi = R(X, \xi) \xi + 0 + 0, \]
\[R(X, \xi, \xi) = -\alpha (\epsilon \eta(X) \xi - X) + \beta (\phi X). \]

Hence the lemma.
Lemma 3.3. Let M be an invariant submanifold of a indefinite trans-Sasakian manifold \overline{M}, then $\overline{R}(X, \xi)Y$ is tangent to M iff $\phi B(X, \phi Y) = B(X, \phi Y)$ for any $X, Y \in \chi(M)$.

Proof:

\[
(\nabla_X \phi)Y = \nabla_X \phi Y - \phi(\nabla_X Y) = \nabla_X \phi Y + B(X, \phi Y) - \phi(\nabla_X Y) - \phi(B(X, Y)) = (\nabla_X \phi)Y + B(X, \phi Y) - \phi(B(X, Y))
\]

Then we have

\[
\alpha(g(Y, Y)\xi - \epsilon\eta(Y))X + \beta(g(\phi X, Y)\xi - \epsilon\eta(Y))\phi X
\]

Thus we get

\[
B(X, \phi Y) = \phi(B(X, Y))
\]

Lemma 3.4. Let M be invariant submanifold of the indefinite trans-Sasakian manifold M then,

\[
\nabla_X B(Y, \xi) = -B(Y, \nabla_X \xi)
\]

for any $X, Y \in \chi(M)$

Proof: By using Lemma 3.1 we get

\[
\nabla_X B(Y, \xi) = \nabla_X B(Y, \xi) - B(\nabla_X Y, \xi) - B(Y, \nabla_X \xi)
\]

Then, we have

\[
\nabla_X B(Y, \xi) = -B(Y, \nabla_X \xi)
\]

Theorem 3.1. Let M be an invariant submanifold of an indefinite trans-Sasakian manifold \overline{M}. Then B is parallel if and only if M is totally geodesic.

Proof: Suppose that B is parallel. For each $X, Y \in \chi(M)$ and using lemma 3.4 we get,

\[
\nabla_X B(Y, \xi) = 0
\]

and

\[
B(Y, \nabla_X \xi) = 0
\]

BY equation (2.1), we have

\[
\nabla_X \xi = -\alpha \epsilon \phi X + \beta \{\epsilon X - \epsilon\eta(X)\xi\}
\]

Hence

\[
B(Y, -\alpha \epsilon \phi X - \beta \epsilon \phi^2 X) = 0
\]

\[
-\alpha B(Y, \epsilon \phi X) - \beta B(Y, \epsilon \phi^2 X) = 0
\]

Since M is an invariant submanifold of \overline{M}, we have $\phi(B(X, Y)) = 0$.

From Lemma 3.3 it follows that

\[
\phi(B(X, Y)) = B(X, \phi Y) = 0
\]

Then we get

\[
\beta B(Y, \epsilon \phi^2 X) = 0
\]

hence it follows that

\[
B(Y, -\epsilon X + \epsilon\eta(X)\xi) = 0
\]

so

\[
B(Y, X) = 0
\]

viceversa let M is totally geodesic, Then $B=0$, for all $X, Y, Z \epsilon TM$.

\[
(\overline{\nabla}_X B)(Y, Z) = D_X (B(Y, Z)) = B(\nabla_X Y, Z) - B(Y, \nabla_X Z) = 0
\]

thus we have $\nabla B = 0$
References

[6]. F. Massamba, light like hypersurfaces in indefinite trans sasakian manifolds , IC.044(2010),1-29.