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Abstract: In this paper, invariant submanifolds in a indefinite trans-Sasakian manifold are studied. Necessary 

and sufficient condition are given on submanifold of a indefinite trans-Sasakian manifold to be invariant 

submanifold.Here we shown that an invariant submanifold of a indefinite trans-Sasakian manifold is 

totally geodesic. 
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I. Introduction 
In 1973 and 1974 B.Y.Chen and K. Ogive introduced geometry of submanifolds and totally real 

submanifolds in [1] and [2]. In [3] D.E Blair discussed contact manifold in Riemannian geometry in 1976. Light 

like submanifolds and hypersurfaces of indefinite sasakian manifolds introduced in 2007 and 2003 [4] and [5]. 

In 2010, F. Massamba introduced light like hypersurfaces in indefinite trans sasakian manifolds in [6]. In recent 

works many authors for example [7] C.S. Bagewadi and P.Venkatesha study trans sasakian manifolds,[8] Aysel 

Turgut Vanli and Ramazan sari study invariant submanifolds of trans sasakian manifolds. [9] Arindam 

Bhattacharya and Bandana Das study some properties of Contact CR-Submanifolds of an indefinite trans 

sasakian manifold. [10] B.Ravi and C.S. Bagewadi study invariant sub manifolds in a conformal K- Contact 

Riemannian manifold.  

 

II. Preliminaries 

Let M be an (2n+1)-dimensional indefinite almost contact metric manifold with indefinite almost 

contact metric structure (, , , g) then they satisfies    

 
 

where X, Y are vector fields on  M and where є= g() = ±1 

 

An indefinite almost contact metric structure (, , , g) on M is called indefinite trans-Sasakian if 

 

 
 

where  and  are non zero scalar funtions on M of type (,). is a Riemannian connection on M. In 

particular, an indefinite trans-Sasakian manifold is normal. 

 

From above formula, one easily obtains 

 

 
 

Let M be an (2m+ 1) dimensional (n > m) manifold imbedded in M. The induced metric g of M is given by 

g(X,Y) = g(X, Y ) for any vector fields X,Y on M. 

 

Let Tx(M) and Tx(M)denote that tangent and normal bundles of M and x  M. Let X denote the 

Riemannian connection on M determined by the induced metric g and R denote the Riemannian curvature tensor 

of M. Then Gauss-Weingarten formula is given by 
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for any vector fields X,Y tangent to M and any vector field N normal to M, where D is the operator of 

covariant differentiation with respect to the linear connection induced in the normal bundle Tx(M) . Both A and 

B are called the second fundamental forms of they satisfy 

 

g(B(X, Y ),N) = g(AN(X, Y )). 

 

A submanifold M of M is said to be invariant if  tangent to M everywhere on M and  X is tangent to M for 

any tangent vector X to M. An invariant submanifold M has the induced structure tensor (, , , g). 

 

III. Invariant Submanifolds in Indefinite Trans-Sasakian Manifold 
Let M be a (2n+1) dimensional indefinite trans-Sasakian manifold and M a (2m+1) dimensional (n > 

m) manifold imbedded in M. For the second fundamental form B of an invariant submanifold M of a indefinite 

trans-Sasakian manifold. We define its covariant derivative  by 

 

 
where X, Y,Z  (M) - the set of all differential vector field on M. 

 

Then by (2.7).We obtain 

 
 

Lemma 3.1. If M is an invariant submanifold of a indefinite trans-Sasakian manifold M, then its second 

fundamental form B satisfies B(X, ) = 0, for any X  (M). 

Proof: Since  is tangent to M everywhere on M, we have 

 
Since by equation, 

 

X is tangent to M for any X  (M). 

 

 
 

then by taking the normal parts of (3.3)we get B(X, ) = 0. 

 

Lemma 3.2. Any invariant submanifolds M with induced structure tensors of a indefinite trans-Sasakian 

manifold M is also indefinite trans-Sasakian manifold. 

Proof: From (3.2) and lemma (3.1), we have 

 

 
 

Again from equation From (3.1) and lemma (3.1), we get 

 

 
 

Finally using From (3.5) in (3.4), we obtain 

 

 
 

Hence the lemma. 
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Lemma 3.3. Let M be an invariant submanifold of a indefinite trans-Sasakian manifold M , then R(X, )Y is 

tangent to M iff B(X, Y ) = B(X,Y ) for any X, Y   (M). 

Proof: 

 
Then we have 

 
thus we get 

 
 

Lemma 3.4. Let M be invariant submanifold of the indefinite trans saskian manifold M then, 

 
for any X, Y   (M) 

Proof: By using Lemma 3.1 we get 

 
Then, we have 

 
 

Theorem 3.1. Let M be an invariant submanifold of an indefinite trans sasakian manifold M. Then B is parallel 

if and only if M is totally geodesic. 

Proof: Suppose that B is parallel. For each X,Y (M) and using lemma 3.4 we get, 

 
 

 
 

 
BY equation (2.1), we have 

 
 

Hence 

 
 

Since M is an invariant submanifold of M , we have (B(X, Y )) = 0. 

 

From Lemma 3.3 it follows that 

 
 

Then we get 

 
hence it follows that 

 
 

so 

B(Y, X) = 0 

 

viceversa let M is totally geodesic, Then B=0, for all X, Y,Z TM. 

 

 
thus we have B = 0 
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