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Abstract: The aim of this paper is to investigate the high influential factors of pipe breaks in water distribution 

systems by using various statistical models such as multiple linear regression model (MLRM), Time exponential 

model (TEM), Poisson generalized linear model (PGLM), Negative Binomial generalized linear model 

(NBGLM) and Proportional hazard model (PHM). This paper discusses the effect of different types of 

covariates with the assumption that each of the covariates has linear effect on the number of pipe breaks. The 

study focuses on comparing statistical models, parameter estimate of pipe breaks and to determine the 

covariates that most affect the number of pipe breaks. We developed statistical analysis to compare the 

usefulness of different statistical methods and obtained the most predictive models for the number of pipe breaks 

data in water distribution system. The covariates used in the analysis are pipe diameter, length of pipe, year of 

installation, average rainfall, average temperature, concrete steel cage, asbestos cement, Polyvinyl chloride, 

types of pipe and time to event data. We compared the results with different other studies on the problem of pipe 

breaks in water distribution systems.    
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I. Introduction 

The Millennium Development Goal (MDG) drinking water targets to halve the proportion of the 

population without sustainable access to safe drinking water (an increase in coverage from 76% to 88%) 

between 1990 and 2015 [13]. Between1990 and 2014, 2.3 billion people gained access to an improved drinking 

water source, raising global coverage to 89% in 2014. In a further 35 countries, 26 of which are in sub-Saharan 

Africa, coverage of improved drinking water supply was between 50% and 75%  [13]. All sources confirmed 

that water supply coverage in Ethiopia is on a strong upward trajectory. According to official government data, 

water supply coverage has risen from 19% in 1998 (11% rural, 70% urban) to 66% in 2015 (62% rural, 89% 

urban) [13]. As official government data, Ethiopia has already met the MDG target of 60%. Estimates of current 

coverage from the international Joint Monitoring Programme (JMP) are significantly more cautious, due to a 

range of factors. Nevertheless, the JMP data still portray a remarkable increase in coverage of over 1 million 

people per year (1990-2007) [12]. The deterioration of pipes in water distribution systems is of concern to water 

utilities throughout the world. This deterioration generally leads to pipe breaks, which may result in reduction in 

the water carrying capacity of the pipes from tuberculation of interior walls of the pipe. Deterioration can also 

lead to contamination of water in the distribution systems [2]. All these systems constitute the infrastructure of 

urban centers and water distribution systems play a critical role in the successful functioning of a life. 

Community public health standards and the drive for future growth and economic development are heavily 

dependent upon the condition of water mains and the services they provide [5].  

The main objectives of the study is to examine the high influential factors of pipe breaks in water  

distribution system at Hawassa city water supply and sewerage service enterprise, Ethiopia. To identify the most 

determinant factors associated with number of pipe breaks of water distribution system. To comparing the 

usefulness of different statistical models on the number of pipe breaks. To develop an understanding about the 

pipe break mechanisms and factors contributing to pipe breaks.  

 

Causes of Pipe Breaks 

[2] Some causes of common pipe failures are: 1. pipe manufacturing defects:- inclusions, 

discontinuities problems, dimensional irregularities particularly in jointing areas. 2. Storage and handling:- 

stress deformation due to poor stacking or storage, cuts or scratches on pipe walls, impact cracks due to 

dropping or striking. UV degradation over weathering contamination inadvertent mixing of pipe class or jointing 

material. 3. During construction:- poor laying, jointing or tapping techniques, excessive soil slips causing 

distortion, construction traffic, groundwater flooding. 4. Subsequent works:- superimposed loadings, impacts or 

cover reduction, side slips, service pulling and loss of support or bedding. 5. Soil movement:- subsidence due to 

mining, filled land, differential consolidation or geological changes, changes in water table or soil moisture 

content, extremes of climate such as frost heave or clay shrinkage, loss of anchorage (horizontal or vertical), 

shock waves such as seismic, blasting or vibration. 
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Background 

The need to obtain quantitative estimates of the likelihood of pipe breaks on individual pipes for 

making repair versus replacement decisions for deteriorating water pipes led to the derivation of predictive 

models for pipe breaks [2]. Three basic categories of such models are, Aggregate type models, where the 

expected number of breaks is a function of time t, since a reference time period and a set of constant model 

parameters. Regression type models where the expected number of pipe breaks are predicted as a function of 

independent variables reflecting environmental condition and pipe characteristics. Probabilistic or choice 

models, where discriminate analysis is applied on the data, and break time models, where a survivor function is 

estimated for each individual pipe, which provides the probability that a pipe will survive without breaks beyond 

time t, as a function again of a number of independent covariates related to environmental conditions and other 

pipe characteristics [2].  Two equations [9] were developed (linear and exponential) to describe break rate as a 

function of time in the range of 0.01-0.15 proposed a value of 0.086 and reported values of 0.021 and 0.014 for 

pit cast iron and sands pun cast iron pipes respectively, when they employed a similar modeling approach on 

other data sets. [11] Developed the multiple linear regression model the
  

value 0.23 was obtained. This shows 

that the models do not fit the data satisfactorily well and also it is not known how statistically significant the 

estimated coefficients are. [6] Related pipe break linearly to its age. They obtained the data based on a relatively 

constant sample of pipes installed within a 10 year period in Winnipeg, Manitoba. For asbestos cement and cast 

iron pipes, they obtained a moderate correlation of 0.563 and 0.103 respectively between annual breakage rate 

and pipe age. [8] Introduced semi parametric Proportional Hazards Model (PHM) for analyzing pipe breaks in 

water distribution.  [2] Developed a model for predicting failure probability for each individual pipes in the 

network for two large water utilities in the Northeastern U.S. In this model, the life span of a pipe is divided into 

a slow break-stage and a fast break-stage. The fast break-stage starts after three breaks [8]. A Proportional 

Hazard Model (PHM) is used to describe the break rate h(x) for each pipe as a function of time. A bathtub 

shaped curve gives the best description of the baseline hazard function. The case study finds the following 

variables to be most significant in analyzing breaks are pressure in the pipe, number of previous break, age of 

pipe at the time of the second break, installation period, land used and pipe of length. The break rate does not 

increase after the third break. The pipes used in the analysis vary greatly in length. Some of the pipes are too 

long, i.e. more than 1000m to be analyzed as one component, as conditions affecting break rate could vary along 

the pipe length [2].  The developed estimation procedures for accelerated failure model with random effects to 

allow for possible correlations among the survival time. Under this model, we can assess the strength of 

association between event times [14]. Accelerated failure model with random effects provide an attractive 

alternative to multivariate frailty proportional hazards models based on frailties with a multivariate log normal 

joint distribution. He proposed an estimation procedure for the Accelerated failure model with random effects 

that is computationally feasible for large data sets. It is based on a Laplace approximation of the marginal 

likelihood function, which is similar to generalized linear mixed models [14]. 

Deterioration models, based on break data of water mains, have been developed in order to predict the 

annual break rate considering pipe diameter, length, and age. The developed models have been proved to be 

statistically significant and sound. According to the analysis of the developed models, pipe length has a great 

impact on the annual break rate [1]. Pipes of shorter lengths that have higher annual break rates do not 

necessarily have more breaks compared to pipes of longer lengths. The developed models have relatively 

satisfactory R-squared: 68.9, 65.0, 71.5, 78.4, and 81.3 percent for gray cast iron, ductile iron without lining, 

ductile iron with lining, PVC and hyprescon pipes, respectively [1]. 

Statistical model for predicting failures for each pipe in a water distribution network has been 

presented. The proposed method is able to model the power law. The model has several parameters which 

include both the effects of repair and the types of failure. Thus, this model uses the failure intensity function is 

capable and convenient for prediction of failures [7].  

 

II. Statistical Methods And Data 
The study will be conducted in Hawassa city water supply and sewerage service enterprise. Hawassa 

city is the capital of SNNPR, Ethiopia.  The service sector is leading the investment following by the industry 

and agriculture. It is located on the main road Kenya Moyale at a distance 275km from the center south direction 

of Addis Ababa. According to Hawassa city water supply and sewerage service enterprise, the geographic 

coordinateness of the city is approximately 7
0
09’ latitude North and 38

0
29’ longitude east and average altitude 

of 1700m the town has got plain topography. Hawassa city climate is warm temperature which varies 10
0
c in 

winter and 30
0
c in summer. 

Pipe break data of water distribution systems are typically count (0, 1, 2 ...) because there is a number 

of pipe breaks.  The oldest break records in the pipe break data set used in this study date back to 2001. That is, 

the pipe break observation period is of 10 years only. According to Hawassa city water supply and sewerage 

service enterprise, the size of the pipe break data set is relatively large, about 63, 262 pipes and 4, 549 breaks, 
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with such an observation period it will be difficult to assess the deterioration process. The tight observation 

window causes a great amount of pipes with no recorded breaks; more than 30 percent of pipes have broken 

during the 10 years of observation. Besides that, needs to be taken into account is the scarcity of the collected 

component characteristics. The majority of pipe break models developed to estimate and to fit pipe breaks 

models in water distribution systems and use the following variables: pipe diameter, installation year, length of 

pipe, PVC pipe, CSC pipe, AC pipe, pipe type. In some models even environmental characteristics, such as 

temperature and rain fall are used.  

Nevertheless, the available data used in this research work with 12 variables. The study instruments 

that will be employed under this study are secondary data. The climatic data of temperature and rainfall were 

obtained from National Oceanographic and Atmospheric Administration’s National Climatic Data Center. 

Another issue survival data is a collection of statistical procedures for data analysis for which the outcome 

variable of interest is time until an event occurs. By time, we mean years, months, weeks, or days from the 

beginning of follow-up of an individual until an event occurs, alternatively.   

 

2.1 Multiple linear regression models 

Multiple linear regression analysis can be used as statistical tool to discover relationships between 

variables, which are used in prediction models. The goal of multiple linear regression analysis is to develop a 

statistical model that can be used to predict the values of dependent variable based on the values of more than 

one explanatory variable. The relationship between the variables based on the coefficient sign show an 

indication for the nature of the relation if increasing or decreasing relationship. 

                

Where is the number of pipe breaks, while stand for the input indicators n×p matrix. The 

regression parameters  are the coefficients of multiple linear regression p×1 vectors, 

 are independent identically distributed . We can write this matrix form  we 

denote the column of matrix X by . So we can solve for β to get MLE.   .  

 

2.2 Time exponential model 

Non-linear regression model extends linear regression model to a much larger and more general class 

of functions. Use non-linear regression analysis to relate pipe’s breakage to the exponent of its time to break and 

installation time. This type of model is often transformed to yield a model that is linear in the regression 

parameters, and then the transformed model is fit as a linear regression model. The biggest advantage with non-

linear models is that it can fit a broad range of functions. The only advantage of this model is their simplicity 

and the smaller amount of data required as compared to other regression models.  For instance, the strengthening 

of concrete as it cures is a non linear process. 

                                         

where N(t) is the number of pipe breaks , N(t0) is the number of breaks per unit length at the year of 

installation of the pipe, the value is between 0.10-0.25 estimated by [4], time is the time to break of a given 

break in the past in months and A is a breakage growth rate between 0.05-0.15 estimated by [10]. 

 

2.3 Poisson Generalized linear models 

A Poisson Generalized linear model is a model commonly used for regression analysis of count data 

such as pipe breaks in an infrastructure system. Let  are the vector of n covariates for 

system segments ,  and the number of pipe breaks on segment  be given by . A regression 

model based on the Poisson distribution for the counts conditional on the observed values of the covariates 

specifies that the conditional mean of the counts is given by a continuous function of the covariate 

values as given, where β is the nX1 vector of regression parameters. Conditional on,  the probability density 

function assumed for  in a Poisson generalized linear model is given, for positive integers  

 

=  

 

The log link function will use in this paper to specify the conditional mean, i.e., it is assume 

by . GLMs assume that the explanatory variables are independent, but they do not assume 

that the errors are normally distributed or homoscedastic. 

 

2.4 Negative Binomial Generalized Linear Model 

The major assumption of the Poisson model is 
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                                ) = = = ) 

Implying that the conditional mean function equate the condition variance function. This is very 

restrictive. If  then we speak about over dispersion, and when   

we say, we have under dispersion. The generalized Poisson model does not allow for over or under dispersion. 

A richer model is obtained by using the negative binomial distribution instead of the Poisson distribution. We 

then use 

  

 

The negative binomial distribution can be shown to have conditional mean and conditional variance 

μi (1+η
2
μi) with η

2 
=1/θ, η>0

 
it shows dispersion parameter. Note that the parameter η

2
 is not allowed to vary 

over the observations the conditional mean ) = =  and conditional variance 

 Using maximum likelihood estimate, we can then estimate the regression 

parameter β and also the extra parameter η. The parameter η measures the degree of over or under dispersion. 

The limit case  corresponds to the Poisson mode. Fitting negative binomial regression is very similar to 

fitting of Poisson regression, assuming that the model is the same as the one described in Poisson generalized 

linear model, that is, the log of the mean μ, is a linear function of independent variables, log 

 which implies that μ is the exponential function of independent variables,  

. 

 

2.5 Proportional Hazards Model 
Survival models simulate repairable system, some change in notation and terminology are required. 

This method can be thought of survival data analysis in which first break and repair, second break, second repair 

and subsequent breaks. The basic quantity employed to describe time-to-event phenomena is the survival 

function. Censoring in lifetime analysis only the first break is considered. Essentially data are said to be 

censored when there are individuals in the sample where only a lower or upper bound on lifetime is available 

[1]. The response variable in survival analysis is survival time and is no longer limited to only time to break. It 

is a non-negative random variable used loosely for the time period from a starting time point to the occurrence 

of any event [1]. The Cox model or proportional hazard model is semi-parametric, since its hazard function is 

the product of an unspecified baseline hazard function, and a parametric function relating the hazard function 

and the covariates [1]. 

                       

 

Where is the baseline hazard function,  is a parameter vector,  is a column vector of 

independent variables , , ...,  and  is a known function. If 

 then The Cox model is often called a 

proportional hazard model (PHM) because if we look at two pipes with covariate values  the ratio of 

the hazard functions is: 

    

When that there is no tied time assumed the partial likelihood is defined over all breaks time that 

 and given as 

 
Where the product is over m distinct break times and  denotes the value of the covariate for the subject with 

ordered survival time . The log partial likelihood function is 

 
We obtain the maximum partial likelihood estimator by differentiating the equation with respect to the 

component of β setting the derivative equal to zero and solving for the unknown parameters. However, this 

partial likelihood function methods are based on the assumption that there are no tied values among the 

observed survival times. But, in most real situations tied survival times are more likely to occur. Once a model 

has been developed, we would like to know how effective that model is in describing the outcome variable. This 
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is referred to as goodness of fit. Thus, the goodness of fit of a statistical model describes how well it fits a set of 

observations. The goodness of fit test measures the compatibility of a random sample with a theoretical 

probability distribution function. 

2.6 Diagnostics in the generalized linear models 
The two basic types of residuals are the so called Pearson residuals and deviance residuals. Pearson residuals are 

based on the difference between observed responses and the predicted values; deviance residuals are based on 

the contribution of the observed responses to the log likelihood statistic. In addition, leverage scores, studentized 

residuals, generalized Cook's D, and other observational statistics can be computed.  

Goodness of Fit Test 
Once a model has been developed, we would like to know how effectively that model is in describing the 

outcome variable. This is referred to as goodness of fit. Thus the goodness of fit of a statistical model describes 

how well it fits a set of observations and measures the compatibility of a random sample with a theoretical 

probability distribution function. Measures of goodness of fit typically summarize the discrepancy between 

observed values and the values expected under the model in question. The deviance or likelihood ratio test 

statistic, G
2
 is the most useful summary of the adequacy of the fitted model. It represents the change in deviance 

between the fitted model and the model with a constant term and no covariates. The deviance goodness of fit 

test reflects the fit of the data to a Poisson distribution in the regression. This test is significant shown by the P 

value, and we should consider other covariates or other error distributions such as negative binomial. 

 
Where y is the number of events n is the number of observations and  is the fitted Poisson GLM mean. The 

first term is identical to the binomial deviance, representing twice a sum of observed times log of observed over 

fitted. The second term, a sum of differences between observed and fitted value is usually zero, because MLEs 

in Poisson models have the property of reproducing marginal totals, The log likelihood function is 

 
The maximum likelihood equation proceeds by iteratively reweighted least squares, using singular value 

decomposition to solve the linear system at each iteration until the change in deviance is within the specified 

accuracy.    

Akaike Information Criterion (AIC) 

The Akaike Information Criterion (AIC) is a way of selecting a model from a set of models. The chosen model 

is the one that minimizes the Kullback-Leibler distance between the model and the truth.  

 
Where likelihood is the probability of the data given a model and K is the number of free parameters in the 

model. Smallest AIC scores are often shown as best model. 

III. Results And Discussion 
This section provide the preliminary analysis of data on the number of pipe breaks and reviews various 

statistical methods for analyzing count data in water distribution systems. These methods also provide 

information on the value and significance of the covariates. R statistical software was used for analyzing the 

data. 

 

3.1 Multiple linear regression models 
 

  Estimate Std. Error t-value Pr(>|t|)  Vif 

Intercept  -0.0058   0.904 -64.401 0.000 ***  

AC   0.1293 0.0325    3.974 0.000 *** 1.08736 

Di   0.92 0.779    1.179 0.2390 1.0825 

Le   0.878   0.3928    2.23 0.0262 *   1.3967 

Temp -0.294  0.105   -2.832 0.0050  ** 1.2537 

Rain  0.0136  0.0026    5.455 0.000 *** 1.1412 

Yi  2.946 0.0675  62.80 0.000 *** 2.1712 

PVC -0.00152 0.0068  -0.225 0.823 1.7445 

CSC -0.0536 0.0055  -9.607 0.000 *** 1.4821 

Pt -1.401& 5.35  -2.617 0.00947** 1.1019 

Table 1: Results of Parametric Coefficients in Multiple Linear Regression Model 
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Table 1 shows the summary of coefficients. From the results we observed that there is no 

multicollinearity in covariates. It can be seen that majority of the coefficients are found significant at 5% level 

of significance. The coefficient denotes the change in the value of number of pipe breaks for each one unit 

change in the corresponding covariates. The covariate variables, year of installation, average rainfall and 

concrete steel cage AC pipe are highly significant. Type of pipe, length of pipe and average temperature are 

significant. The only covariate diameter of pipe and PVC pipe are non significant compare with 5% level of 

significant and P-value. Also we can see the relationship between independent variable and covariates in the 

multiple linear regression models have positive coefficients, Asbestos cement (0.1293), Diameter of pipe (0.92), 

Length of pipe (0.878), average rainfall (0.0136) and year of installation (2.946) are positive relationship with 

number of pipe breaks. This implies the value of covariates increase then the number of pipe break increase and 

the value of covariates decrease then the number of pipe break decrease, and average temperature, PVC pipe, 

concrete steel cage and type of pipe are negative relation with number of pipe breaks. That is the value of 

covariate increase, decrease in number of pipe breaks. The covariate variables influence the number of pipe 

breaks.  

 
Where 
𝞓= 0.8556Le − 0.331Temp + 0.0137Rain + 2.940Y I − 0.0025PV C − 0.0546CSC − 1.288Pt 

The model suggests the adjusted R square for the regression was 0.9746 and multiple R
2
 = 0.9734, p-

value = 0.000 significant at 5% level of significance. R
2
 0.9734 indicating the regression model is valid and 

good fitted model and the 9 independent variables are explaining 97.44% of dependent variable Number of pipe 

breaks. 

 

 
Figure 1: Diagnostic Plot of Multiple Linear Regression Models 

Regression diagnostics are methods for determining whether a fitted regression model adequately 

represents the data. These are useful for detecting in homogeneity in the distribution of residuals. The results of 

the first diagnostic plot in figure 1 raise no warning flags or no pattern concerning our modeling assumptions. It 

is also useful to examine the residuals as a function of the values of each explanatory variable. The second graph 

check for the normal distribution of residuals, the point should fall on the line. A QQ plot graphs the quantiles of 

the residuals against the theoretical quantiles marked deviation from a straight line indicates that the actual error 

normally distributed and the plot we see is linear. The bottom left graph is similar to the top left one, the y-axis 

is changed. The residuals are square root standardized making it easier to heterogeneity of the variance. And 

there are no indications of failures of the assumptions underlying the linear model. The plot of residuals versus 

leverage discloses no problems with the fit. 

 

3.2 Time exponential model 
The time exponential model is a non linear model, it was fitted in R software using the ’nls’ command. 

It requires initial values of the model parameters. Good initial values are those that are close to the true 

parameter values that minimize convergence difficulties. Their advantage lies in the fact that they are simple to 

use. However, they have a few drawbacks which include a. they do not consider other factors such as 

environmental characteristics, operating pressures, and previous break history of individual pipe segments, and 

b. the study do not provide any information about the statistical significance of the coefficients of their models. 

However these models do require smaller amounts of data as compared with other regression models. 
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Parameter Estimate Std. Error t-value Pr(> |t|) 

N(t0) 2.7847 1.542 1.806 0.0721 

A 0.085 0.0176 4.823 0.000 *** 

Table 2: Parametric Significance in Time Exponential Model 
In fitting a non linear regression model take initial values of the model parameters 0.0185 and 0.086, 

number of pipe break per unit length at the year of installation of the pipe and average breakage growth rate 

respectively and residual error 22.85 on 238 degree of freedom. Average break growth rate is statistically 

significant at a lower p-value than number of pipe breaks at year of installation. The estimated equation is 

 
 We take starting value number of pipe break per unit length at the year of installation of the pipe (N0) 

=0.0186 and average breakage growth rate (A) = 0.086 these converge to 2.7847 and 0.08494 respectively. The 

underlining assumption is N(t0)  0, which means that on average a pipe is assumed to always have breakage 

frequency, though very small in the beginning of its life.  

 

3.3 Poisson Generalize Linear Model 
Poisson GLM is often used to fit rare occurrence using count data. The number of pipe break is a count 

data and Poisson GLM can be applied to the data. Hence, the following discussion shows how the Poisson GLM 

applied to this count data. 

Table 3 shows that the coefficients denote the change in the expected value of Poisson GLM for each 

one unit change in the corresponding covariates. The covariate variables, year of installation, average rain fall 

and Polyvinyl chloride pipe highly significant covariates, type of pipe, CSC pipe and Asbestos cement pipe are 

significant in the output result with compare to 5% α-level and p-value. 

 
  Estimate Std. Error t-value Pr(>|t|) 

Intercept -0.0148    3.546 -41.723 0.000 *** 

AC  0.00373    0.0014 2.671 0.00075** 

Di  0.0241  0.033 0.730 0.465 

Le  0.00081    0.0138   0.060 0.952 

Temp  0.0056 0.0044 1.27 0.204   

Rain  0.0004   0.0001 3.955 0.000 ***   

Yi  0.0754 0.0018   41.38 0.000 ***   

PVC  0.0035  0.0003 11.83 0.000*** 

CSC  0.0004 0.00023 1.99 0.046 * 

Pt -0.045     0.0208 -2.046 0.0407 * 

  degree of freedom   

Null deviance 3908.55 239   

Residual deviance 220.94   230   

AIC 1478.4    

Table 3: Results of Parametric Coefficients in Poisson GLM 

 

The covariates average temperature, diameter of the pipe and length of the pipe non significant 

covariates. The coefficient of covariates temperature, year of installation, diameter of the pipe, Polyvinyl 

chloride pipe, Asbestos cement, Rain fall, length of pipe and CSC are positive, this means the mean of the 

number of pipe break increase with the value of covariates increase. Covariate variables that influence the 

number of pipe break cases in Hawassa city is based on Poisson GLM which are generated based on the Year of 

installation, Polyvinyl chloride pipe, average monthly rainfall and the Asbestos cement (AC) pipe. The 

dispersion parameter was found to be 0.96 and P-value of 0.000 which indicates that the model is significant at 

5% α-level. However, the assumption of equal variance to the mean in generalized Poisson model has been 

accept since the dispersion parameter is 0.96 approximately equal to 1 an indication of equi dispersion in the 

data.  

 
               Where,      𝞓 = 0.0754Y i + 0.0035PV C + 0.0004CSC − 0.0450Pt 

The first two plots of Figure 2 display the pattern of residuals with respect to the fitted values. These 

are useful for detecting non homogeneity in the distribution of residuals. If the model is appropriate, we expect 

residuals that are un-patterned with no trends in magnitude. The results of the diagnostic plot raise no warning 

flags concerning our modeling assumptions. It is also useful to examine the residuals as a function of the values 

of each explanatory variable. A QQ plot graphs the quantiles of the residuals against the theoretical quantiles of 

a Poisson distribution. The plot we see is roughly linear. We see a plot of the square root of the magnitude of the 

residuals as a function of the fitted values. This diagnostic plot is used to homoscedasticity of the residuals. 

Again, there are no indications of failures of the assumptions underlying the linear model. The plot of residuals 



Statistical Analysis of Pipe Breaks in Water Distribution Systems in Ethiopia, the Case of Hawassa 

DOI: 10.9790/5728-120304127136                                      www.iosrjournals.org                                  134 | Page 

versus leverage discloses no problems with the fit. Note that, certain points have been labeled by row number in 

the data frame. These have been flagged as potential outliers and the user might want to examine them in more 

detail. 

 
Figure 2: Diagnostic Plots for the Poisson Glm in Glm Object 

 

3.4 Negative Binomial Generalize Linear Model 
To do so, we need to estimate the regression parameters and the variance parameter. We use the glm.nb 

function in R to do the frequent approaches on Negative Binomial linear regression model. 

 
 Estimate Std. Error z-value Pr>|z| 

Intercept -0.0148    3.55 -41.72 0.000 *** 

AC  0.0037    0.0014 2.67 0.00075** 

Di  0.0241  0.0331 0.730 0.4653 

Le  0.0008    0.0137   0.06 0.9525 

Temp  0.0055 0.0044 1.27 0.2032  

Rain  0.0004   0.0001 3.95 0.000 ***   

Yi  0.0754 0.0018   41.37 0.000 ***   

PVC  0.0035  0.0003 11.83 0.000*** 

CSC  0.0004 0.0002 1.99 0.046 * 

Pt -0.0451     0.0220 -2.04 0.040 * 

  degree of freedom   

Null deviance 3908.26   239   

Residual deviance   220.93     230   

AIC 1480.4    

2 x log-likelihood -1458.403    

Dispersion parameter 460923    

Table 4: Results of Parametric Coefficients in Negative Binomial GLM 

Table 4 shows the parameter estimates of Negative Binomial GLM. The parameter estimates of both 

Poisson GLM and Negative Binomial GLM are quite similar, this is not unexpected since estimates from both 

the Poisson GLM and Negative binomial GLM are consistent. When fitting Negative Binomial GLM models to 

count data with log links, it is helpful to exponentiation the estimated coefficients. The resulting values 

represent ratios of expected counts on the dependent variable associated with a one-unit increase in a given 

predictor. In other words, the expected multiplicative increase in the mean of the count response that is 

associated with a one-unit increase in a given predictor. The parameter of θ is the dispersion parameter            

η  which is 0.001458453 approximately equal to 0 that indicates there is equi-dispersion in Negative 

Binomial GLM. 
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3.5 Proportional hazards model 
This is done in order to identify statistically significantly factors that influence the survival/break of 

water distribution system pipe break using Cox proportional hazard model. We use survival and  

package in R statistical software to estimate model or Proportional hazard model by  function for 

estimating the parameter coefficient and  function plot for the assumptions. 

 

 
        Coef exp(coef) se(coef) z-value Pr(>|z|) 

PVC   0.0069135 1.0069375 0.0020060 3.446 0.000568 *** 

AC  0.0172653 1.0174152 0.0103439 1.669 0.095091 

CSC -0.0007549 0.9992454 0.0016735 -0.451 0.651937 

 exp(coef)   exp(-coef) lower .95 upper .95  

PVC 1.0069 0.9931 1.003   1.011  

AC 1.0174 0.9829 0.997 1.038  

CSC 0.9992 1.0008 0.996 1.003  

Table 5: Results of Parametric Coefficients in Proportional Hazard Model 

 

Likelihood ratio test= 15.69 on 3 degree of freedom, p=0.00131, Wald test = 14.81 on 3 degree of 

freedom, p=0.001989, Score  test = 15.13 on 3 degree of freedom, p=0.001709. The model will be 

constructed by first identifying three covariates which are significant at p-value 0.05 in the Cox proportional 

hazard analysis. Likelihood ratio test, Score  test, Wald chi-square test is used to test the significance 

of the model. The result of those tests the model is statistically significant. Table 5 shows that the covariate PVC 

pipe is highly significant covariate, which has highly significant effect on pipe break. AC pipe also significant at 

5% level of significance, it has significant effect on the pipe break, and only non significant covariate is CSC 

pipe. In table 4  which is the hazard ratio and can be interpreted as the predictor change in a hazard for a unit 

constant in the predictors. There is one assumption for Cox’s regression which is the proportional hazards 

assumption that the hazard ratio between two groups remains constant over time on this study, the assumption is 

not violated. All possible interactions of the variables of the model are formed to see if the interaction effects 

can increase or decrease the survival time of pipe break. The Wald test is used to assess the significance of 

reasonable and possible interactions. Let us begin with baseline PVC pipe of the water distribution system that 

is supposed to be significant statistically. In this study, PVC pipe has been found to have a significant impact on 

the pipe break. Furthermore, plotting the scaled Schoenfeld residuals of each covariate against log time will be 

used to check whether the assumption of proportional hazards is violated or not. Clearly, a close look of this plot 

indicates that the residuals are random and loss curve are smooth and horizontal with zero slope. On the other 

hand the curve is fairly flat no pattern or trend on the assumption, the proportionality is not violated. This also 

suggests that the plots support proportionality assumption to hold. In figure 3, the first left side plot that is beta 

(t) for PVC pipe versus survival time the line is fairly flat no patter or trend. The other two covariates beta(t) for 

AC pipe and beta(t) for CSC pipe versus survival time, the curve is approximately flat in the case of these the 

assumption is not violated. The p-value associated with in the box (PVC, AC, CSC and GLOBAL) is none 

significant suggesting the proportional hazards assumption be satisfied. 

 
Figure 3: Scaled Schoenfeld Residuals of Proportional Hazard Model 
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3.6 Model comparison  

We analyzed the count data in Hawassa water supply and sewerage service enterprise by using five 

different models. It is reasonable to ask which type of model is better or when is one to be preferred over the 

others. These five models are listed in the following: 

Model 1 = MLRM (Multiple Linear Regression Model) 

Model 2 = TEM (Time Exponential Model) 

Model 3 = PGLM (Poisson Generalized Linear Model) 

Model 4 =NBGLM (Negative Binomial Generalized Linear Model) 

Model 5 = PHM (Proportional hazard model) 

 
Assessment parameter MLRM TEM PGLM NBGLM PHM 

Deviance   218.4147   219.031  

AIC 1346.517 2187.059 1477.865 1480.501 1211.222 

BIC      

LL -661.2584  -727.9326   -728.2505 -602.6109 

Table 6: Comparison of MLRM, TEM, PGLM, NBGLM, PHM 

 

All of these refer to the size of the residual variance, and test whether the residuals are correlated or 

not. Large values indicate lack of fit, and can be tested against a chi-square distribution for the degree of 

freedom given. In addition the AIC, BIC, -2log L, R-square, adjusted R-square etc values are given to 

investigate model adequacy condition. We compare the first two models Model 1 and model 2 by using AIC, 

Multiple linear regression models has less value (1346.517), and it is chosen by the data analyst. The point is 

that multiple linear regression model is a better model than Time exponential model. As mentioned the 

Deviance, AIC, and log-likelihood values in the Table 6: Poisson GLM is 218.4147, 2187.059 and -727.9326 

respectively, it is chosen by the data analysis. Poisson GLM is better model than Negative Binomial GLM 

model. Further, Proportional hazard model is the best model comparing with all other models because AIC and 

LL values are smaller than the others.  

 

IV. Conclusions 

This paper presented a statistical analysis on pipe breaks in water distribution systems in the case of 

Hawassa, Ethiopia. The analysis on pipe breaks have been explored using Multiple linear regression model, 

Poisson Generalized linear model, Negative Binomial Generalized linear model, Time exponential model and 

Proportional hazard model. The analysis shows that the covariates variables such as year of installation, 

Polyvinyl chloride pipe, Asbestos cement pipe, average temperature, concrete steel cage, and length of pipe and 

average rainfall are important influential factors which affect the number of pipe breaks. Among these Polyvinyl 

chloride pipe is the most influential factor. Comparing these models proportional hazard model is appropriate 

model. The criterion for selection of the best model used is AIC method. Based on our findings one should give 

due attention to the high risk factors identified as contributing high risk of pipe breaks in the water distribution, 

emphasis in improving the knowledge of persons who work in Hawassa city water supply and sewerage services 

enterprise on appropriate installation time of pipe practice and awareness about Polyvinyl chloride pipe and 

Asbestos cement pipe, to decrease the number pipe breaks. Finally, our recommendation is that water utility 

managers need more tools to help them make the right decisions about network rehabilitation.    
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