On Progenerator Semimodules

Pritam R. Gujarathi¹, R. P. Deore²

¹Ramrao Adik Institute of Thechnology, Nerul, Navi Mumbai-400706 ²Department of Mathematics, University of Mumbai, Mumbai-98

Abstract: The Generator and Progenerator plays a vital role in the study of category equivalences. In this paper we establish the crutial result that an progrnerator semimodules are preserved undercategory equivalences.

Keywords: Semirings, Semimodules, Subtractive subsemimodules etc. AMS 2000 Subject Classification Primary 16Y60.

I. Introduction

Recall that a set *R* together with two binary operations addition (+) and multiplication (.) is called a semiring, provided (R, +) is an additive abelian monoid with identity element $0_R, (R, \cdot)$ is a semi group and multiplication distributes over addition from left and from the right.

As usual a left *R*-semimodule *M* is a commutative monoid (M, +) with additive identity o_M for which we have a function $R \times M \to M$ defined by $(r, m) \to r.m$ and called scalar multiplication which satisfies the following conditions for all r, r' of *R* and all elements *m*, *m'* of *M*, 1. (r+r')m = rm+r'm

2. r(m+m') = rm + rm'

- 3. $(r \cdot r')m = r(r' \cdot m)$
- 4. $1_R \cdot m = m$

5. $0_R \cdot m = 0_M = r \cdot 0_M$

By a semiring R we always mean a semiring R with 1. Homomorphisms are acting on the left and not as action on the right as in [2]. smod-R, S-smod, csmod-R and S-csmod respectively denote the categories of right R-semimodules, left S-semimodules, additively cancellative right R-semimodules and additively cancellative left S-semimodules.

A left *R*- semimodule *M* is a generator of the category *R*-smod if for every semimodule *N* there exists a surjective morphism $M^{(I)} \to N$ for a suitable set *I*. For any *R*- semimodule *M*, consider the subset $I_R(M)$ of *R* consisting of the elements of the form $\sum_{i=1}^n f_i(m_i)$ where f_i from Hom(M,R) and the m_i are from *M*. $I_R(M)$ is a two sided ideal of *R*, called the **trace ideal** of *M*

Lemma 1.1[3] : *M* is an *R*-generator if and only if the functor Hom(M, -) is faithful. **Theorem 1.2**[3] : Let *M* be a left *R*-semimodule, Then the following conditions are equivalent. a) There exists $f_1, f_2, ..., f_n \in Hom_R(M, R)$ and $m_1, m_2, ..., m_n \in M$ with, $\sum_{i=1}^n f_i(m_i) = 1$ b) The Trace ideal $I_R(M) = R$. c) The functor Hom(M, -) is faithful.

Proposition 1.3[3]: The generator semimodules are preserved under any category equivalence, i.e., if F is a category equivalence from one category of semimodules say C to another category of semimodules say D, them a semimodule M is a generator in the first category if and only if F(M) is a generator in the second category.

II. Progenerator Semimodules

A *R*-semimodule *M* is an *R*-progenerator if *M* is a finitely generated, projective and generator over *R*. Lemma 2.1: Let *C* and *D* be categories of semimodules under the inverse equivalence $F : C \to D$ and $G : D \to C$. Then for any objects *L*, *L'* in *C*, the homomorphism

 μ : $Hom_C(LL') \rightarrow Hom_D(F(L), F(L'))$ given by $\mu(g) = F(g)$ is one-one and onto.

In any category, a map $f: M \to N$ is called a proper monomorphism if f is a monomorphism but there is no map $g: N \to M$ such that fg = IdN and gf = IdM. Two monomorphisms $f: M \to N$ and $g: L \to N$ are ordered $f \leq g$ if and only if there exists a map $h: M \to L$ such that f = gh. The concept of a sub object of an object in a category provides a categorical way of dealing with the subsemimodules of a given semimodule N. In C, a subobject of the semimodule N is an equivalence class [f] of monics $f: M \to N$ where the equivalence relation is defined by $f \sim f': M' \to N$ if there exists an isomorphism $g: M' \to M$ such that f' = fg. In this case f'(M') = f(M), so all of the f in [f] have the same image in N and this is a subsemimodule. Moreover, if M is any subsemimodule, then we have the injection $i: M \to N$, and i(M) = M. Thus we have a bijection $\theta: A \to B$ where A is the set of all subobjects of N and B is the set of all subsemimodules of N, under the definition $\theta([f]) = f(M)$.

This is order preserving if subsemimodules are ordered in the usual way by inclusion, and we define $[f'] \leq [f]$ for subobjects of N to mean f' = fg for a monomorphism g. If $\{N_{\alpha}\}$ is a directed set of subsemimodules of N, then $\bigcup N_{\alpha}$ is a subsemimodule and this is a sup for the set of all N_{α} in the partial ordering by inclusion. It follows that any directed set of subobjects of N has a sup in the ordering of subobjects.

If (F, G) is an equivalence of C and D and $\{[f\alpha]\}$ is a directed set of subobjects of N with Sup[f], then it is clear that $\{[F(f\alpha)]\}$ is a directed set of subobjects of F(N) with Sup[F(f)]. A subobject [f] is called proper if f is not an isomorphism or equivalently if f(M) for $f: M \to N$ is a proper subsemimodule of N. If [f] is proper then [F(f)] is proper.

Proposition 2.2: In any category consisting of all the semimodules over some semiring, the following statements about a fixed semimodule M are equivalent.

- a) *M* is finitely generated.
- b) The union of every linearly ordered chain of proper subsemimodule of M is a proper subsemimodule.
- c) Every linearly ordered chain of proper monomorphism into M possesses an upper bound in the collection of all proper monomorphism into M.

Proposition 2.3: The finitely generated semimodules are preserved under any category equivalence, i.e., if F is a category equivalence from one category of semimodules say C to another category of semimodules say D, then a semimodule M is finitely generated in the first category if and only if F (M) is finitely generated in the second category.

Proof: Proof follows by above discussion and Proposition 1.2.

Thus finitely generated semimodules are preserved under any category equivalence. Therefore F preserves the subcategory of free semimodules with finite basis set whence, as projective semimodules are retracts of free semimodules (discussed in [3]), we have the following.

Proposition 2.4: The projective semimodules are preserved under any category equivalence, i.e., if F is a category equivalence from one category of semimodules say C to another category of semimodules say D, then a semimodule M is projective in the first category if and only if F(M) is projective in the second category.

Theorem 2.5: The progenerator semimodules are preserved under any category equivalence, If smod-R and S-smod are equivalent under a category equivalence F, then a semimodule M in smod-R is an R-progenerator if and only if F(M) is an S-progenerator.

References

- [1]. H. M. J. Al-Thani : Flat Semimodules, UMMS, 17, 2004, 873-880.
- [2]. F. DeMayer and E. Ingrahm : Separable Algebras over Commutative Rings, V-181, Springer Verlag, New York, 1971.
- [3]. Pritam R. Gujarathi: A Note on Generator Semimodules, International Journal of Mathematical Sciences and its Applications, 1(3), 2011
- [4]. P. R. Gujarathi and R.P. Deore A Note on Localization of Semimodules, Inter- national Journal of Algenra, 15(4) 2010, 721-725
- [5]. R. P. Deore and K. B. Patil : On The Dual Basis for Projective Semimodules and its Applications, Sarajevo J. Maths , 1(14) 2005, 161-169.
- [6]. J. S. Golan: The Theory of Semirings with applications in Mathematics and The- oretical Computer Sciences, Pitman Monographs and surveys in Pure and Applied Mathematics 54, Longman Science Tech. Harlow-1992.
- [7]. U. Hebisch and W.J.Weinert: Semirings, World Scientific, New Jersey 1998. [8] N. Jacobson : Basic Algebra-II, HPC. Ltd. 1983.
- [8]. V. S. Krishnan : An Introduction to Category Theory, Elsevier North Holland , 1981.
- [9]. B. Pareigis : Categories and Functors , Academic Press New York 1970.
- [10]. K.B. Patil and R. P. Deore: Some Results on Semirings and Semimodules, Bull.
- [11]. Cal. Math.Soc. 98, (1) 49-56, 2006.
- [12]. Olga Sokratova: On Semimodules over commutative, Additively Idempotent Semirings, Semigroups Foram 2000.