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Abstract: The polydisperse fuel spray (droplets with different radii size) jet that discharging into a hot gas is 

study in this paper. The dimensionless governing equations (a PDE system) of the physical model include a gas-

phase equations and liquid-phase equations. The analysis of the model is based on the well-known semi-

analytical method the homotopy analysis method (HAM). In the frame of the HAM the so-called convergence-

control parameter is an artificial parameter of the model which provides a convenient way to guarantee the 

convergence of approximation series of the solutions. 

Keywords:Droplet combustion, homotopy analysis method (HAM), Fuel Spray 

 

I. Introduction 

The analysis of a group vaporization of a polydisperse fuel-spray jet discharging into a hot co-flowing 

gaseous stream is very applicable in engineering science. [1]-[2]. In most cases, the investigation of these 

models based on asymptotic analysis and numerical simulations. In very few cases for very specific models 

researchers can applied an analytical methods.When one applied a numerical method, the researcher can include 

a lot of physical phenomena and even he should not neglect any expression in the model. Applying an analytical 

method, one should simplify the model in order to get an analytical expressions, on the other hand, analytical 

and asymptotic method are better suit for isolating themost important physical effects, thereby increasing 

understanding of the underlying physical significantly. In addition, analytical and asymptotic methods often can 

yield an expressions and formulas that are readily applied to calculate quantities of interest in engineering 

applications [3]. 

In this paper we investigated the model that includes a polydisperse fuel spray jet discharging with high 

Reynolds number into a surrounding hot co-flow. This model extends the model present in [4]. In order to 

understanding this model from physical point of view, one should identify the key controlling parameters and 

study their influence on the spray structure. For example, the parameter that representing the mass of liquid fuel 

per unit mass of gas in the spray stream has been identify in the above model and assumed to be in order of 1 i.e. 

)1(Oc  . 

One of the analytical-numerical method that we applied in this paper is the well-known the homotopy 

analysis method [5]. This method do not involve perturbation series in powers of physical parameters, and the 

convergence of approximate is controlled by an artificial parameter called  which do not exists in the original 

physical model. When one apply the HAM, then this artificial parameter is fixed at the end of calculations 

according to some criterion such as the principle of minimal sensitivity (PMS), which requires the approximants 

have the least dependence on these parameters over perturbation techniques. 

The biggest advantage of the HAM method, which is different from all other analytical methods, is that 

it provides us with a simple way to adjust and control the convergence region of solution series by choosing 

proper values of auxiliary parameter  , auxiliary function Hand auxiliary linear operator L(for more details [6]). 

 

II. Conservation Equations 
2.1 Characteristic time scales 

In general when dealing with the spray vaporization process there are three characteristic time scales 

that are involved in this process: the first one is the diffusion time across the jet due to the comparison the 

convection and transverse diffusion in the gas-phase conservation equation
jTD DRt /2 where

 pjT cD
j

  / , the second is the droplet lifetime which is characterizes the vaporization of each individual 

droplet and given by    
jjd Tjdlr Drt   3/2 and the third one is the spray-interaction time which include the 

effect of spray vaporization on the density, velocity, temperature, and fuel-vapor evolution in the jet and given 

by 1)4( 
jjj Tdds Dnrt  , this time scale corresponds to the characteristic time required for droplet vaporization 

to change appreciably, by a relative of order unity-the value of the gas density in the jet. 
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2.2 Controlling parameters 

In this section we present two controlling parameters that are related to the time scales. The first one is 

the characteristic time ratio src tt
d

/ which is measuring the dilution of the spray, and corresponds to the 

spray configuration with characteristic values of the average distance between neighboringdropletsand given by 

jlddc jj
nr  /)3/4( 3 . 

The second controlling parameter is the ratio of the characteristic time of jet evolution due to the spray 

vaporization st  to the diffusion time Dt  and given by 12)4(  Rnr
jj dd . 

This parameter is useful when one applying an asymptotic analysis of droplets cloud vaporization 

because its value is small and causing vaporization to occur in a sheath or vaporization front that separates the 

spray, in saturated equilibrium, from the surrounding droplet-free hot gas, with the flame standing outside the 

spray in combustion configurations. 

 

2.3 The physical model 

Our non-dimensional model take into account a different droplet radii size i.e., polydisperse spray in a 

continuous way by using probability density function. The characteristic diffusion time will be used to construct 

scales for the stream- wise length, DjtU ,and for the gas and droplet radial velocities, RDtR
jTD //  . The radial 

distance will be scaled with R, whereas the droplet and the gas axial velocity components, the droplet radius and 

the number density, and the gas temperature and density will be scaled with their values at the spray exit. Under 

these assumptions the governing equation are as follows [4]:  

 

Gas-phase equations 
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Liquid-phase equations 

 
 

The initial and boundary conditions of the problem are 

 
 

III. Analysis And Numerical Results 
One of the analytical-numerical method that we applied in this paper is the well-known the homotopy 

analysis method. In general, perturbation methods are widely used to investigate physical systems that can be 

exactly solved, but these systems need to contain small perturbations parameters in order to applydifferent 

perturbation methods. In contrast to the classical perturbation method, the HAM is always valid no matter 

whether there exist small physical parameters or not in the system. The HAM contains the auxiliary parameter 

so-called the artificial parameter   [5]. This means that this method do not involve perturbation series in powers 

of physical parameters, and the convergence of approximate is controlled by   which do not exists in the 

original physical model. The biggest advantage of the HAM method, which is different from all other analytical 

methods, is that it provides us with a simple way to adjust and control the convergence region of solution series 

by choosing proper values of auxiliary parameter  , auxiliary function Hand auxiliary linear operator L(for 

more information about the symbols please refer to [6]). A comparison with experimental data enables one to 

validate the new model and the validity of the HAM method. 

 

3.1 The homotopy analysis method procedure 

Consider the following differential equation: 
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whereN is a nonlinear operator, ris a vector of spatial variables, tdenotes time and uis an unknown function. 

3.1.1 Zero order deformation of HAM 

By means of generalizing the traditional concept of homotopy, Liao [7] constructs the so-called zero-

order deformation equation: 

 

 
 

where   is a non-zero auxiliary parameter, His an auxiliary function, l is an auxiliary linear operator, )(0 u is an 

initial guess of u(·), is a unknown function. The degree of freedom is to choose the initial guess, the auxiliary 

linear operator, the auxiliary parameter, and the auxiliary function H. Expanding   to a power 

series with respect to the embedding parameter p, one has 

 
Where 

 
If the auxiliary linear operator, the initial guess, the auxiliary parameter, and the auxiliary function are so 

properly chosen that the above series converges at p = 1, one has 

 

 
which must be one of the solutions of the original nonlinear equation, as proved in [7]. 

 

3.1.2 mth-order deformation 

Define the vector: 

 
Differentiating Equation (3.2) m-times with respect to the embedding parameter p and then setting p = 

0 and finally dividing the terms by m!, we obtain the m-order deformation equation in the form of: 

 

and m  is the unit step function. Applying the inverse operator 1l on both side of Equation (3.7), we get 

 
In this way, it is easy to obtain mu for m> 1, at m-order and finally get the solution as: 
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when M we get an accurate approximation of the original equation (3.1). For the convergence of the above 

method we refer the reader to [7]. If equation (3.1) admits unique solution, then this method will produce the 

unique solution. If equation (3.1) does not possess unique solution, the HAM will give a solution among many 

other (possible) solutions. 

Figures 1 − 6 correspond to numerical simulations and homotopy analysis method. Figure 1 shows the 

solutions profiles of the temperature obtained by numerical simulation. As can be seen from this figure, when 

the axial location is far the temperature decrease faster, i.e., near to the beginning of the process. 

In addition the width of the sprays is increased as the axial location increased. The analysis of the solutions 

profiles for temperature when we implemented the homotopy analysis methos (Figure 2) is similar. Here the 

temperature decrease faster when axial location is far in comparing to the numerical simulations but the spray 

width wider. 

Figures 3 − 4 shows the solutions profiles of the radius obtained by numerical simulation and HAM 

method correspondingly. The solutions profiles of the radius, which shows the decrease of the radius, are 

compatible with the solutions profiles of the temperature for both of the methods. For example, the temperature 

in the Sub-graph 2 in Figure 1 is higher at   1.1. This result is consistent with the sub-graph 2 in Figure 3, i.e., 

the radius decrease to zero at   1.1. Adjusting these results also apply to the rest of sub-graphs. Finally the 

droplets is completely consumed at a finite distance from the injector at x 2.1, so that farther downstream the 

spray boundary is defined as the location where r = 0 corresponding to vaporizing droplets located initially 

within the jet away from the injector edge. 

Figures 5 − 6 shows the solutions profiles of the mass fraction obtained by nu- merical simulation and 

HAM method for different values of c  and  , including dilute ( 1c ) and dense ( 25c ) sprays 

correspondingly. As shown if these figure the vaporization occurs in a distributed manner for 1 . In 

particular, although the vaporization is more pronounced at the edge of the spray, non-negligible vaporization of 

the droplets located along the axis can be seen already at 4.0x . As results, the fuel mass fraction increases 

from its initial value 2.0jY , giving profiles that peak at the axis. In addition the this analysis is that the heat 

transfer from the hot coflow increases the temperature within the spray to values significantly larger than the 

boiling point temperature T = 1. Figure 7 shows the relative error between the numerical simulations and the 

HAM analysis. Figure 8 shows the valid region of the so-called the convergence-control parameter for different 

m-order deformation when applying the homotopy analysis method. 

 

IV. Conclusions 

Many problems which arise in applied mathematics are highly non-linear and thus can be difficult or 

impossible to solve analytically. The Homotopy Analysis Method (HAM) is a semi-analytical technique used to 

solve differential equations, in particular non-linear and partial. Different from all other analyticalmethods, it 

provides us with a simple way to adjust and control the convergence region of solution series by choosing 

proper values of the different quantities in the HAM method. As our results shown, we have great freedom to 

choose the auxiliary parameter, the so-called the convergence-control parameter, theauxiliary function H, the 

auxiliary linear operator L and the initial guesses. In addition, the HAM was shown to be simple, yet powerful 

analytic-numeric scheme for solving various nonlinear problems. Numerical computation has been done by 

Matlab software package. 
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Figure 1: Solutions profiles of the temperature across the vaporizing jet obtained by numerical simulation for 

.1,1,15.2,36.0,7.0Pr,2.0,1,1   ccjc TYLu  

 

 
Figure 2: Solutions profiles of the temperature across the vaporizing jet obtained by applying the homotopy 

analysis method for 50th-order for .1,1,15.2,36.0,7.0Pr,2.0,1,1   ccjc TYLu  
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Figure 3: Solutions profiles of the radius across the vaporizing jet obtained by numerical simulation and 

compatible with Figure 4.1 for .1,1,15.2,36.0,7.0Pr,2.0,1,1   ccjc TYLu  

 

 
Figure 4: Solutions profiles of the radius across the vaporizing jet obtained by applying the homotopy analysis 

method and compatible with Figure 4.2 for .1,1,15.2,36.0,7.0Pr,2.0,1,1   ccjc TYLu  
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Figure 5: Solutions profiles of the mass fraction across the vaporizing jet obtained by numerical simulation for 

different values of c and  , including dilute ( 1c ) and dense ( 25c ) sprays. The following parameters 

are used: .1,1,15.2,36.0,7.0Pr,2.0,1,1   ccjc TYLu  

 

 
Figure 6: Solutions profiles of the mass fraction across the vaporizing jet obtained by applying the homotopy 

analysis method for different values of c  and  , including dilute ( 1c ) and dense ( 25c ) sprays. The 

following parameters are used: .1,1,15.2,36.0,7.0Pr,2.0,1,1   ccjc TYLu  
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Figure 7: The relative error between numeruical results and HAM analysis 

 

 
 Figure 8: The valid region of the convergence control parameter. 


