Fixed Point in Hilbert Spaces

Aradhana Sharma^{1,} Gauri Shanker Sao²

¹Deptt.Of Mathematics Govt.Bilasa Girls PG College Bilaspur ²Deptt.Of Mathematics Govt.ERR PG Sc.College Bilaspur

Abstract: In the present paper ,we prove existence of fixed point and contraction mapping in Hilbert spaces by iretates. **Keywords And Phrases:** Hilbert space, fixed point,Contraction,Cauchy sequence

I. Introduction

In recent years some fixed points of various type of compability mapping in Hilbert space and Banach spaces were obtained, among others by Browder[1],Browder and Petryshyn[2],Hicks and Huffman[3], Jungck[4].

II. Preliminaries

2.1 Norm : A norm on X is a real-valued function $\|.\|: X \rightarrow R$ defined on X such that for any x, $y \in X$ and for all $\lambda \in K$

- (a) ||x|| = 0 if and only if x = 0
- (b) $||x+y|| \le ||x|| + ||y||$

(c) $\|\lambda x\| = |\lambda| \|x\|$

2.2 Normed Linear Space : It is a pair (X, ||.||) consisting of a linear space X and a norm ||.||. We shall abbreviate normed linear space as nls.

2.3 Cauchy Sequence : A Sequence $\{x_n\}$ in a normed linear space X is a Cauchy sequence if for any given $\epsilon > 0$, there exist $n_0 \in N$ such that $||x_m - x_n|| < \epsilon$ for $m, n \ge n_0$

2.4 Convergence Condition In Nls : A sequence $\{x_n\}$ in a nls X is said to be Convergent to $x \in X$ if for any given $\epsilon > 0, \exists n_0 \in N$ such that $||x_n - x|| < \epsilon$ for $n \ge n_0$

2.5 **Completeness** : A nls X is said to be complete if for every Cauchy Sequence in X converges to an element of X.

2.6 **Banach Space** : A Banach Space (X, ||.||) is a complete nls.

2.7 **Inner Product Space** : Let X be a linear space over the scalar field C of complex numbers. An inner product on X is a function (., .) : XxX \rightarrow C which satisfies the following conditions

(a) (x, y) = (y, x) for $x, y \in X$

(b) $(\lambda x + \mu y, z) = \lambda (x, z) + \mu (y, z)$ for $\lambda, \mu \in C, x, y, z \in X$

(c) $(x, x) \ge 0; x x) = 0$ iff x = 0

2.8 Law Of Parallelogram: If x and y are any two elements of an inner product space X then $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$

2.9 **Hilbert Space** : An infinite dimensional inner product space which is complete for the norm induced by the inner product is called Hilbert Space.

III. Material And Method

Theorem:Let C be a closed subset of a Hilbert space H. T,g:C \rightarrow C are contraction and continuous map of C, then { $Tg^n x$ } converges to Ta. If T,g satisfying the following condition $||Tgx-Tgy||^2 \leq \alpha ||Tx-Ty||^2$ for $\alpha \in [0,1)$

Then g has a fixed point a.

IV. Result And Discussion
Proof of theorem: It can be proof in four Steps
Step 1:
$$\lim_{n\to\infty} ||Tg^{n+1}x - Tg^nx||^2 = 0$$

Since $||Tg^{n+1}x - Tg^nx||^2 \le \alpha^n ||Tgx - Tx||^2$
Therefore $||Tg^{n+1}x - Tg^nx||^2 = 0$ as $\alpha \in [0,1)$

Step 2: { $Tg^n x$ } is bounded sequence

Suppose { $Tg^n x$ } is unbounded then there exist { $\eta(k)$ }[∞]_{k=1} s.t.n(1)=1 and for each $k \in N, n(k+1)$ is 'minimal' So $||Tg^{n(k+1)}x - Tg^{n(k)}x||^2 > 1$ and $||Tg^m x - Tg^{n(k)}x||^2 \le 1$, for all $m = n(k)+1, n(k)+2, \dots, n(k+1)+1$ But $1 < ||Tg^{n(k+1)}x - Tg^{n(k)}x||^2 \le ||Tg^{n(k+1)}x - Tg^{n(k+1)-1}x||^2 + ||Tg^{n(k+1)-1}x - Tg^{n(k)}x||^2$ $\le ||Tg^{n(k+1)}x - Tg^{n(k)}x||^2 \to 1$ as $k \to \infty$ Therefore $||Tg^{n(k+1)}x - Tg^{n(k)}x||^2 \le \alpha ||Tg^{n(k+1)-1}x - Tg^{n(k)-1}x||^2$ contradiction Step 3: { $Tg^n x$ }[∞]_{n=1} is a Cauchy sequence Since $||Tg^m x - Tg^n x||^2 \le \alpha^n ||Tg^{m-n}x - Tx||^2$ for $\alpha \in [0, 1)$ Therefore $||Tg^m x - Tg^n x||^2 = 0$ Step 4: G has A Unique Fixed Point

V. Conclusion

As
$$\{Tg^n x\}_{n=1}^{\infty}$$
 is a Cauchy sequence ,then $Tg^n x = Ta$.
So $\|Tg^{n+1}x - Tga\|^2 \le \alpha \|Tg^n x - Ta\|^2$
 $\rightarrow 0$ for $\alpha \in [0,1)$
Therefore Tga=Ta or ga=a ,hence g has a fixed point a.

VI. Acknowledgements

The authors are thankful to the reviewers for their valuable suggestions to enhance the quality of our article and Journal also.

References

- [1]. Browder ,F.E. :Fixed point theorems for nonlinear semi contractive mappings in Banach space ,Arch,Rat,Mech, Anal, 21, 259 -269, (1965-66).
- [2]. 2. Browder, F.E. and Petryshyn W.V. : Contraction of fixed points of nonlinear mappings in Hilbert space , J.Math. Anl. Appl.20, 197-228, (1967).

- [3]. Hichs, T.L. and Huffman, Ed.W. : Fixed point theorems of generalized Hilbert space , J. Math Anal, Appl , 64 (1978).
- [4]. Jungck G.: Compatible mappings and common fixed points ,Internet J. Math. and Math. Sci. 9 (4) (1986), 771-779.
- [5]. Sao,G.S.:Common fixed point theorem for compability on Hilbert space,Applied Sci.Periodical,vol.9(1),Feb.2007,p.27-29
- [6]. Sharma, Aradhana and Sao, G.S.: Meir Keeler type contractive conditions on Hilbert space, Acta Ciencia Indica vol.34(4)2008, p.1737-1738
- [7]. Sao,G.S. and Gupta S.N.:Common fixed point theorem in Hilbert space for rational expression, Impact Jour. of Sci. and Tech. vol. 4, 2010, P.B. No. 1889 Lautoka Fiji Island, p. 39-41
- [8]. Sao, G.S. and Sharma Aradhana : Generalisation of Common fixed point Theorems of Naimpally and Singh in Hilbert Space, Acta Sciencia India 2008 34(4) p. 1733-34.
- [9]. Sharma, Aradhana and Sao, G.S.: Common Fixed Point in Banach Space International Journal of Modern Science and Engineering Technology Vol-2 Issue-8 2015 pp. 54-59.
- [10]. Sinha,Seema ,Verma,Premlata and Sao,G.S.:Common fixed point in Hilbert space Global Jour.of engineering science and researches vol.2,issue 10(2015),pp. 86-88.
- [11]. Yadav, Hema, Sayyed, S.A. and Badshah, V.H., A note on common fixed point theorem in Hilbert space, Material Science Research India, vol.7 (2)(2010), 515-518.

Dr.Aradhana Sharma is working as a Asst.Professor, Dept. of Mathematics at Govt.Bilasa Girls PG Sc.College,Bilaspur(C.G.).Her papers more than 22 were published in various esteemed reputable national /International journals. She is a member of var ious professional bodies.

Dr.Gauri Shanker Sao:He is working as a Asst.Professor & Head, Dept. of Mathematics at Govt.ERR PG Sc.College,Bilaspur(C.G.).His papers more than 69 were published in various esteemed reputable national /International journals. He is a member of various professional bodies. He published two books in mathematics and one book in fundamental of computer.