Fixed Point in Hilbert Spaces

Aradhana Sharma¹, Gauri Shanker Sao²
¹Deptt. Of Mathematics
Govt. Bilasa Girls PG College Bilaspur
²Deptt. Of Mathematics
Govt. ERR PG Sc. College Bilaspur

Abstract: In the present paper, we prove existence of fixed point and contraction mapping in Hilbert spaces by iterates.

Keywords And Phrases: Hilbert space, fixed point, Contraction, Cauchy sequence

I. Introduction

In recent years some fixed points of various type of compatibility mapping in Hilbert space and Banach spaces were obtained, among others by Browder [1], Browder and Petryshyn [2], Hicks and Huffman [3], Jungck [4].

II. Preliminaries

2.1 Norm: A norm on X is a real-valued function ||.|| : X → R defined on X such that for any x, y ∈ X and for all λ ∈ K
(a) ||x|| = 0 if and only if x = 0
(b) ||x + y|| ≤ ||x|| + ||y||
(c) ||λx|| = |λ||x||

2.2 Normed Linear Space: It is a pair (X, ||.||) consisting of a linear space X and a norm ||.||. We shall abbreviate normed linear space as nls.

2.3 Cauchy Sequence: A Sequence {xₙ} in a normed linear space X is a Cauchy sequence if for any given ε > 0, there exist n₀ ∈ N such that ||xₘ - xₙ|| < ε for m, n ≥ n₀

2.4 Convergence Condition In Nls: A sequence {xₙ} in a nls X is said to be Convergent to x ∈ X if for any given ε > 0, ∃ n₀ ∈ N such that ||xₙ - x|| < ε for n ≥ n₀

2.5 Completeness: A nls X is said to be complete if for every Cauchy Sequence in X converges to an element of X.

2.6 Banach Space: A Banach Space (X, ||.||) is a complete nls.

2.7 Inner Product Space: Let X be a linear space over the scalar field C of complex numbers. An inner product on X is a function (., .) : X × X → C which satisfies the following conditions
(a) (x, y) = (y, x) for x, y ∈ X
(b) (λx + μy, z) = λ(x, z) + μ(y, z) for λ, μ ∈ C, x, y, z ∈ X
(c) (x, x) ≥ 0 ; x = 0

2.8 Law Of Parallelogram: If x and y are any two elements of an inner product space X then ||x + y||² + ||x - y||² = 2||x||² + 2||y||²

2.9 Hilbert Space: An infinite dimensional inner product space which is complete for the norm induced by the inner product is called Hilbert Space.

III. Material And Method

DOI: 10.9790/5728-1202055860 www.iosrjournals.org 58 | Page
Theorem: Let C be a closed subset of a Hilbert space H. $T, g: C \rightarrow C$ are contraction and continuous map of C, then $\{ Tg^n x \}$ converges to Ta. If T, g satisfying the following condition

$$||Tg x - Tg y||^2 \leq \alpha^2 ||Tx - Ty||^2$$

for $\alpha \in [0, 1)$

Then g has a fixed point a.

IV. Result And Discussion

Proof of theorem: It can be proof in four steps

Step 1: $\lim_{n \to \infty} ||Tg^{n+1} x - Tg^n x||^2 = 0$

Since $||Tg^{n+1} x - Tg^n x||^2 \leq \alpha^2 ||Tg x - Tx||^2$

Therefore $||Tg^{n+1} x - Tg^n x||^2 = 0$ as $\alpha \in [0, 1)$

Step 2: $\{ Tg^n x \}$ is bounded sequence

Suppose $\{ Tg^n x \}$ is unbounded then there exist $\{ n(k) \}$ s.t. $n(1)=1$ and for each $k \in \mathbb{N}, n(k+1)$ is 'minimal'

So $||Tg^{n(k+1)} x - Tg^{n(k)} x||^2 > 1$ and $||Tg^m x - Tg^{n(k)} x||^2 \leq 1$,

for all $m = n(k)+1, n(k)+2, \ldots, n(k+1)+1$

But $1 < ||Tg^{n(k+1)} x - Tg^{n(k)} x||^2 \leq ||Tg^{n(k+1)} x - Tg^{n(k+1)-1} x||^2 + ||Tg^{n(k+1)-1} x - Tg^{n(k)} x||^2$

$\leq ||Tg^{n(k+1)} x - Tg^{n(k+1)-1} x||^2 + 1$

So $||Tg^{n(k+1)} x - Tg^{n(k)} x||^2 \to 1$ as $k \to \infty$

Therefore $||Tg^{n(k+1)} x - Tg^{n(k)} x||^2 \leq \alpha^2 ||Tg^{n(k+1)-1} x - Tg^{n(k)-1} x||^2$ contradiction

Step 3: $\{ Tg^n x \}_{n=1}^\infty$ is a Cauchy sequence

Since $||Tg^m x - Tg^n x||^2 \leq \alpha^m ||Tg^{m-n} x - Tx||^2$ for $\alpha \in [0, 1)$

Therefore $||Tg^m x - Tg^n x||^2 = 0$

Step 4: G has A Unique Fixed Point

V. Conclusion

As $\{ Tg^n x \}_{n=1}^\infty$ is a Cauchy sequence, then $Tg^n x = Ta$.

So $||Tg^{n+1} x - Tg a||^2 \leq \alpha^2 ||Tg^n x - Ta||^2$

$\to 0$ for $\alpha \in [0, 1)$

Therefore $Tga = Ta$ or $ga = a$, hence g has a fixed point a.

VI. Acknowledgements

The authors are thankful to the reviewers for their valuable suggestions to enhance the quality of our article and Journal also.

References

DOI: 10.9790/5728-1202055860 www.iosrjournals.org 59 | Page
Fixed Point In Hilbert Spaces

[8]. Sao, G. S. and Sharma Aradhana: Generalisation of Common fixed point Theorems of Naimpally and Singh in Hilbert Space, Acta Sciencia India 2008 34(4) p. 1733-34.

Dr. Aradhana Sharma is working as an Assistant Professor, Dept. of Mathematics at Govt. Bilasa Girls PG Sc. College, Bilaspur (C.G.). Her papers more than 22 were published in various esteemed reputable national /International journals. She is a member of various professional bodies.

Dr. Gauri Shanker Sao: He is working as an Assistant Professor & Head, Dept. of Mathematics at Govt. ERR PG Sc. College, Bilaspur (C.G.). His papers more than 69 were published in various esteemed reputable national /International journals. He is a member of various professional bodies. He published two books in mathematics and one book in fundamental of computer.