Harmonic Index of Some Class of Trees with an Algorithm

H. S. Ramane¹, R. B. Jummannaver², S. C. Patil³
¹²(Department Of Mathematics, Karnataka University, Dharwad-580 003, India)
³(Department Of Computer Science, Karnataka University, Dharwad-580 003, India)

Abstract: The harmonic index $H(G)$ of a graph G is defined as the sum of weights $\frac{2}{d_G(u) + d_G(v)}$ of all edges uv of G, where $d_G(u)$ is the degree of a vertex u in G. In this paper we obtained the harmonic index of some class of trees and further developed an algorithmic technique to find harmonic index of any graph.

Keywords: Algorithm, Degree of a vertex, Harmonic Index, Tree.

I. Introduction

Let G be an undirected graph without loops and multiple edges with n vertices. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ be the vertex set of G. The harmonic index $H(G)$ of a graph G is defined as the sum of weights $\frac{2}{d_G(u) + d_G(v)}$ of all edges uv of G, where $d_G(u)$ is the degree of a vertex u in G. It has been found that the harmonic index correlates well with the Randic index[6]. Favaron et al. [3] considered the relationship between the harmonic index and the eigenvalues of graphs. Deng et al. [2] studied the relationship between the harmonic index and chromatic number of a graph. Shwetha Shetty et al. [10] obtained the bounds for the harmonic index of graph operations like join, corona product, Cartesian product, composition and symmetric difference. The expressions for the harmonic index and Randic index of the generalized transformation graphs G^b and for their complement graphs are obtained [9]. The adjacency matrix of a graph G is the $n \times n$ matrix $A(G) = [a_{ij}]$, in which $a_{ij} = 1$ if v_i is adjacent to v_j and $a_{ij} = 0$, otherwise.

II. Results

Proposition 2.1: If T_1 is a tree with n vertices and m edges as shown in Fig. 1, then harmonic index of T_1 is

$$H(T_1) = \frac{2x}{x+2} + \frac{2(n-x-2)}{n-x} + \frac{2}{n}$$

Proof: Without loss of generality consider the vertices a, b as shown in Fig. 1, where $d_G(a)=x+1, d_G(b)=n-x-1$. Partition $E(T_1)$ into 3 sets E_1, E_2 and E_3 such that $E_1=\{uv / d_G(u)=1 \text{ and } d_G(v)=x+1\}, E_2=\{uv / d_G(u)=1 \text{ and } d_G(v)=n-x+1\}, E_3=\{ab\}$. It is easy to see that $|E_1|=x, |E_2|=n-x-2, |E_3|=1$ and $|E_1| + |E_2| + |E_3| = m$.

$$H(T_1) = \sum_{uv \in E(T_1)} \frac{2}{d_G(u) + d_G(v)}$$

$$= \sum_{uv \in E_1(T_1)} \frac{2}{d_G(u) + d_G(v)} + \sum_{uv \in E_2(T_1)} \frac{2}{d_G(u) + d_G(v)} + \sum_{uv \in E_3(T_1)} \frac{2}{d_G(u) + d_G(v)}$$

$$= \sum_{uv \in E_1(T_1)} \frac{2}{x+1+1} + \sum_{uv \in E_2(T_1)} \frac{2}{(n-x-2+1)+(n-x-2+1)} + \sum_{uv \in E_3(T_1)} \frac{2}{(x+1)+(n-x-2+1)}$$

$$= x \frac{2}{x+2} + (n-x-2) \frac{2}{n-x} + \frac{2}{n}$$
Harmonic Index Of Some Class Of Trees With An Algorithm

\[H(T) = \frac{2x}{x+2} + \frac{2(n-x-2)}{n-x} + \frac{2}{n} \]

Proposition 2.2: If \(T_i \) is a graph with \(n \) vertices as shown in Fig.1, then harmonic index of \(T_i \) is as follows, where \(1<i<5 \).

\[
(i) H(T_2) = \frac{2x}{x+2} + \frac{2(n-x-3)}{n-x-1} + \frac{2}{x+3} + \frac{2}{n-x}.
\]

\[
(ii) H(T_3) = \frac{1}{2} + \frac{2x}{x+2} + \frac{2(n-x-4)}{n-x-2} + \frac{2}{x+3} + \frac{2}{n-x-1}.
\]

\[
(iii) H(T_4) = 1 + \frac{2x}{x+2} + \frac{2(n-x-5)}{n-x-3} + \frac{2}{x+3} + \frac{2}{n-x-2}.
\]

The proof of Proposition 2.2 is analogous to the proof of the Proposition 2.1.

Proposition 2.3: If \(T_5 \) is a graph with \(n \) vertices and \(m \) edges as shown in Fig.5, then harmonic index of \(T_5 \) is

\[
H(T_5) = \frac{2x}{x+2} + \frac{2y}{y+3} + \frac{2(n-x-y-3)}{n-x-y-1} + \frac{2}{x+y+3} + \frac{2}{n-x}.
\]

Proof: Without loss of generality consider the vertices \(a,b,c \) as shown in Fig. 5, where \(d_G(a)=x+1 \), \(d_G(b)=y+2 \), \(d_G(c)=z+1 \). Partition \(E(T_5) \) into 5 sets \(E_1, E_2, E_3, E_4 \) and \(E_5 \) such that \(E_1=\{uv / d_G(u)=1 \text{ and } d_G(v)=x+1\} \), \(E_2=\{uv / d_G(u)=1 \text{ and } d_G(v)=y+2\} \), \(E_3=\{uv / d_G(u)=1 \text{ and } d_G(v)=z+1\} \), \(E_4=\{ab\} \), \(E_5=\{bc\} \). It is easy to see that \(|E_1|=x \), \(|E_2|=y \), \(|E_3|=z \), \(E_4=\{E_1\} \text{ and } |E_1|=|E_2|=|E_3|=|E_4|=|E_5|=m \).

\[
H(T_5) = \sum_{u \in E_1(T_5)} \frac{2}{d_G(u)+d_G(v)} + \sum_{u \in E_2(T_5)} \frac{2}{d_G(u)+d_G(v)} + \sum_{u \in E_3(T_5)} \frac{2}{d_G(u)+d_G(v)} + \sum_{u \in E_4(T_5)} \frac{2}{d_G(u)+d_G(v)} + \sum_{u \in E_5(T_5)} \frac{2}{d_G(u)+d_G(v)}
\]
Harmonic Index Of Some Class Of Trees With An Algorithm

\[
\begin{align*}
+ \sum_{uv \in E_{T_i}} \frac{2}{d_G(u) + d_G(v)} + \sum_{uv \in E_{T_j}} \frac{2}{d_G(u) + d_G(v)} \\
= \sum_{uv \in E_{T_i}} \frac{2}{(x+1) + 1} + \sum_{uv \in E_{T_j}} \frac{2}{(y+2) + 1} + \sum_{uv \in E_{T_k}} \frac{2}{(z+1) + 1} \\
+ \sum_{uv \in E_{T_i}} \frac{2}{(x+1) + (y+2)} + \sum_{uv \in E_{T_j}} \frac{2}{(y+2) + (z+1)} \\
= x \frac{2}{x+2} + y \frac{2}{y+3} + z \frac{2}{z+2} + \frac{2}{x+y+3} + \frac{2}{y+z+3}
\end{align*}
\]

Here we have \(n = x+y+z+3 \), by replacing \(z \) value in above equation we have

\[
H(T_3) = \frac{2x}{x+2} + \frac{2y}{y+3} + \frac{2(n-x-y-3)}{n-x-y-1} + \frac{2}{x+y+3} + \frac{2}{n-x}
\]

Proposition 2.4: If \(T_i \) is a graph with \(n \) vertices and \(m \) edges as shown in Fig. 1, then harmonic index of \(T_i \) is as follows, where \(5 < i \leq 8 \).

\[
(i) H(T_3) = \frac{2x}{x+2} + \frac{2y}{y+2} + \frac{2(n-x-y-4)}{n-x-y-2} + \frac{2}{n-x-y} + \frac{2}{x+4} + \frac{2}{y+4}.
\]

\[
(ii) H(T_7) = \frac{2x}{x+2} + \frac{2y}{y+3} + \frac{2(n-x-y-5)}{n-x-y-3} + \frac{2}{n-x-y-2} + \frac{2}{x+3} + \frac{2}{y+4}.
\]

\[
(iii) H(T_8) = \frac{2x}{x+2} + \frac{2y}{y+3} + \frac{2(n-x-y-4)}{n-x-y-2} + \frac{2}{n-x-y-1} + \frac{2}{x+y+3} + \frac{2}{y+4}.
\]

The proof of Proposition 2.4 is analogous to the proof of the Proposition 2.3.

Proposition 2.5: Let \(T_i \) and \(T_j \) are the graphs as shown in the Fig. 1 and Fig. j with \(n_1, n_2 \) vertices respectively. If each pendent vertex of \(T_i \) is attached to the any one pendent vertex of \(T_j \) as shown in Fig. 9, where \(j = 1, 2, 3, \ldots, 8 \) then harmonic index of \(T_i \leftrightarrow T_j \)

When \(j = 1 \) is,

\[
H(T_i \leftrightarrow T_1) = \left[\frac{2}{x+z+2} + \frac{2x}{x+3} + \frac{2z}{z+3} + \frac{2(n-2)}{4} \right] \cdot \left[\frac{2}{x+3} + \frac{2(x-1)}{x+2} + \frac{2}{x+z+2} + \frac{2z}{z+2} \right].
\]

When \(j = 2 \) is,

\[
H(T_i \leftrightarrow T_2) = \left[\frac{2}{x+y+2} + \frac{2x}{x+3} + \frac{2y}{y+3} + \frac{2(n-2)}{4} \right] \cdot \left[\frac{2}{x+y+2} + \frac{2}{x+z+2} + \frac{2z}{z+2} \right].
\]
Harmonic Index Of Some Class Of Trees With An Algorithm

Proof: Consider the vertices a, b as shown in Fig. 1, where \(d_G(a)=x+1, d_G(b)=n-x-1=z+1 \). Partition \(E(T_i \leftrightarrow T_j) \) into \(E_z=[uv / d_G(u)=2 \text{ and } d_G(v)=x+1], E_2=[uv / d_G(u)=2 \text{ and } d_G(v)=z+1], E_{ab}=[ab], E_4=[uv / d_G(u)=2 \text{ and } d_G(v)=2], E_5=[uv / d_G(u)=2 \text{ and } d_G(v)=x+1], E_6=[uv / d_G(u)=1 \text{ and } d_G(v)=x+1], E_7=[uv / d_G(u)=1 \text{ and } d_G(v)=z+1] \). It can be verify that \(|E_z|\equiv x, |E_2|=n-x-2= z, |E_{ab}|=1, |E_4|=n-2, |E_5|=1, |E_6|=x+1, |E_7|=z \) and we attached the (n-2) copies of \(T_j \) to a each pendant of vertex of \(T_i \), therefore cardinality of \(E_z, E_2, E_4, E_5, E_6, E_7 \) is multiplied by \(n-2 \) times.

\[
H(T) = \sum_{u \in V(T)} 2 \frac{d_G(u) + d_G(v)}{d_G(u) + d_G(v)}
\]

DOI: 10.9790/5728-1202055257 www.iosrsjournals.org 55 | Page
Harmonic Index Of Some Class Of Trees With An Algorithm

+ \sum_{u \in E_1(T_1 \leftrightarrow T_1)} \frac{2}{d_G(u) + d_G(v)} + \sum_{u \in E_2(T_1 \leftrightarrow T_1)} \frac{2}{d_G(u) + d_G(v)} + \sum_{u \in E_3(T_1 \leftrightarrow T_1)} \frac{2}{d_G(u) + d_G(v)}

+ \sum_{u \in E_4(T_1 \leftrightarrow T_1)} \frac{2}{d_G(u) + d_G(v)}

= \sum_{u \in E_1(T_1 \leftrightarrow T_1)} \frac{2}{2 + x + 1} + \sum_{u \in E_2(T_1 \leftrightarrow T_1)} \frac{2}{2 + z + 1} + \sum_{u \in E_3(T_1 \leftrightarrow T_1)} \frac{2}{x + 1 + z + 1}

+ \sum_{u \in E_4(T_1 \leftrightarrow T_1)} \frac{2}{2 + x + 2}

Here x, z which belongs to E_1, E_2, E_3 are from the graph T_1 and x, z which belongs to E_5, E_6, E_7 are from the graph T_j.

$$= \left[\frac{2}{x + z + 2} + \frac{2x}{x + 3} + \frac{2z}{z + 3} + \frac{2(n - 2)}{4} \right]_{T_1} + \left[\frac{2}{x + 3} + \frac{2x - 1}{x + 2} + \frac{2x}{x + z + 2} + \frac{2z}{z + 2} \right]_{T_j}.$$

Hence we attached (n-2) copies, therefore

$$H(T_1 \leftrightarrow T_j) = \left[\frac{2}{x + z + 2} + \frac{2x}{x + 3} + \frac{2z}{z + 3} + \frac{2(n - 2)}{4} \right]_{T_1} + (n - 2)p \left[\frac{2}{x + 3} + \frac{2x - 1}{x + 2} + \frac{2x}{x + z + 2} + \frac{2z}{z + 2} \right]_{T_j}.$$

The proof when j=2, 3,...,8 follows the proof of j=1. Hence we can have the results.

III. Algorithm

Step 1: START

Step 2: Declare: a[25][25], d[25], m as integers
sum1, s[25], sum, ts=0 as floating points.

Step 3: Read m, a[i][j].

Step 4: Compute: Degree of each vertex of given graph
for i to m
\[d[i] \leftarrow 0 \]
for j to m
\[d[i] \leftarrow d[i] + a[i][j] \]
Display: Degree d[i] of vertex i

Step 5: Check the condition, if a[i][j]=1 is true
Display: Vertex i is adjacent to vertex j
\[sum \leftarrow d[i] + d[j] \]

Step 6: Display the sum of adjacent vertices degree
\[ts \leftarrow ts + (2/sum) \]

Step 7: Display the sum Harmonic Index by dividing total sum ts by 2.

Step 8: STOP
Harmonic Index Of Some Class Of Trees With An Algorithm

Illustration:

\[G: \]

\[
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\]

We represent the graph \(G \) by adjacency matrix,(using for loop) ie.,

\[A(G) = \]

\[
\begin{pmatrix}
a & b & c & d \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\]

In this matrix \(a,b,c,d \) represents the vertex of graph \(G \) and each elements of matrix \(A(G) \) represents the adjacency of corresponding vertex in graph \(G \), addition of each row elements gives the degree of corresponding vertex in \(G \), ie., adding all the elements of a first row of \(A(G) \) matrix gives the degree of vertex 'a' in graph \(G \). Using this we calculate each vertex degree and store it in \(d[i] \) by using for loop.

The outer loop iterates \(i \) times and the inner loop iterates \(j \) times, the statements inside the inner loop will be executed a total of \(i^2 \) times. It's because inner loop will iterate \(j \) times for each of the \(i \) iterations of the outer loop. This means the outer and inner loop are dependent on the problem size ie., here we considered size is \(n \), the statement in the whole loop will be executed \(O(m^2) \) times. In the loop \(i=0 \), this will be executed only once. The time is actually calculated to \(i=0 \) and not the declaration, \(i=m \) this will be executed \(m+1 \) times. \(i++ \) will be executed \(m \) times, \(a[i][j]=1 \), This will be executed \(m \) times (in worst case scenario).

As Harmonic Index definition we only sum the degree of vertices which are adjacent, by \(A(G) \) matrix we check the adjacency of one vertex to another by using if condition, then we sum the degree of those adjacency vertices using \(d[i] \). (This loop follows same procedure as explained for above loop so this also executed \(O(m^2) \) times), then we store resulting sum in one variable say \(ts \), finally we obtain harmonic index dividing \(ts \) by 2.

IV. Conclusion

The results gives explicit formula for harmonic Index of certain class of trees and further an algorithm with the help of adjacency matrix given to compute the harmonic index of any graph.

Acknowledgements

The authors H. S. Ramane, R. B. Jummannaver and S. C. Patil are thankful to the University Grants Commission (UGC), Govt. of India for support through research grant under UPE FAR-II grant No. F14-3/2012 (NS/PE).

References

DOI: 10.9790/5728-1202055257 www.iosrjournals.org 57 | Page