Inequalities on Multivalent Harmonic Starlike Functions Involving Hypergeometric Functions

Dr Noohi Khan (AP II)
Department of Amity school of applied sciences Amity University, Malhore Lucknow UP

Abstract

In this paper we obtain some inequalities as sufficient conditions for the harmonic multivalent $\mathrm{S}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ function $G(z)$ to be in classes . Inequalities for convolution multiplier of two harmonic multivalent functions f and G are also obtained. Also it shown that these inequalities are necessary and sufficient for the function $\mathrm{G}_{1}(\mathrm{z})$. Further, the necessary and sufficient conditions for the functions $\mathrm{G}_{2}(\mathrm{z})$ to be in classes $\mathrm{S}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ are obtained.

I. Introduction

Let $\mathrm{SH}(\mathrm{m}), \mathrm{m} \geq 1$, denotes the class of all m -valent, harmonic and orientation-preserving functions in the open unit disk $\Delta=\{z:|z|<1\}$. A function f in $\mathrm{SH}(\mathrm{m}), \mathrm{m} \geq 1$ can be expressed as $\mathrm{f}=\mathrm{h}+\overline{\mathrm{g}}$, where h and g are analytic functions of the form

$$
\begin{equation*}
\mathrm{h}(\mathrm{z})=\mathrm{z}^{\mathrm{m}}+\sum_{\mathrm{n}=2}^{\infty} \mathrm{A}_{\mathrm{n}+\mathrm{m}-1} z^{\mathrm{n}+\mathrm{m}-1}, \mathrm{~g}(\mathrm{z})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{B}_{\mathrm{n}+\mathrm{m}-1} z^{\mathrm{n}+\mathrm{m}-1},\left|\mathrm{~B}_{\mathrm{m}}\right|<1 \tag{1.1}
\end{equation*}
$$

Definition 1.1[1,2]
Let $\mathrm{S}^{*} \mathrm{H}_{\mathrm{m}}(\alpha), \mathrm{m} \geq 1$ and $\mathrm{O} \leq \alpha<1$ denotes the class of functions $\mathrm{f}=\mathrm{h}+\overline{\mathrm{g}} \in \mathrm{SH}(\mathrm{m})$ which satisfy the condition.

$$
\begin{equation*}
\frac{\partial}{\partial \theta}\left(\arg \left(\mathrm{f}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right)\right) \geq \mathrm{m} \alpha \tag{1.2}
\end{equation*}
$$

for each $z=\mathrm{re}^{\mathrm{i} \theta}, 0 \leq \theta<2 \pi$ and $0 \leq \mathrm{r}<1$. A function in $\mathrm{S}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ is called m-valent harmonic starlike function of order α.

The class $\mathrm{S}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ was studied by Ahuja and Jahangiri [5],[6]. In particular, they stated the following Lemma.
Lemma 1.1 [5],[6]
Let $\mathrm{f}=\mathrm{h}+\overline{\mathrm{g}}_{\text {be given by (1.1) if }}$

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[\frac{n-1+m(1-\alpha)}{m(1-\alpha)}\left|A_{n+m-1}\right|+\frac{n-1+m(1+\alpha)}{m(1-\alpha)}\left|B_{n+m-1}\right|\right] \leq 2 \tag{1.3}
\end{equation*}
$$

where $A_{m}=1$ and $m \geq 1,0 \leq \alpha<1$. then the harmonic function f is sense-preserving, m -valent and $\mathrm{f} \in \mathrm{S}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$
Denote by $\mathrm{T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ is the subclasses of consisting of functions $\mathrm{f}=\mathrm{h}+\overline{\mathrm{g}}, \mathrm{f} \in \mathrm{S}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$
so that h and g are of the form

$$
\begin{align*}
h(z)= & z^{m}-\sum_{n=2}^{\infty} A_{n+m-1} z^{n+m-1}, \tag{1.6}\\
& g(z)=\sum_{n=1}^{\infty} B_{n+m-1} z^{n+m-1}, A_{n+m-1} \geq 0, B_{n+m-1} \geq 0, B_{m}<1
\end{align*}
$$

. Lemma 1.2 [5],[9]

Let $f=h+\bar{g}_{\text {be given by (1.6) then }} f \in \mathrm{~T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ if and only if

$$
\sum_{n=2}^{\infty}\{n-1+m(1-\alpha)\} A_{n+m-1}+\sum_{n=1}^{\infty}\{n-1+m(1+\alpha)\} B_{n+m-1} \leq m(1-\alpha)
$$

Definition:

The Gauss hypergeometric function ${ }_{2} \mathrm{~F}_{1}(\mathrm{a}, \mathrm{b} ; \mathrm{c} ; \mathrm{z})$ for $\ldots . . .,-2,-1,0 \neq \mathrm{c}, \mathrm{a}, \mathrm{b} \in \mathrm{C}$, a set of complex numbers is defined as

$$
\begin{aligned}
& { }_{2} \mathrm{~F}_{1}(\mathrm{a}, \mathrm{~b} ; \mathrm{c} ; \mathrm{z}) \equiv \mathrm{F}(\mathrm{a}, \mathrm{~b} ; \mathrm{c} ; \mathrm{z})=\sum_{\mathrm{n}=0}^{\infty} \frac{(\mathrm{a})_{\mathrm{n}}(\mathrm{~b})_{\mathrm{n}}}{(\mathrm{c})_{\mathrm{n}}(1)_{\mathrm{n}}} z^{\mathrm{n}} . \\
& (\lambda)_{\mathrm{n}}=\frac{\sqrt{(\lambda}+\mathrm{n})}{\sqrt{(\lambda)}}=\lambda(\lambda+1) \ldots(\lambda+\mathrm{n}-1) \text { for } \mathrm{n}=1,2,3 \ldots \quad \text { and }(\lambda)_{0}=1 .
\end{aligned}
$$

$\mathrm{F}(\mathrm{a}, \mathrm{b} ; \mathrm{c} ; \mathrm{z}) \quad$ is analytic in $\Delta=\{\mathrm{z}:|\mathrm{z}|<1\}$ and for $\operatorname{Re}(\mathrm{c}-\mathrm{a}-\mathrm{b})>0$, $\mathrm{F}(\mathrm{a}, \mathrm{b} ; \mathrm{c} ; 1)=\frac{\sqrt{(\mathrm{c})(\mathrm{c}-\mathrm{a}-\mathrm{b})}}{\sqrt{(\mathrm{c}-\mathrm{a}) \mid(\mathrm{c}-\mathrm{b})}}, \mathrm{c} \neq 0,-1,-2, \ldots$.

In this paper a harmonic m-valent function $\mathrm{G}(\mathrm{z})=\phi_{1}(\mathrm{z})+\overline{\phi_{2}(z)}$ is considered, where $\phi_{1}(z)$ and $\phi_{2}(z)$ are m-valent analytic functions in $\Delta=\{z:|z|<1\}$ defined in terms of above mentioned hypergeometric function as :

$$
\begin{align*}
& \begin{aligned}
\phi_{1}(z)= & \phi_{1}\left(a_{1}, b_{1} ; c_{1} ; z\right)=z^{m} F\left(a_{1}, b_{1} ; c_{1} ; z\right) \\
= & z^{m}+\sum_{\mathrm{n}=2}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}} z^{\mathrm{n}+\mathrm{m}-1}
\end{aligned}, \tag{1.7}\\
& \begin{aligned}
\phi_{2}(\mathrm{z})= & \phi_{2}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; z\right)=z^{\mathrm{m}-1}\left[\mathrm{~F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; z\right)-1\right] \\
& =\sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} z^{\mathrm{n}+\mathrm{m}-1}, \mathrm{a}_{2} \mathrm{~b}_{2}<\mathrm{c}_{2} .
\end{aligned}
\end{align*}
$$

Also, consider a harmonic m-valent function $\mathrm{G}_{1}(z)$ which is defined as :

$$
G_{1}(z)=z^{m}\left(2-\frac{\phi_{1}(z)}{z^{m}}\right)+\overline{\phi_{2}(z)} \quad \text { for } a_{j}, b_{j}>0, c_{j}>a_{j}+b_{j}+1, j=1,2
$$

Further, a convolution $L_{m}(f, G)$ of two harmonic m-valent functions f and G is considered as follows:
$L_{\mathrm{m}}(\mathrm{f}, \mathrm{G})(\mathrm{z})=\left(\mathrm{f}^{*} \mathrm{G}\right)(\mathrm{z})$

$$
\begin{aligned}
\quad= & \mathrm{h}(z) * \phi_{1}(z)+\overline{\mathrm{g}(z) * \phi_{2}(z)} \\
= & \mathrm{P}(z)+\overline{\mathrm{Q}(z)} \\
\mathrm{P}(\mathrm{z}) & =z^{\mathrm{m}}+\sum_{\mathrm{n}=2}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}} \mathrm{~A}_{\mathrm{n}+\mathrm{m}-1} z^{\mathrm{n}+\mathrm{m}-1} \\
\mathrm{Q}(\mathrm{z}) & =\sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} \mathrm{~B}_{\mathrm{n}+\mathrm{m}-1} z^{\mathrm{n}+\mathrm{m}-1}, \mathrm{a}_{2} \mathrm{~b}_{2}\left|\mathrm{~B}_{\mathrm{m}}\right|<\mathrm{c}_{2} .
\end{aligned}
$$

where

Ahuja and Silverman [4] have given a nice connection between Harmonic univalent functions and hypergeometric functions and obtained some inequalities harmonic univalent functions which are sensepreserving, harmonic starlike univalent (harmonic convex univalent) in Δ. They also defined a convolution
multipliers between two harmonic univalent functions. Motivated by the work of Ahuja and Silverman [4] in this chapter some inequalities as sufficient conditions for m-valent harmonic function $G(z)$ to be sensepreserving starlike and convex of positive order $\alpha(0 \leq \alpha<1)$ are obtained. It is also shown that these inequalities are necessary and sufficient for the function $\mathrm{G}_{1}(z)$. Further necessary and sufficient conditions for the function $\mathrm{G}_{2}(z)$ to be in class $\mathrm{f} \in \mathrm{S}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ are obatained. Inequalities for convolution of two harmonic m -valent functions f and G are also obtained.
2: Main Results
Theorem 2.1 s
If $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}>0, \mathrm{c}_{\mathrm{j}}>\mathrm{a}_{\mathrm{j}}+\mathrm{b}_{\mathrm{j}}+1$ for $\mathrm{j}=1,2$ then a sufficient condition for $\mathrm{G}=\phi_{1}+\overline{\phi_{2}}$ where ϕ_{1} and ϕ_{2} are given in (1.7) and (1.8) respectively to be sense-preserving harmonic m-valent in Δ and $\mathrm{G} \in \mathrm{S}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ is that

$$
\begin{aligned}
& \text { (3.2.1) } \mathrm{F}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; 1\right)\left(\frac{\mathrm{a}_{1} \mathrm{~b}_{1}}{\mathrm{c}_{1}-\mathrm{a}_{1}-\mathrm{b}_{1}-1}+\mathrm{m}(1-\alpha)\right)+ \\
& \mathrm{F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; 1\right)\left(\frac{\mathrm{a}_{2} \mathrm{~b}_{2}}{\mathrm{c}_{2}-\mathrm{a}_{2}-\mathrm{b}_{2}-1}+\mathrm{m}(1+\alpha)-1\right) \leq \mathrm{m}(3-\alpha)-1
\end{aligned}
$$

Proof
To prove that G is sense-preserving in Δ, it only needs to show that
$\left|\phi_{1}{ }^{\prime}(z)\right|>\left|\phi_{2}{ }^{\prime}(z)\right|, z \in \Delta$
By the hypothesis, it noted that

$$
\begin{aligned}
& \left|\phi_{1}{ }^{\prime}(z)\right|=\left|m z^{m-1}+\sum_{n=2}^{\infty}(n+m-1) \frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}} z^{n+m-2}\right| \\
& =\left|m z^{m-1}+\sum_{n=2}^{\infty}(n-1) \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}} z^{\mathrm{n}+\mathrm{m}-2}+\sum_{\mathrm{n}=2}^{\infty} \mathrm{m} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}} z^{\mathrm{n}+\mathrm{m}-2}\right| \\
& >\left[m-\sum_{n=2}^{\infty}(\mathrm{n}-1) \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}}-\mathrm{m} \sum_{\mathrm{n}=2}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}}\right]|z|^{\mathrm{m}-1} \\
& =\left[m-\frac{a_{1} b_{1}}{c_{1}} \sum_{n=1}^{\infty} \frac{\left(a_{1}+1\right)_{n-1}\left(b_{1}+1\right)_{n-1}}{\left(c_{1}+1\right)_{n-1}(1)_{n-1}}-m \sum_{n=1}^{\infty} \frac{\left(a_{1}\right)_{n}\left(b_{1}\right)_{n}}{\left(c_{1}\right)_{n}(1)_{n}}\right]|z|^{m-1} \\
& =\left[2 \mathrm{~m}-\frac{\mathrm{a}_{1} \mathrm{~b}_{1}}{\mathrm{c}_{1}} \frac{\Gamma\left(\mathrm{c}_{1}+1\right) \Gamma\left(\mathrm{c}_{1}-\mathrm{a}_{1}-\mathrm{b}_{1}-1\right)}{\Gamma\left(\mathrm{c}_{1}-\mathrm{a}_{1}\right) \Gamma\left(\mathrm{c}_{1}-\mathrm{b}_{1}\right)}-\mathrm{m} \frac{\Gamma\left(\mathrm{c}_{1}\right) \Gamma\left(\mathrm{c}_{1}-\mathrm{a}_{1}-\mathrm{b}_{1}\right)}{\Gamma\left(\mathrm{c}_{1}-\mathrm{a}_{1}\right) \Gamma\left(\mathrm{c}_{1}-\mathrm{b}_{1}\right)}\right]|z|^{\mathrm{m}-1} \\
& =\left[2 m-\left(\frac{a_{1} b_{1}}{c_{1}-a_{1}-b_{1}-1}+m\right) F\left(a_{1}, b_{1} ; c_{1} ; 1\right)\right]|z|^{m-1} \\
& \geq\left[\left\{\frac{a_{2} b_{2}}{c_{2}-a_{2}-b_{2}-1}+m(1+\alpha)-1\right\} F\left(a_{2}, b_{2} ; c_{1} ; 1\right)-m \alpha\left(F\left(a_{1}, b_{1} ; c_{1} ; 1\right)-1\right)-m+1\right]|z|^{m-1} \\
& \geq\left[\left\{\frac{a_{2} b_{2}}{c_{2}-a_{2}-b_{2}-1}+(m-1)\right\} F\left(a_{2}, b_{2} ; c_{1} ; 1\right)-m+1\right]|z|^{m-1}, 0 \leq \alpha<1 \\
& =\left[\frac{\mathrm{a}_{2} \mathrm{~b}_{2}}{\mathrm{c}_{2}} \frac{\Gamma\left(\mathrm{c}_{2}+1\right) \Gamma\left(\mathrm{c}_{2}-\mathrm{a}_{2}-\mathrm{b}_{2}-1\right)}{\Gamma\left(\mathrm{c}_{2}-\mathrm{a}_{2}\right) \Gamma\left(\mathrm{c}_{2}-\mathrm{b}_{2}\right)}+(\mathrm{m}-1) \frac{\Gamma\left(\mathrm{c}_{2}\right) \Gamma\left(\mathrm{c}_{2}-\mathrm{a}_{2}-\mathrm{b}_{2}\right)}{\Gamma\left(\mathrm{c}_{2}-\mathrm{a}_{2}\right) \Gamma\left(\mathrm{c}_{2}-\mathrm{b}_{2}\right)}-\mathrm{m}+1\right]|\mathrm{z}|^{\mathrm{m}-1} \\
& =\left[\frac{\mathrm{a}_{2} \mathrm{~b}_{2}}{\mathrm{c}_{2}} \sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{2}+1\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{2}+1\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{2}+1\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}}+(\mathrm{m}-1) \sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}}\right]|z|^{\mathrm{m}-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\mathrm{n}=1}^{\infty}(\mathrm{n}+\mathrm{m}-1) \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}}|z|^{\mathrm{m}-1} \\
& \geq \sum_{\mathrm{n}=1}^{\infty}(\mathrm{n}+\mathrm{m}-1) \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}}|z|^{\mathrm{n}+\mathrm{m}-2} \\
& \geq\left|\sum_{\mathrm{n}=1}^{\infty}(\mathrm{n}+\mathrm{m}-1) \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} z^{\mathrm{n}+\mathrm{m}-2}\right|=\left|\phi_{2}^{\prime}(\mathrm{z})\right|
\end{aligned}
$$

so, G is sense-preserving in Δ.
To, show that G is m-valent and $G \in S^{*} H_{m}(\alpha)$, on applying Lemma 1.1 it only needs to show that

$$
\begin{align*}
\sum_{\mathrm{n}=2}^{\infty}[\mathrm{n}-1+ & m(1-\alpha)] \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}}+ \tag{2.2}\\
& +\sum_{\mathrm{n}=1}^{\infty}[\mathrm{n}-1+m(1+\alpha)] \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} \leq m(1-\alpha)
\end{align*}
$$

The left hand side of (2.2) is equivalent to

$$
\begin{aligned}
& \sum_{\mathrm{n}=2}^{\infty}(\mathrm{n}-1) \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}}+\mathrm{m}(1-\alpha) \sum_{\mathrm{n}=2}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}}+\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{n}\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} \\
& \quad+\{\mathrm{m}(1+\alpha)-1\} \sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} \\
& =\frac{\mathrm{a}_{1} \mathrm{~b}_{1}}{\mathrm{c}_{1}-\mathrm{a}_{1}-\mathrm{b}_{1}-1} \mathrm{~F}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; 1\right)+\mathrm{m}(1-\alpha)\left[\mathrm{F}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; 1\right)-1\right]+ \\
& \quad \frac{\mathrm{a}_{2} \mathrm{~b}_{2}}{\mathrm{c}_{2}-\mathrm{a}_{2}-\mathrm{b}_{2}-1} \mathrm{~F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; 1\right)+\{\mathrm{m}(1+\alpha)-1\}\left[\mathrm{F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; 1\right)-1\right] \\
& = \\
& =\mathrm{F}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; 1\right)\left(\frac{\mathrm{a}_{1} \mathrm{~b}_{1}}{\mathrm{c}_{1}-\mathrm{a}_{1}-\mathrm{b}_{1}-1}+\mathrm{m}(1-\alpha)\right)+ \\
& \quad \mathrm{F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; 1\right)\left(\frac{\mathrm{a}_{2} \mathrm{~b}_{2}}{\mathrm{c}_{2}-\mathrm{a}_{2}-\mathrm{b}_{2}-1}+\mathrm{m}(1+\alpha)-1\right)-\mathrm{m}(1-\alpha)-\mathrm{m}(1+\alpha)+1
\end{aligned}
$$

The last expression is bounded by $\mathrm{m}(1-\alpha)$ provided that (2.1) is satisfied. Therefore, $G \in S^{*} H_{m}(\alpha)$. Consequently G is sense-preserving and m-valent of order α in Δ.

For $m=1$ and $\alpha=0$ the following corollary [4] is obtained.
Corollary 2.2 [4]
If $a_{j}, b_{j}>0, c_{j}>a_{j}+b_{j}+1$ for $j=1,2$, then a sufficient condition for $G=\phi_{1}+\overline{\phi_{2}}$ with m=1 to be harmonic univalent in Δ and $\mathrm{G} \in \mathrm{S}^{*} \mathrm{H}$ is that
$\left(1+\frac{a_{1} b_{1}}{c_{1}-a_{1}-b_{1}-1}\right) F\left(a_{1}, b_{1} ; c_{1} ; 1\right)+\frac{a_{2} b_{2}}{c_{2}-a_{2}-b_{2}-1} F\left(a_{2}, b_{2} ; c_{2} ; 1\right) \leq 2$.
Theorem 2.5
Let $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}>0, \mathrm{c}_{\mathrm{j}}>\mathrm{a}_{\mathrm{j}}+\mathrm{b}_{\mathrm{j}}+1_{\text {for } \mathrm{j}=1,2 \text { and }} \mathrm{a}_{2} \mathrm{~b}_{2}<\mathrm{c}_{2}$, if

$$
\begin{align*}
& \mathrm{G}_{1}(\mathrm{z})=\mathrm{z}^{\mathrm{m}}\left(2-\frac{\phi_{1}(\mathrm{z})}{\mathrm{z}^{\mathrm{m}}}\right)+\overline{\phi_{2}(\mathrm{z})} \tag{2.5}\\
& \mathrm{G}_{1} \in \mathrm{~T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha) \text { then, } \\
& \text { if and only if }(2.1) \text { holds. }
\end{align*}
$$

Proof

It is observed that
$\mathrm{G}_{1}(\mathrm{z})=\mathrm{z}^{\mathrm{m}}-\sum_{\mathrm{n}=2}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}} z^{\mathrm{n}+\mathrm{m}-1}+\overline{\sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} z^{\mathrm{n}+\mathrm{m}-1}}$
and $T^{*} H_{m}(\alpha) \subset S^{*} H_{m}(\alpha)$. In view of Theorem 2.1, it only needs to show the necessary condition for G_{1} to $\mathrm{T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha) .{ }_{\text {If }} \mathrm{G}_{1} \in \mathrm{~T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$
Theorem 2.6
If $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}>0$ and $\mathrm{c}_{\mathrm{j}}>\mathrm{a}_{\mathrm{j}}+\mathrm{b}_{\mathrm{j}}$ for $\mathrm{j}=1,2$ then a sufficient condition for a function
$\mathrm{G}_{2}(\mathrm{z})=\mathrm{m} \int_{0}^{\mathrm{z}} \mathrm{t}^{\mathrm{m}-1} \mathrm{~F}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; \mathrm{t}\right) \mathrm{dt}+\int_{0}^{\mathrm{z}} \mathrm{t}^{\mathrm{m}-1}\left[\mathrm{~F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; \mathrm{t}\right)-1\right] \mathrm{dt}$
to be in $\mathrm{S}^{*} \mathrm{H}^{0}(\mathrm{~m})$ is that
(3.2.6)

$$
\mathrm{mF}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; 1\right)+\mathrm{F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; 1\right) \leq 2 \mathrm{~m}+1 .
$$

Proof
In view of Lemma 3.1.1, the function
$\mathrm{G}_{2}(\mathrm{z})=\mathrm{z}^{\mathrm{m}}+\sum_{\mathrm{n}=2}^{\infty} \frac{m}{\mathrm{n}+\mathrm{m}-1} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}} z^{\mathrm{n}+\mathrm{m}-1}+\sum_{\mathrm{n}=2}^{\infty} \frac{1}{\mathrm{n}+\mathrm{m}-1} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}} z^{\mathrm{n}+\mathrm{m}-1}$
is in $\mathrm{S}^{*} \mathrm{H}^{0}(\mathrm{~m})$ if
$\sum_{n=2}^{\infty} \frac{n+m-1}{m} \frac{m}{n+m-1} \frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}}+\sum_{n=2}^{\infty} \frac{n+m-1}{m} \frac{1}{n+m-1} \frac{\left(a_{2}\right)_{n-1}\left(b_{2}\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}} \leq 1$
That is, if

$$
\sum_{n=2}^{\infty} \frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}}+\frac{1}{m} \sum_{n=2}^{\infty} \frac{\left(a_{2}\right)_{n-1}\left(b_{2}\right)_{n-1}}{\left(c_{2}\right)_{n-1}(1)_{n-1}} \leq 1
$$

which holds if (2.6) is true.
Theorem 2.6

$$
\text { If } a_{1}, b_{1}>-1, c_{1}>0, a_{1} b_{1}<0, a_{2}>0, b_{2}>0 \text { and } c_{j}>a_{j}+b_{j}+1, j=1,2 \text { then }
$$

$$
\mathrm{G}_{2}(\mathrm{z})=\mathrm{m} \int_{0}^{\mathrm{z}} \mathrm{t}^{\mathrm{m}-1} \mathrm{~F}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; \mathrm{t}\right) \mathrm{dt}+\int_{0}^{\mathrm{z}} \mathrm{t}^{\mathrm{m}-1}\left[\mathrm{~F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; \mathrm{t}\right)-1\right] \mathrm{dt}
$$

is in $\mathrm{S}^{*} \mathrm{H}^{0}(\mathrm{~m})$ if and only if

$$
\mathrm{mF}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; 1\right)-\mathrm{F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; 1\right) \geq-1 .
$$

(2.7)

Proof
By the hypothesis using Lemma (1.3) to

$$
\begin{aligned}
\mathrm{G}_{2}(z)= & z^{\mathrm{m}}-\frac{\left|\mathrm{a}_{1} \mathrm{~b}_{1}\right|}{\mathrm{c}_{1}} \sum_{\mathrm{n}=2}^{\infty} \frac{m}{\mathrm{n}+\mathrm{m}-1} \frac{\left(\mathrm{a}_{1}+1\right)_{\mathrm{n}-2}\left(\mathrm{~b}_{1}+1\right)_{\mathrm{n}-2}}{(\mathrm{n}-1)\left(\mathrm{c}_{1}+1\right)_{\mathrm{n}-2}(1)_{\mathrm{n}-2}} z^{\mathrm{n}+\mathrm{m}-1} \\
& +\sum_{\mathrm{n}=2}^{\infty} \frac{1}{\mathrm{n}+\mathrm{m}-1} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}} z^{\mathrm{n}+\mathrm{m}-1}
\end{aligned}
$$

It suffices to show that

$$
\begin{aligned}
& \frac{\left|\mathrm{a}_{1} \mathrm{~b}_{1}\right|}{\mathrm{c}_{1}} \sum_{\mathrm{n}=2}^{\infty} \frac{\mathrm{n}+\mathrm{m}-1}{m} \frac{m}{\mathrm{n}+\mathrm{m}-1} \frac{1}{(\mathrm{n}-1)} \frac{\left(\mathrm{a}_{1}+1\right)_{\mathrm{n}-2}\left(\mathrm{~b}_{1}+1\right)_{\mathrm{n}-2}}{\left(\mathrm{c}_{1}+1\right)_{\mathrm{n}-2}(1)_{\mathrm{n}-2}} \\
& +\sum_{\mathrm{n}=2}^{\infty} \frac{\mathrm{n}+\mathrm{m}-1}{\mathrm{~m}(\mathrm{n}+\mathrm{m}-1)} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}} \leq 1
\end{aligned}
$$

or,
$\sum_{n=1}^{\infty} \frac{\left(a_{1}+1\right)_{n-1}\left(b_{1}+1\right)_{n-1}}{\left(c_{1}+1\right)_{n-1}(1)_{n-1} n}+\frac{c_{1}}{\left|a_{1} b_{1}\right|} \frac{1}{m} \sum_{n=1}^{\infty} \frac{\left(a_{2}\right)_{n}\left(b_{2}\right)_{n}}{\left(c_{2}\right)_{n}(1)_{n}} \leq \frac{c_{1}}{\left|a_{1} b_{1}\right|}$
But, this is equivalent to
$\frac{c_{1}}{a_{1} b_{1}} \sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}}\left(\mathrm{b}_{1}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}}(1)_{\mathrm{n}}}+\frac{\mathrm{c}_{1}}{\left|\mathrm{a}_{1} \mathrm{~b}_{1}\right|} \frac{1}{m} \sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} \leq \frac{\mathrm{c}_{1}}{\left|\mathrm{a}_{1} \mathrm{~b}_{1}\right|}$
That is if (2.7) holds.
Theorem 2.7
Let $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}>0, \mathrm{c}_{\mathrm{j}}>\mathrm{a}_{\mathrm{j}}+\mathrm{b}_{\mathrm{j}}+1$, for $\mathrm{j}=1,2$ and $\mathrm{a}_{2} \mathrm{~b}_{2}<\mathrm{c}_{2}$. A necessary and sufficient condition for $\mathrm{L}_{\mathrm{m}}(\mathrm{f}, \mathrm{G})(\mathrm{z})=\mathrm{f}{ }^{*}\left(\phi_{1}+\bar{\phi}_{2}\right) \in \mathrm{T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ and $\mathrm{G}=\phi_{1}+\bar{\phi}_{2}$ given by (1.7) and (1.8) for $\mathrm{f} \in \mathrm{T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ is that

$$
\begin{equation*}
\mathrm{F}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; 1\right)+\mathrm{F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; 1\right) \leq 3 . \tag{2.8}
\end{equation*}
$$

Proof
Let $\mathrm{f}=\mathrm{h}+\overline{\mathrm{g}} \in \mathrm{T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$, where h and g are given by (1.6).Also,
$L_{m}(f, G)(z)=z^{m}-\sum_{n=2}^{\infty} \frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}} A_{n+m-1} z^{n+m-1}+\overline{\sum_{n=1}^{\infty} \frac{\left(a_{2}\right)_{n}\left(b_{2}\right)_{n}}{\left(c_{2}\right)_{n}(1)_{n}} B_{n+m-1} z^{n+m-1}}$
In view of Lemma 1.3 it only needs to prove that $L_{m}(f, G)(z) \in T^{*} H_{m}(\alpha)$.
As an application of Lemma 1.3,

$$
A_{n+m-1} \leq \frac{m(1-\alpha)}{n-1+m(1-\alpha)}, B_{n+m-1} \leq \frac{m(1-\alpha)}{n-1+m(1+\alpha)}
$$

Consider

$$
\begin{aligned}
& \sum_{\mathrm{n}=2}^{\infty}\{\mathrm{n}-1+\mathrm{m}(1-\alpha)\} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left.\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1} 1\right)_{\mathrm{n}-1}} \mathrm{~A}_{\mathrm{n}+\mathrm{m}-1} \\
& \quad+\sum_{\mathrm{n}=1}^{\infty}\{\mathrm{n}-1+\mathrm{m}(1+\alpha)\} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} \mathrm{~B}_{\mathrm{n}+\mathrm{m}-1}
\end{aligned} \quad \begin{aligned}
& \leq \mathrm{m}(1-\alpha) \sum_{\mathrm{n}=2}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}}+\mathrm{m}(1-\alpha) \sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} \\
& =\mathrm{m}(1-\alpha) \mathrm{F}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; 1\right)+\mathrm{m}(1-\alpha) \mathrm{F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; 1\right)-2 \mathrm{~m}(1-\alpha) .
\end{aligned}
$$

The last expression is bounded above by $m(1-\alpha)$ if and only if (2.8) is satisfied. This proves the result.
Theorem 2.9
Let $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}>0, \mathrm{c}_{\mathrm{j}}>\mathrm{a}_{\mathrm{j}}+\mathrm{b}_{\mathrm{j}}+1$ for $\mathrm{j}=1,2$ then (2.) is a necessary and sufficient condition for a function
$L_{m, c}(f, G)(z)=\frac{c+m}{z^{c}} \int_{0}^{z} t^{c-1} P(t) d t+\frac{c+m}{z^{c}} \int_{0}^{z} t^{c-1} Q(t) d t$
to be in
$\mathrm{T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ for $\mathrm{f} \in \mathrm{T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$ of the form (1.6) and $\mathrm{G}=\phi_{1}+\bar{\phi}_{2}$ given by (1.7) and (1.8).
Proof
By the hypothesis
$\left.L_{m, c}(f, G)(z)=z^{m}-\sum_{n=2}^{\infty} \frac{c+m}{n+m+c-1} \frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}} A_{n+m-1}+\sum_{n=1}^{\infty} \frac{c+m}{n+m+c-1} \frac{\left(a_{2}\right)_{n}\left(b_{2}\right)_{n}}{\left(c_{2}\right)_{n}(1)_{n}} B_{n+m-1}\right)$ and
as $\mathrm{f} \in \mathrm{T}^{*} \mathrm{H}_{\mathrm{m}}(\alpha)$,
$A_{n+m-1} \leq \frac{m(1-\alpha)}{n-1+m(1-\alpha)} \quad{ }_{\text {and }} \quad B_{n+m-1} \leq \frac{m(1-\alpha)}{n-1+m(1+\alpha)}$.

Consider,
$\sum_{n=2}^{\infty}(n-1+m(1-\alpha)) \frac{c+m}{n+m+c-1} \frac{\left(a_{1}\right)_{n-1}\left(b_{1}\right)_{n-1}}{\left(c_{1}\right)_{n-1}(1)_{n-1}} A_{n+m-1}+$

$$
\begin{aligned}
& \quad+\sum_{\mathrm{n}=1}^{\infty}(\mathrm{n}-1+\mathrm{m}(1+\alpha)) \frac{\mathrm{c}+\mathrm{m}}{\mathrm{n}+\mathrm{m}+\mathrm{c}-1} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} B_{\mathrm{n}+\mathrm{m}-1} \\
& \leq \mathrm{m}(1-\alpha) \sum_{\mathrm{n}=2}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}}+\mathrm{m}(1-\alpha) \sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} \\
& =\mathrm{m}(1-\alpha) \mathrm{F}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; 1\right)+\mathrm{m}(1-\alpha) \mathrm{F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; 1\right)-2 \mathrm{~m}(1-\alpha) .
\end{aligned}
$$

The last expression is bounded above by $\mathrm{m}(1-\alpha)$ if and only if (2.8) is satisfied. This proves the result.

$$
\begin{aligned}
& \quad \sum_{\mathrm{n}=2}^{\infty} \frac{(\mathrm{n}+\mathrm{m}-1)\{\mathrm{n}-1+\mathrm{m}(1-\alpha)\}}{\mathrm{m}} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}} A_{\mathrm{n}+\mathrm{m}-1} \\
& +\sum_{\mathrm{n}=1}^{\infty} \frac{(\mathrm{n}+\mathrm{m}-1)\{\mathrm{n}-1+\mathrm{m}(1+\alpha)\}}{\mathrm{m}} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} \mathrm{~B}_{\mathrm{n}+\mathrm{m}-1} \\
& \leq \mathrm{m}(1-\alpha) \sum_{\mathrm{n}=2}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{n}-1}\left(\mathrm{~b}_{1}\right)_{\mathrm{n}-1}}{\left(\mathrm{c}_{1}\right)_{\mathrm{n}-1}(1)_{\mathrm{n}-1}}+\mathrm{m}(1-\alpha) \sum_{\mathrm{n}=1}^{\infty} \frac{\left(\mathrm{a}_{2}\right)_{\mathrm{n}}\left(\mathrm{~b}_{2}\right)_{\mathrm{n}}}{\left(\mathrm{c}_{2}\right)_{\mathrm{n}}(1)_{\mathrm{n}}} \\
& = \\
& \mathrm{m}(1-\alpha) \mathrm{F}\left(\mathrm{a}_{1}, \mathrm{~b}_{1} ; \mathrm{c}_{1} ; 1\right)+\mathrm{m}(1-\alpha) \mathrm{F}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} ; \mathrm{c}_{2} ; 1\right)-2 \mathrm{~m}(1-\alpha)
\end{aligned}
$$

The last expression is bounded above by $\mathrm{m}(1-\alpha)$ if and only if (2.11) is satisfied. This proves the result.

References

[1]. Ahuja, O.P., Jahangiri, J.M., and Silverman,H., Convolutions for special classes of Harmonic Univalent Functions, Appl. Math. Lett, 16(6) (2003), 905-909.
[2]. Ahuja,O.P. and Silverman,H., Extreme Points of families of Univalent Functions with fixed second coefficient. Colloq. Math. 54 (1987), 127-137.
[3]. Ahuja,O.P. and Jahangiri,J.M., Harmonic Univalent Functions with fixed second coefficient, Hakkoido Mathematical Journal, Vol. 31(2002) p-431-439.
[4]. Ahuja,O.P. and Silverman,H., Inequalities associating hypergeometric Functions with planar harmonic mappings, Vol 5, Issue 4, Article 99, 2004.
[5]. Ahuja,O.P. and Jahangiri,J.M., Multivalent Harmonic starlike Functions, Ann. Univ Mariae Curie - Sklodowska, Section A, 55 (1) (2001), 1-13.
[6]. Ahuja,O.P. and Jahangiri,J.M., Errata to "Multivalent Harmonic starlike Functions, Ann. Univ. Mariae Curie-Sklodowska, Vol LV., 1 Sectio A 55 (2001), 1-3, Ann. Univ. Mariae Curie - Sklodowska, Sectio A, 56(1) (2002), 105.

