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Abstract: This paper study initial value problem for a class of hyperbolic equation with variable 
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I. Introduction  
For the partial differential equation with variable coefficients: 

2 2 2 2 2( ) ( , ),t x xu a x a x u f x t                    (0) 

its discriminant )0(022  xxa which implies that itis hyperbolic for 0x ; and obviously itdegenerates 

to a second order ordinary differential equation when 0x . 

Observing the fact that hyperbolic equation (0) and the string vibrating equation
2 2 2( ) ( , )t xu a u f x t     have similar operator decomposition: ))((

xtxt
 aa

[1]
 and

t x t x( )( ).ax ax       This fact hints us thatequation can be also solved by reducing to its characteristic 

line equations axdtdx  . 

In this paper, we studies the initialvalue problem of the above-mentioned partial differential: 
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and the main results are as follows: 

Theorem 1.1If 
2 1 2

2 1 2

(0, ),  (0, ),   [(0, ) (0, )],        0,

( ,0),  ( ,0),   [( ,0) (0, )],  0.

C C f C x

C C f C x

 

 

         


          
 Then, the solution of the initial-value problem (1) can be expressed as1 

                                                           
1
Since 0x  is a degenerated line,so the boundary condition for 0x  is not needed[2]. As a matter of fact,(1) consists 

of two initial value problems: 
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and
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The two parts of the formula in Theorem 1.1 are solutions corresponding to these two initial value problems.  
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II. The preliminary Results 
By the superposition principle, (1) can be divided into the following three initial value problems: 
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and 
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Lemma 2.1 
t

 and□can be exchanged order, i.e. t t    . 

Indeed, we have 
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Proposition 2.1 Assume ),(
1

txMu


 is the solution of (2), then the solution of initial value problems 

(3), (4) can be expressed as: 

 2 ( , ),u M x t
t
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where ),( 


xff  and ),( txM


, ),( 


txM
f

are sufficiently smooth with respect to ,  x t and  respectively. 

Proof:Weshow (5) satisfies (3) first. According to the assumption, it is known


M satisfies 
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Thus, by Lemma 2.1, andby (7) - (9), we have 
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Then we prove (6) satisfies (4). Notice that ),( 
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Thus by (10) - (12), we have 
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As well as 
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III. Solution of Characteristic Lines 
According to Proposition 2.1, it is enough to solve initial value problems (2) in detail.To apply the 

characteristic line theory to solve (2), we give the operator decomposition first: 

Lemma 3.1. The operator can be decomposed into 

t x t x( )( ).ax ax       (13) 

Proof: Indeed 
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Proposition 3.1 Initial Value Problem (2) has a solution 
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Proof: By Lemma 3.1,  

u 0,
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can be divided into the following two initial value problem of first order equations:  
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Let 

,  .
dx dx

ax ax
dt dt

    

Then the characteristic line of (16), (17) are solved as: 
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Along the characteristic line )(
1

tx , (16) can be transformed into 
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Along the characteristic line )(
2

tx , (17) can be transformed into 
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By (17), (21) , we obtain: 
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the solution of (17) is indeed as follows: 
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Substitute it into (20) , then by (16) , we obtain 
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By (18), we obtain the solution of (17) as follows: 
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When 0x , 
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IV. The Proof of Theorem 1.1 

 
By Proposition 2.1, 3.1, we obtain: 
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By the superposition principle, the solution of (1) is 
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