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Abstract: Following the introduction of the concept of statistical monotonicity and upper (or lower) peak point 

of real valued single sequences by Kaya et al in 2013, we shall in this paper investigate properties of 

statistically convergent double sequences, introduce definitions of statistical monotonicity and lower (upper) 

peak points of real valued double sequences. And establish the relationships between the statistical convergence 

of double sequences and these notions. Finally, we generalised statistical monotonicity using an 𝑅𝐻 −regular 

doubly infinite matrix transformation. 
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I. Introduction 
Pringsheim (1900) introduced the concept of convergence for double sequences. Also Robison (1926) 

and Hamilton (1936, 1938a, 1938b, 1939) studied the four dimensional matrix transformation  𝐴𝑥 𝑚𝑛  

= 𝑎𝑚 ,𝑛  𝑘 ,𝑙
∞,∞
𝑘 ,𝑙=0,0  𝑥𝑘𝑙  extensively. Using the above concept of Patterson (1999 and 2000) formulated some 

analogous of fundamental theorems of summability and double sequence core theorem. Later on many 

researches have been done in the field of statistical convergence of double sequence [see for example Teripathy, 

(2003)], Mursaleen & Edely, (2003), Siddiqui et al (2012), Brono and siddiqui (2013)] and many others. 

Combining this studies and the concept of statistical monotonicity and statistical convergence as introduced in 

Kaya et al (2013); we present analogous extension of the various concepts of Kaya et al (2013) to double 

sequences theorems. 

Definition1.1 Pringsheim (1900): A double sequence 𝑥 =   𝑥𝑗𝑘   is said to be Pringssheim’s convergent (or P-

convergent) if for given 휀 > 0 there exists an integer ℕ such that          𝑥𝑗𝑘 − ℓ < 휀 whenever 𝑗, 𝑘 > 𝑁. In this 

case ℓ  is called the Pringsheim limit of 𝑥 =  𝑥𝑗𝑘   and it is written as 𝑃 − lim𝑥 = ℓ. 

Definition 1.2 [Mursaleen and Edely (2003)]: Let 𝐾 ⊆ ℕ × ℕ be a two-dimensional set of positive integers 

and let 𝐾𝑚 ,𝑛 =   𝑗, 𝑘 : 𝑗 ≤ 𝑚, 𝑘 ≤ 𝑛 . then the two-dimensional analogue of natural density can be defined as 

follows: 

In case the sequence 𝐾(𝑚, 𝑛)/𝑚𝑛 has a limit in the pringsheim’s sense, then we say that 𝐾 has a double natural 

density and is defined as  

𝑃 − lim
m ,n

𝐾 𝑚, 𝑛 

𝑚𝑛
= δ2(K). 

 Example 1.1: Let 𝐾 =   𝑖2, 𝑗2 : 𝑖, 𝑗 ∈ ℕ . Then  

δ2 K = 𝑃 − lim
m ,n

𝐾 𝑚, 𝑛 

𝑚𝑛
≤ 𝑃 − lim

m ,n

 𝑚 𝑛

𝑚𝑛
= 0 

i.e. the set 𝐾 has doubled natural density zero, while the set   𝑖, 2𝑗 : 𝑖, 𝑗 ∈ ℕ  has natural density 
1

2
. 

Definition 1.3: A real double sequence 𝑥 =  𝑥𝑗𝑘   is said to be statistically convergent to the number ℓ if for 

each 휀 > 0, the set   𝑗, 𝑘 , 𝑗 ≤ 𝑚, 𝑘 ≤ 𝑛:  𝑥𝑗𝑘 − ℓ ≥ 휀  

Has natural density zero. In this case we write 𝑆𝑡2 − lim𝑗 ,𝑘 𝑥𝑗𝑘 = ℓ and we denote the set of all statistically 

convergent double sequences by 𝑆𝑡2. Deeply connected with this definition is the concept of strongly Ces𝑎 ro 

summability for double sequences[see Mursaleen & Edely (2003)] 

The following definitions of Ces𝑎 ro summable double sequences is taken from [Moricz (1994)] 

Definition1.4:Let 𝑥 =  𝑥𝑗𝑘   𝑏𝑒 𝑎 𝑑𝑜𝑢𝑏𝑙𝑒 sequence. It is said to be Ces𝑎 ro summable to ℓ 𝑖𝑓 

 

lim
𝑚 ,𝑛

1

𝑚𝑛
  𝑥𝑗𝑘 = ℓ

𝑚

𝑘=1

𝑛

𝑗 =1

. 

We denote the space of all Ces𝑎 ro summable double sequences by  𝐶, 1.1 . 
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Similarly we can define the following as in case of single sequence 

Definition1.5: Let 𝑥 =  𝑥𝑗𝑘   be a double sequence and α be a positive real number. Then the double sequence 

𝑥 is said to be strongly 𝛼 − Ces𝑎 ro summable to ℓ if 

lim
𝑚 ,𝑛

1

𝑚𝑛
   𝑥𝑗𝑘 − ℓ 

𝛼
=

𝑚

𝑘=1

𝑛

𝑗 =1

0. 

We denote the space of all strongly 𝛼 − Ces𝑎 ro summable double sequence by 𝜔2. 

Remark 1.1: The space of all complex valued sequences 𝑥 =  𝑥𝑛  will be denoted by ℂℕ. In many 

circumstances we refer to ℂℕ as the space of arithmetical functions 𝑓: ℕ → ℂ, especially, when  𝑓 reflects the 

multiplicative structure of ℕ.  
Remark 1.2: An Orlicz function 𝑓 is a mapping 𝑓:  0,∞ →  0,∞  such that it is continuous non-decreasing and 

convex with 𝑓 0 = 0, 𝑓 𝑥 > 0, for > 0 𝑎𝑛𝑑 𝑓 𝑥 → ∞ 𝑎𝑠 𝑥 → ∞. An Orlicz function 𝑓 is said to 

satisfy∆2 −condition if there exists a consant 𝑘 > 0 such that𝑓 2𝑢 ≤ 𝑘𝑓 𝑢  for all values of 𝑢 ≥ 0. 
Remark 1.3: Analogously, let a double Orlicz function  𝑓𝐷  be a mapping                   𝑓𝐷 :  0,∞ ×  0,∞ →  0,∞  

such that it is continuous non-decreasing and convex with 𝑓𝐷 0 = 0, 𝑓𝐷 𝑥𝑗𝑘   > 0, for 𝑥𝑗𝑘 > 0, 𝑗, 𝑘 =

1,2, … . 𝑎𝑛𝑑 𝑓𝐷 𝑥𝑗𝑘  → ∞ as 𝑥𝑗𝑘 → ∞. 

 

II. Some results about statistical convergence of double sequence 
Define the function  𝑝: ℂℕ × ℂℕ → [0,∞) for all 𝑥𝑗𝑘 , 𝑦𝑡𝑠 ∈ ℂℕ as follows, 

𝑝 𝑥, 𝑦 = lim
𝑚 ,𝑛

1

𝑚𝑛
 𝜑  𝑥𝑗𝑘 − 𝑦𝑗𝑘   

𝑗𝑘≤𝑚𝑛

 

𝑤ℎ𝑒𝑟𝑒 𝜑:  0,∞ →  0,∞  

𝜑 𝑡 =  
𝑡,     𝑖𝑓  𝑡 ≤ 1,       
1,        0𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

It is clear that 𝑝 is a semi−metric on ℂℕ. Now we have 

Theorem 2.1:The sequence 𝑥 =  𝑥𝑗𝑘   is statistically convergent to ℓ if and only if  𝑝 𝑥, 𝑦 = 0 where 𝑦 =  𝑦𝑗𝑘   

and 𝑦𝑗𝑘 = ℓ for all 𝑗, 𝑘 ∈ ℕ. 

Proof : Let us assume 𝑝 𝑥, 𝑦 = 0 where 𝑦𝑗𝑘 = ℓ for all 𝑗, 𝑘 ∈ ℕ. Then, if 휀 > 0   

lim
𝑚 ,𝑛

sup
1

𝑚𝑛
 1

𝑗 ,𝑘≤𝑚 ,𝑛

 𝑥𝑗𝑘 −ℓ 

≤ 𝑚𝑎𝑥  1,
1

휀
   lim

𝑚 ,𝑛

1

𝑚𝑛
 𝜑  𝑥𝑗𝑘 − ℓ  

𝑗 ,𝑘≤𝑚 ,𝑛

= 𝑚𝑎𝑥  1,
1

휀
 𝑝 𝑥𝑗𝑘 , 𝑦𝑗𝑘  = 0 

and 𝑥𝑗𝑘 → ℓ 𝑆 . 

Now, assume that 𝑥 is statistically convergent to ℓ. Then, for any 휀 > 0, 
1

𝑚𝑛
 𝜑  𝑥𝑗𝑘 − ℓ  

𝑗 ,𝑘≤𝑚 ,𝑛

=
1

𝑚𝑛
 𝜑  𝑥𝑗𝑘 − ℓ  +

1

𝑚𝑛
 𝜑  𝑥𝑗𝑘 − ℓ  ≤ 휀 +

1

𝑚𝑛
𝑘≤𝑛

 𝑥𝑗𝑘 −ℓ ≥휀 
𝑗 ,𝑘≤𝑚 ,𝑛

 𝑥𝑗𝑘 −ℓ <휀 

 1
𝑘≤𝑛

 𝑥𝑗𝑘 −ℓ ≥휀 

 

which implies immediately 

𝑝 𝑥, 𝑦 ≤ 휀 for any 휀 > 0  

Where 𝑦 =  𝑦𝑗𝑘   and 𝑦𝑗𝑘 = ℓ   𝑗𝑘 ∈ ℕ . Hence the proof. 

The following can be seen from the above proof. 

Corollary 2.1: If  𝑥𝑗𝑘   is strongly Ces𝑎 ro summable to ℓ then 𝑥𝑗𝑘  is statistically convergent to ℓ. 

Remark 2.1: The inverse of corollary 2.1 is not true in general. Consider the sequence 𝑥𝑗𝑘 :ℕ × ℕ → ℂ as 

𝑥𝑗𝑘 ≔   
𝑗𝑘    𝑗, 𝑘 = 𝑛2,    𝑛 = 1,2, … ,

𝑜,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                      
     

On the other hand, we have 

Corollary 2.2: If 𝑥 =  𝑥𝑗𝑘   is a bounded sequence and statistically convergent to ℓ, then 𝑥𝑗𝑘  is strongly Ces𝑎 ro 

summable to ℓ. Note a convergent double sequence need not be bounded. 

The next theorem is well-known [see J.A. Fridy (1985)] 

Theorem 2.2: A sequence 𝑥 is statistically convergent to ℓ if and only if there exists 𝐻 ⊂ ℕ with 𝛿 𝐻 = 1 such 

that 𝑥 is convergent to ℓ in 𝐻, i.e. 

lim
𝑛→∞

𝑛∈𝐻

𝑥𝑛  

Analogously, we extend this result to double sequences as follow: 

Theorem 2.2.1: A double sequence 𝑥 =  𝑥𝑗𝑘   is statistically convergent to ℓ if and only if there exists 𝐻 ⊂ ℕ ×

ℕ with 𝛿2 𝐻 = 1 such that  𝑥 is convergent to ℓ in 𝐻. i.e 
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lim
𝑗𝑘 →∞

𝑗𝑘 ∈𝐻

𝑥𝑗𝑘  

Proof: Assume that 𝑥𝑗𝑘  is statistically convergent to ℓ. There is 𝑧𝑖 ∈ ℕ such that 

1

𝑚𝑛
 1 ≤

1

2𝑖
𝑗 ,𝑘≤𝑚 ,𝑛

1/2𝑖<1/2𝑖  

 

Is satisfied for all 𝑚, 𝑛 ≥ 𝑧𝑖 .  Denote the set 

𝐻𝑖 =  𝑗𝑘 ∈ ℕ:
1

2𝑖
≤  𝑥𝑗𝑘 − ℓ <

1

2𝑖
 . 

Then 
1

𝑚𝑛
 1 <

1

2𝑖
𝑗 ,𝑘∈ℕ

1

2𝑖< 𝑥𝑗𝑘 −ℓ <
1

2𝑖−1  𝑎𝑛𝑑  𝑗 ,𝑘∈ℕ/𝐻𝑖

 

holds for all 𝑗𝑘 ∈ ℕ. If we consider the set 𝐻 =  𝐻𝑖 ∪  𝑗𝑘 ∶ 𝑥𝑗𝑘 = ℓ ∞
𝑖=1  then  𝑥𝑗𝑘 − ℓ ≥ 휀 hold only to finitely 

many 𝑗𝑘 ∈ 𝐻. This means that 𝑥 is convergent to ℓ in the usual case. Now, let show that 𝛿2 ℕ/𝐻 = 0. Let 

휀 > 0 be given and choose an arbitrary 𝑟 ∈ ℕ such that 

 
1

2𝑖
<

휀

2

∞

𝑖=𝑟+1

 

holds. For 𝑟, there exists a 𝑙𝑟 ∈ ℕ such that 

            
1

𝑚𝑛
 1 <

1

𝑟+1
.
휀

7
𝑗 ,𝑘≤𝑚 ,𝑛

1

2𝑖< 𝑥𝑗𝑘 −ℓ <
1

2𝑖−1   𝑎𝑛𝑑  𝑗𝑘 ∈ℕ/𝐻

   and   
1

𝑚𝑛
 1 <

1

𝑟+1
.
휀

4
𝑗 ,𝑘≤𝑚 ,𝑛

 𝑥𝑗𝑘 −ℓ  >1 𝑎𝑛𝑑  𝑗𝑘 ∈ℕ/𝐻

 

for all 𝑚, 𝑛 > 𝑙𝑟   and 𝑖 =  1,2, … , 𝑟 . Therefore, 
1

𝑚𝑛
 1 <

휀

2
+𝑗 ,𝑘≤𝑛

𝑗 ,𝑘∈ℕ/𝐻

 
휀

2
 

Hold for all 𝑚, 𝑛 ≥ 𝑙𝑟 . 

The inverse of theorem is easily obtained. 

 

III. Some results for double Orlicz functions 
The following are some results for Orlicz functions. With  𝑀 𝑓𝐷   we denote the mean-value of the Orlicz 

function 𝑓𝐷 , if the limit 

𝑀 𝑓𝐷 = lim
𝑚 ,𝑛→∞

1

𝑚𝑛
 𝑓𝐷 𝑗, 𝑘 

𝑗 ,𝑘≤𝑛

 

Theorem 3.1: Assume that 𝑓: ℕ → ℂ is bounded and statistically convergent to ℓ and 𝐻 ⊂ ℕ × ℕ is an arbitrary 

set which possesses a double asymptotic density 𝛿2 𝐻 . Then, 𝑀 1𝐻 . 𝑓𝐷  exists and equal ℓ. 𝛿2 𝐻 . 

Proof: Consider the following inequality: 

  
1

𝑚𝑛
 𝑓 𝑗𝑘 −

1

𝑚𝑛
 ℓ

𝑗 ,𝑘≤𝑛
𝑗 ,𝑘∈ℕ

𝑗 ,𝑘≤𝑛
𝑗 ,𝑘∈ℕ

  ≤
1

𝑚𝑛
  𝑓 𝑗𝑘 − ℓ +

1

𝑚𝑛
  𝑓 𝑗𝑘 − ℓ .

𝑗 ,𝑘≤𝑛
𝑗𝑘 ∈𝐻

𝑗 ,𝑘≤𝑛

𝑘∈𝐻, 𝑓 𝑗𝑘  −ℓ <휀 

 

Theorem 3.2: If a double Orlicz 𝑓𝐷  is bounded and statistically convergent to ℓ ≠ 0, 𝑓𝐷 ≡ 1. 

Proof: Let 𝑝0 ∈ 𝑃, 𝑃 is the of primes 𝑗0 , 𝑘0 ∈ ℕ and let 

𝐻 =  𝑛 ∈ ℕ: 𝑝0
𝑗0𝑘0 𝑛  ,  

Be the set of all elements of ℕ divisible exactly by 𝑝0
𝑘0  , i.e. 𝑛 can be written in the form 𝑛 = 𝑝0

𝑘0𝑧 where 𝑝0 ∤ 𝑧. 

It is clear from Theorem 3.1 that 

𝑀 1𝐻 . 𝑓𝐷 = ℓ𝛿2 𝐻 = ℓ
1

𝑝0
𝑗0𝑘0

 1 −
1

𝑝0
    

holds. Since 𝑓𝐷  is multiplicative, we have 

𝑓𝐷 𝑗𝑘 = 𝑓 𝑝0
𝑗0𝑘0 . 𝑓𝐷  

𝑗𝑘

𝑝0
𝑗0𝑘0

   for 𝑗, 𝑘 ∈ 𝐻. 

Therefore, 
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𝑀 1𝐻 . 𝑓𝐷 = lim
𝑚 ,𝑛→∞

1

𝑚𝑛
 𝑓𝐷 𝑗𝑘 

𝑗𝑘≤𝑛
𝑗 ,𝑘∈𝐻 

= lim
𝑚 ,𝑛→∞

𝑓𝐷 𝑝0
𝑗0𝑘0  𝑓0 𝑧 =

𝑧≤
𝑚𝑛

𝑝0
𝑗0𝑘0

𝑝0≠𝑧  

lim
𝑚 ,𝑛→∞

𝑓𝐷 𝑝0
𝑗0𝑘0 

1

𝑝0
𝑗0𝑘0

.
1

𝑚𝑛

𝑝0
𝑗0𝑘0

 𝑓0 𝑧 

𝑧≤
𝑚𝑛

𝑝0
𝑗0𝑘0

𝑝0∤𝑧  

= 𝑓𝐷 𝑝0
𝑗0𝑘0 

1

𝑝0
𝑗0𝑘0

. ℓ.  1 −
1

𝑝0
  

This implies  𝑓 𝑝0
𝑗0𝑘0 . Since 𝑝0 is a prime 𝑗𝑜𝑘0 ∈ ℕ have been chosen arbitrarily it follows 𝑓𝐷 = 1 𝑎𝑛𝑑 ℓ =

1 . 
Remark 3.1: If 𝑓𝐷  is bounded and statistically convergent to ℓ, then 𝑓𝐷  is Ces𝑎 ro summable  𝐶, 1.1  (for 

every 𝑝 > 0). And we extend Theorem 3 of Indlekofer(1986) as follows: 

Proposition 3.1: Let 𝑓𝐷  be an Orlicz function and 𝛼 > 0. Then the following results hold;   (i) if 𝑓𝐷  is Ces𝑎 ro 

summable (C,1.1) for ℓ ≠ 0, then ℓ = 1 and 𝑓𝐷 𝑗𝑘 = 1  for all 𝑗, 𝑘 ∈ ℕ.  
(ii) 𝑓𝐷  is Ces𝑎 ro summable (C,1.1) for ℓ = 0 if and only if  𝑓𝐷  𝛼 ∈ ℓ

∗
 and one of the series 

 
  𝑓𝐷  𝑝𝑠𝑡   −1 

2

𝑝𝑠𝑡
𝑝𝑠𝑡

 𝑓𝐷  𝑝𝑠𝑡    ≤
1

2

 ,  
  𝑓𝐷  𝑝𝑠𝑡   −1 

𝛼

𝑝𝑠𝑡
𝑝𝑠𝑡

 𝑓𝐷  𝑝𝑠𝑡  −1  >
1

2

 

Diverges or 

 
 𝑓𝐷  𝑝𝑠𝑡  −1

𝑝𝑠𝑡
→ −∞ 𝑝𝑠𝑡≤𝑥𝑗𝑘

as  𝑥𝑗𝑘 → ∞.             𝑗, 𝑘, 𝑠, 𝑡 = 1,2, …,I 

In other words (i) above is the as theorem 3.2. 

 

IV. Statistical monotonicity for double sequences and some related results 
Here we shall consider only real-valued double sequences and introduce the concept of statistical monotonicity. 

Definition 4.1: (statistical monotone increasing (or decreasing) sequence) 

A sequence 𝑥 =  𝑥𝑗𝑘   is statistical monotone increasing (decreasing) if there exists a subset 𝐻 ⊂ ℕ × ℕ with 

𝛿2 𝐻 = 1 such that the sequences 𝑥 =  𝑥𝑗𝑘   is monotone increasing (or decreasing) on 𝐻. 

A sequence 𝑥 =  𝑥𝑗𝑘   is statistical monotone if it is statistical monotone increasing or statistical monotone 

decreasing. 

In the following we list some (obvious) properties of statistical monotone sequences. 

(i) If the sequence 𝑥 =  𝑥𝑗𝑘   is bounded and statistical monotone then it is statistically convergent. 

(ii) If 𝑥 =  𝑥𝑗𝑘    is statistical monotone increasing or statistical monotone decreasing then 

  lim𝑚 ,𝑛→∞
1

𝑚𝑛
  𝑗𝑘: 𝑗 ≤ 𝑚, 𝑘 ≤ 𝑛: 𝑥𝑗+1,𝑘+1 < 𝑥𝑗𝑘   = 0                               (1)    

                            or                       

lim𝑚 ,𝑛→∞
1

𝑚𝑛
  𝑗𝑘: 𝑗 ≤ 𝑚, 𝑘 ≤ 𝑛: 𝑥𝑗+1,𝑘+1 > 𝑥𝑗𝑘   = 0                                        (2)             

respectively. The inverse of these assertions is not necessarily true because of the following example: 

Define 𝑥 =  𝑥𝑗𝑘   by 

𝑥𝑗𝑘 =  
1,           𝑖𝑓2𝑖 ≤ 𝑗 < 2𝑖+1 − 1,   𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑖
0,                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  

Then the relation (1) and (2) hold but 𝑥 =  𝑥𝑗𝑘   is said to be statistical bounded if there exists a number 𝑀 > 0 

such that 

                                𝛿  𝑗𝑘 ∈ ℕ:  𝑥𝑗𝑘  > 𝑀  = 0. 

Let  𝑛𝑗
𝑖  and  𝑘𝑗

𝑖  be a strictly increasing double index sequences of positive natural numbers and 𝑥 =

 𝑥𝑗𝑘  , define 𝑥 ′ =  𝑥𝑗 𝑖𝑘𝑖
  and 𝐾𝑖 ≔  𝑗𝑖𝑘𝑖: 𝑖 ∈ ℕ  

For more on construction of subsequences of double sequences [see Patterson(1999) & (2000)]. 

Definition 4.3: (Dense subsequence) the subsequence 𝑥 ′ =  𝑥𝑗 𝑖𝑘𝑖
  of 𝑥 =  𝑥𝑗𝑘    is called a dense subsequence, 

if  𝛿 𝐾𝑥 ′ = 1.  

(iii) Every dense subsequence of a monotone double sequence is statistical monotone. 

(iv) The statistical monotone double sequence 𝑥 =  𝑥𝑗𝑘   is statistical convergent if and only if 𝑥 =  𝑥𝑗𝑘    is 

statistical bounded. 
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Definition 4.4: The double sequence 𝑥 =  𝑥𝑗𝑘   and 𝑦 =  𝑦𝑗𝑘   are called statistical equivalent if there is a subset 

𝑀 of ℕ with 𝛿 𝑀 = 1 such that 𝑥𝑗𝑘 = 𝑦𝑗𝑘  for each 𝑗, 𝑘 ∈ 𝑀. It is denoted by  𝑥𝑗𝑘 ≍ 𝑦𝑗𝑘 . 

(v) Let 𝑥 =  𝑥𝑗𝑘   and 𝑦 =  𝑦𝑗𝑘    be statistical equivalent. Then 𝑥 =  𝑥𝑗𝑘   statistical monotone if and only if 

𝑦 =  𝑦𝑗𝑘   is statistical monotone. 

 

V. Peak points for double sequences and some related results 
   In this section upper and lower peak points for real valued double sequences defined and its relation with 

statistical convergence of double sequences and statistical monotonicity will be given. 

Definition 5.1: (Upper (or Lower) peak point for double sequences) the point 𝑥𝑗𝑘  is called upper (lower) peak 

point of the double 𝑥 =  𝑥𝑗𝑘   if   𝑥𝑙𝑚 ≥ 𝑥𝑠𝑡   

Theorem 5.1: If the index set of peak points of the double sequence 𝑥 =  𝑥𝑗𝑘   has asymptotic density 1, then 

the sequence is statistical monotone. 

Proof: Let us denote the index set of upper peak points of the double sequence 𝑥 =  𝑥𝑗𝑘   by 

𝐻 =  𝑗𝑖𝑘𝑖: 𝑥𝑗 𝑖𝑘𝑖
𝑢𝑝𝑝𝑒𝑟 𝑝𝑒𝑎𝑘 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓  𝑥𝑗𝑘   ⊂ ℕ. 

Since 𝛿2 𝐻 = 1, and 𝑥 =  𝑥𝑗𝑘    is monotone on 𝐻, the double sequence  𝑥 =  𝑥𝑗𝑘    is statistical monotone. 

Remark 5.1: The inverse of theorem 5.1 is not necessarily true. 

Consider 𝑥 =  𝑥𝑗𝑘    where 

𝑥𝑗𝑘 =  

1

𝑚𝑛
,   𝑗, 𝑘 = 𝑚2𝑛2 𝑚, 𝑛 ∈ ℕ,

𝑗𝑘,                          𝑗𝑘 ≠ 𝑚2𝑛2

  

i.e. 𝑥 =  𝑥𝑗𝑘  =  1,2,3,
1

2
, 5,6,7,8,

1

3
, … . 

Since the set 𝐻 =  𝑚2, 𝑛2: 𝑚, 𝑛 ∈ ℕ  possesses an asymptotic density 𝛿 𝐻 = 0, [see Mursaleen (2003)] the 

sequence 𝑥 =  𝑥𝑗𝑘   is statistical monotone increasing. But, it has no any peak points. 

Corollary 5.1: If  𝑥 =  𝑥𝑗𝑘   is bounded and the index set of upper (lower) peak points 

𝐻 =  𝑗𝑖𝑘𝑖: 𝑥𝑗1𝑘𝑖
𝑢𝑝𝑝𝑒𝑟  𝑙𝑜𝑤𝑒𝑟 𝑝𝑒𝑎𝑘 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓  𝑥𝑗𝑘    

Possesses an asymptotic density 1, then 𝑥 =  𝑥𝑗𝑘   is statistical convergent. 

Remark 5.2: In Corollary 5.1, ordinary convergence cannot replace statistical convergence. 

Consider the sequence 𝑥 =  𝑥𝑗𝑘   where 

𝑥𝑗𝑘 =  
−1,    𝑗, 𝑘 = 𝑚2, 𝑛2,    𝑚, 𝑛 ∈ ℕ

1

𝑠𝑡
                       𝑗, 𝑘 ≠ 𝑚2, 𝑛2

  

The index set of upper peak points of the square of the sequence 𝑥 =  𝑥𝑗𝑘  

 𝑠𝑡: 𝑠, 𝑡 ≠ 𝑚2, 𝑛2, 𝑚, 𝑛 ∈ ℕ . It is clear that 𝛿 𝐻 = 1  and 𝑥 =  𝑥𝑗𝑘   is bounded. 

So, the hypothesis of Corollary 5.1 is fulfilled. Then subsequence 

 𝑥𝑗 𝑖𝑘𝑖
 =  

1

2
,
1

3
,
1

5
,
1

6
,
1

7
,
1

8
,

1

10
, …  

Is convergence to zero. Also, 𝑥 =  𝑥𝑛  is statistical convergent to zero but it is not convergent to zero. 

Remark 5.2: For an ordinary single dimensional sequence, any sequence is a subsequence of itself. However 

this is not the case in the two-dimensional plane (double sequences) as seen in the following example 

Example: The sequence 

𝑥𝑛 ,𝑘 =  
 
1,                  𝑖𝑓 𝑛 = 𝑘 = 0
1,              𝑖𝑓 𝑛 = 0, 𝑘 = 1
1,             𝑖𝑓 𝑛 = 1, 𝑘 = 0
0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Contains only two subsequences namely  𝑦𝑛𝑘
 = 0 for each 𝑛 and 𝑘 and 

𝑍𝑛𝑘
=  

1,     𝑖𝑓 𝑛 = 𝑘 = 0
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

neither subsequence is 𝑥𝑛𝑘
. 

The following proposition which can be easily verified is also worthy stating. 

Proposition 5.1: The double sequence 𝑥 = (𝑥𝑗𝑘 ) is 𝑝 −convergent to ℓ if and only if evry subsequence of 𝑥 is 

𝑝 −convergent 
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VI. 𝟐𝑨 −generalization of statistical monotonicity 
Statistical monotonicity can be generalized by using 2𝐴 −density of a subset K of ℕ for 𝑅𝐻 −regular non-

negative summability matrix 𝐴 =  𝑎𝑗𝑘
𝑚𝑛  

𝑗 ,𝑘=0

∞
, 𝑚, 𝑛 = 0,1,2, … . 

Recall 2𝐴 −density of a subset 𝐸 = (𝑖, 𝑗) ⊆ ℕ × ℕ of  

𝛿2𝐴 𝐾 = lim
𝑝 ,𝑞→∞

  𝑎𝑗𝑘
𝑚𝑛

𝑞

𝑘=0

𝑝

𝑗 =0

    𝑒𝑥𝑖𝑠𝑡𝑠 

[see Brono et al., (2013)] 

lim
𝑝 ,𝑞→∞

 𝑎𝑗𝑘
𝑚𝑛

𝑗 ,𝑘∈𝐸

= lim
𝑝 ,𝑞→∞

 𝑎𝑗𝑘
𝑚𝑛

𝑗 ,𝑘∈𝐼

𝐼𝐸(𝑗, 𝑘) = lim
𝑝 ,𝑞→∞

(2𝐴 ∙  1𝑘)(𝑝𝑞) 

Exists and is finite.  

The sequence 𝑥 = (𝑥𝑗𝑘 ) is 2𝐴 −statistically convergent to l, if for every ε>0, the set  

𝐾휀 = {𝑗𝑘 ∈ ℕ: |𝑥𝑗𝑘 − ℓ| ≥ 휀}  posssesses 2A-density zero [see Brono et al (2013)]. 

Definition 6.1: A sequence 𝑥 =  𝑥𝑗𝑘   is called 2A-statistical monotone, if there exists a subset H of ℕ × ℕ  

with 𝛿2𝐴 𝐻 = 1 such that the sequence 𝑥 =  𝑥𝑗𝑘   is monotone on 𝐻. 

Let 2𝐴 =  𝑎𝑗𝑘
𝑚𝑛   and 2𝐵 =  𝑏𝑗𝑘

𝑚𝑛   be non-negative regular matrices. 

Theorem 6.1: If the condition   

𝑝 − lim
𝑝 ,𝑞→∞

𝑠𝑢𝑝    𝑎𝑗𝑘
𝑚𝑛 − 𝑏𝑗𝑘

𝑚𝑛  = 0

𝑞

𝑘=0

𝑝

𝑗 =0

                                (3) 

holds. Then 𝑥 =  𝑥𝑗𝑘   is 2𝐴 −statistical monotone if and only if 𝑥 =  𝑥𝑗𝑘   is 2𝐵 −statistical monotone. 

Proof: For an arbitrary 𝐻 ⊂ ℕ × ℕ the inequality 

0 ≤   2𝐴 ∙ 1𝐻  𝑛 −  2𝐵 ∙ 1𝐻  𝑛  =   𝑎𝑗𝑘
𝑚𝑛 −  𝑏𝑗𝑘

𝑚𝑛

𝑗𝑘 ∈𝐻𝑗𝑘 ∈𝐻

 ≤   𝑎𝑗𝑘
𝑚𝑛 − 𝑏𝑗𝑘

𝑚𝑛  ≤   𝑎𝑗𝑘
𝑚𝑛 − 𝑏𝑗𝑘

𝑚𝑛  

∞

𝑗 ,𝑘=1𝑗 ,𝑘∈𝐻

 

holds. Under the condition (3) 𝛿2𝐴 𝐻  exists if and only if 𝛿2𝐵 𝐻  exists, and in the case 𝛿2𝐴 𝐻 = 𝛿2𝐵 𝐻  . 

Therefore, 2𝐴 −statistical monotonicity of 𝑥 =  𝑥𝑗𝑘   implies 2𝐵 −statistical monotonicity vice versa 

Let us consider strictly increasing and non-negative sequence 𝜆2𝑛  𝑛∈ℕ and 𝐸 =  𝜆2𝑛  𝑛=0
∞ . If 𝐴 =  𝑎𝑗𝑘

𝑚𝑛   is an 

RH−summability matrix, then 2𝐴𝜆2
≔  𝑎𝜆 2𝑛 ,𝑖

  

Is the submatrix of  𝐴 =  𝑎𝑗𝑘
𝑚𝑛  . Thus, the 𝐴𝜆2

 transformation of a sequence 𝑥 =  𝑥𝑗𝑘   as  

 𝐴𝜆2
𝑥 

𝑛
=  𝑎𝜆 2𝑛 ,𝜆𝑗𝑘

 𝑥𝑗 ,𝑘 
∞,∞
𝑗 ,𝑘=0,0 . 

Since, 𝐴𝜆2
 is a row submatrix of 2𝐴, it is clear that 𝑅𝐻-regular whenever 2𝐴 is a 𝑅𝐻-regular summability 

matrix . For more on 𝑅𝐻-regular summability matrices [see Patterson (1999) and (2000)]. 

Theorem 6.2 Let 2𝐴 be a RH-summability matrix and let 𝐸 =  𝜆2𝑛   and 𝐹 =  𝜌2𝑛   be an infinite subset of 

ℕ × ℕ, if 𝐹/𝐸 is finite , then   2𝐴𝜆2
−statistical monotonicity implies  2𝐴𝜌2

−statistical monotonicity. 

Proof: Assume that 𝐹/𝐸 is finite, and𝑥 =  𝑥𝑗𝑘   is  𝐴𝜆2
−statistical monotone sequence. From the assumption 

there exists a 𝑛0 ∈ ℕ such that 
 𝜌2 𝑗, 𝑘 : 𝑗, 𝑘 ≥ 𝑗0 , 𝑘0 ⊆ 𝐸. 

It means that there is a monotone increasing sequence 𝑖 𝑗, 𝑘  such that 𝜌2 𝑗, 𝑘 ≔ 𝜆2𝑖 𝑗, 𝑘 . So, the 2𝐴𝜌2
 

asymptotic density of the set 𝑍 ≔  𝑗𝑘 ∈ ℕ: 𝜌2 𝑗, 𝑘 ≔ 𝜆2𝑖 𝑗, 𝑘   is 

lim
𝑝𝑞→∞

 𝑎𝜌
2 𝑛 𝑘1,

𝑍 𝑗𝑘  =

∞,∞

𝑗 ,𝑘=0,0

lim
𝑝𝑞→∞

 𝑎𝜆
2 𝑛 𝑘1,

𝑍 𝑗𝑘  =

∞,∞

𝑗 ,𝑘=0,0

1. 

This gives us, 𝑥 =  𝑥𝑗𝑘   is a 𝐴𝜌2
−statistical monotone sequence. 

By the Theorem 6.2 we have the following corollaries: 

Corollary 6.1: 2𝐴 −statistical monotone sequence is 2𝐴𝜆2
−statistical monotone. 

Corollary 6.2: Under the condition of Theorem 6.2, if 𝐸Δ𝐹 is finite, then the sequence 𝑥 =

 𝑥𝑗𝑘  , 2𝐴𝜆2
−statistical monotone if and only if 𝐴𝜌2

−statistical monotone. 
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