Existence and Uniqueness result for Boundary value problems involving capillarity problems

M.B.Okofu
Department of Mathematics, University of Nigeria, Nsukka, Nigeria. [2010]47H05, 47H09 Monotone operator; generalized p-Laplacian operator; non-linear boundary value problem; capillarity problem.

Abstract

In this paper, we study a nonlinear boundary value problem (bvp) which generalizes capillarity problem. An existence and uniqueness result is obtained using the knowledge of range for nonlinear operator. Ours extends the result in [12].

I. Introduction

A research on the existence and uniqueness result for certain nonlinear boundary value problems of capillarity problem has a close relationship with practical problems. Some significant work has been done on this, see Wei et al. [Error! Reference source not found., Error! Reference source not found.]. In 1995, Wei and He [Error! Reference source not found.] used a perturbation result of ranges for maccretive mappings in Calvert and Gupta [Error! Reference source not found.] to obtain a sufficient condition so that the zero boundary value problem,
$-\nabla_{\mathrm{p}} \mathrm{u}+\mathrm{g}(\mathrm{x}, \mathrm{u}(\mathrm{x}))=\mathrm{f}(\mathrm{x})$, a.e in Ω,
$E Q-\backslash F(\partial u, \partial n)=0 \backslash$,a.e in $\Gamma \backslash$,
has solutions in $\mathrm{L}^{\mathrm{p}}(\Omega)$, where $2 \leq \mathrm{p}<+\infty$. In 2008, as a summary of the work done in[Error! Reference source not found., Error! Reference source not found.], Wei et al used some new technique to work for the following problem with so-called generalized p-Laplacian operator:
$-\operatorname{div}\left[\left(\mathrm{c}(\mathrm{x})+|\nabla \mathrm{u}|^{2}\right)^{(\mathrm{p}-2) / 2} \nabla \mathrm{u}\right]+\varepsilon|\mathrm{u}|^{\mathrm{q}-2} \mathrm{u}+\mathrm{g}(\mathrm{x}, \mathrm{u}(\mathrm{x}))=\mathrm{f}(\mathrm{x})$, a.e in Ω
EQ $-\langle\mathrm{v} \backslash,(\mathrm{c}(\mathrm{x})+|\nabla \mathrm{u}| \sin \backslash \operatorname{up} 5(2)) \backslash \mathrm{s} \backslash u p 5(\backslash \mathrm{~F}()),(\mathrm{p}-2) 2 \nabla \mathrm{u}\rangle \in \beta \backslash \mathrm{s} \backslash \operatorname{do5}(\mathrm{x})(\mathrm{u}(\mathrm{x})) \backslash$, a.e in Γ
where $0 \leq \mathrm{c}(\mathrm{x}) \in \mathrm{L}^{\mathrm{p}}(\Omega), \varepsilon$ is a non-negative constant and v denotes the exterior normal derivatives of Γ. It was shown in [7] that (1.2) has solutions in $L^{p}(\Omega)$ under some conditions where $2 N /(N+1)<p \leq s<+\infty, 1 \leq q<+\infty$ if $p \geq N$, and $1 \leq q \leq N / p /(N-p)$ if $p<N$, for $N \geq 1$. In Chen lup[8], the authors studied the eigenvalue problem for the following generalized capillarity equations:
$-\operatorname{div}\left[\left(1+\frac{|\nabla \mathbf{u}|^{\mathrm{p}}}{\sqrt{1+|\nabla \mathbf{u}|^{2 p}}}\right)|\nabla \mathbf{u}|^{(\mathrm{p}-2)} \nabla \mathbf{u}\right]=\lambda\left(|\mathbf{u}|^{\mathrm{q}-2} \mathbf{u}+|\mathbf{u}|^{\mathrm{r}-2} \mathrm{u}\right)$, in Ω,

$$
\mathrm{EQ} \mathrm{u}=0 \backslash \text {,a.e. on } \partial \Omega \text {. }
$$

In their paper [10], Wei et al, borrowed the main ideas dealing with the nonlinear elliptic boundary value problem with the generalized p-Laplacian operator to study the nonlinear generalized Capillarity equations with Neumann boundary conditions. They used the perturbation results of ranges for m-accretive mappings in [Error! Reference source not found.] again to study
$\left.-\left.\left\langle\mathrm{v},\left(1+\frac{|\nabla \mathrm{u}|^{\mathrm{p}}}{\sqrt{1+|\nabla \mathrm{u}|^{2 p}}}\right)\right| \nabla \mathrm{u}\right|^{(\mathrm{p}-2)} \nabla \mathrm{u}\right\rangle \in \beta_{\mathrm{x}}(\mathrm{u}(\mathrm{x}))$, a.e on Γ
Motivated by [10, 12], we study the following boundary value problem:

$\left.-\left.\left\langle\mathrm{v},\left(1+\frac{|\nabla \mathrm{u}|^{\mathrm{p}}}{\sqrt{1+|\nabla \mathrm{u}|^{2 \mathrm{p}}}}\right)\right| \nabla \mathrm{u}\right|^{(\mathrm{p}-2)} \nabla \mathrm{u}\right\rangle \in \beta_{\mathrm{x}}(\mathrm{u}(\mathrm{x}))$, a.e in Γ
This equation generalized the Capillarity problem considered in [10]. We replaced the nonlinear term $\mathrm{g}(\mathrm{x}, \mathrm{u}(\mathrm{x}))$ by the term $\mathrm{g}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla \mathrm{u}(\mathrm{x}))$ which is rather general. In this paper, we will use some perturbation results of the ranges for maximal monotone operators by Pascali and Shurlan [10] to prove that (Error! Reference source not found.) has a unique solution in $\mathrm{W}^{1, \mathrm{p}}(\Omega)$ and later show that this unique solution is the zero of a suitably defined maximal monotone operator.

II. Preliminaries

We now list some basic knowledge we need. Let X be a real Banach space with a strictly convex dual space X^{*}.Using " $\hookrightarrow "$ and " w-lim" to denote strong and weak convergence respectively. For any subset G of X, let int G denote its interior and G its closure. Let " $\mathrm{X} \hookrightarrow \hookrightarrow Y$ " denote that space X is embedded compactly in space Y and " $\mathrm{X} \hookrightarrow \mathrm{Y}^{\prime}$ denote that space X is embedded continuously in space Y . A mapping, $\mathrm{T}: \mathrm{D}(\mathrm{T})=\mathrm{X} \rightarrow \mathrm{X}^{*}$ is said to be hemicontinuous on X if $w-{ }_{t \rightarrow 0} T(x+t y)=T x$, for any $x, y \in X$ Let J denote the duality mapping from X into 2^{x} , defined by
$f(x)=f \in x^{*}:(x, f)=\|x\| \cdot\|f\|,\|f\|=\|x\|, x \in X$
where (.,.) denotes the generalized duality pairing between X and X^{*} Let $A: X \rightarrow 2^{X}$ be a given multi-valued mapping, A is boundedly-inversely compact if for any pair of bounded subsets G and G^{\prime} of X, the subset $\mathrm{GA}^{-1}\left(\mathrm{G}^{\prime}\right)$ is re latively co mpact in X .
The mapping $A: X \rightarrow 2$ is said to be accretive if $\left(\left(v_{1}-v_{2}\right), J\left(u_{1}-u_{2}\right)\right) \geq 0$, for any $u_{i} \in D(A)$ and $v_{i} \in A u_{i} ; i=1,2$.
The accretive mapping A is said to be m-accretive if $\mathrm{R}(\mathrm{I}+\mu \mathrm{A})=\mathrm{X}$, for some $\mu>0$.
Let $B: X \rightarrow 2 X^{*}$ be a given multi-valued mapping, the graph of $B, G(B)$ is defined by $G(B)=\{[u, w] \mid$ $u \in D(B), w \in B u\} . B: X \rightarrow 2^{*}$ is said to be monotone [11] if $G(B)$ is a monotone subset of $X \times X^{*}$ in the sense that
$\left(\mathrm{u}_{1}-\mathrm{u}_{2}, \mathrm{w}_{1}-\mathrm{w}_{2}\right) \geq 0$, for any $\left[\mathrm{u}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right] \in \mathrm{G}(\mathrm{B}) ; \mathrm{i}=1,2$.
The monotone operator B is said to be maximal monotone if $G(B)$ is maximal among all monotone subsets of $\mathrm{X} \times \mathrm{X}^{*}$ in the sense of inclusion the mapping B is said to be strictly monotone if the equality in (Error! Reference source not found.) implies that $u_{1}=u_{2}$. The mapping B is said to be coercive if $\lim _{\mathrm{n} \rightarrow+\infty}\left(\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right) /\left\|\mathrm{x}_{\mathrm{n}}\right\|\right)=\infty$ for all $\left[\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right] \in \mathrm{G}(\mathrm{B})$ such that $\lim _{\mathrm{n} \rightarrow+\infty}\left\|\mathrm{x}_{\mathrm{n}}\right\|=+\infty$.
Definition 1 The duality mapping $\mathrm{J}: \mathrm{X} \rightarrow 2^{*}$ is said to be satisfying condition (I) if there exists a function $\eta: X \rightarrow[0,+\infty) \quad$ such that

$$
\|J u-J v\| \leq \eta(u-v) \text {, for all } u, v \in X .
$$

Definition 2 Let $A: X \rightarrow 2$ be an accretive mapping and $J: X \rightarrow X$ be a duality mapping. We say that A satisfies condition (*) if, for any $f \in R(A)$ and $a \in D(A)$ and $a \in D(A)$, there exists a constant $C(a, F)$ such that

$$
(v-f, J(u-a)) \geq C(a, f) \text {, for any } u \in D(A), v \in A u \text {. }
$$

Lemma 3 (Li and Guo) Let Ω be a bounded conical do main in R^{N}. Then we have the following results;

1. If $\mathrm{mp}>\mathrm{N}$ then $\mathrm{W}^{\mathrm{m}, \mathrm{p}}(\Omega) \hookrightarrow \mathrm{C}_{\mathrm{B}}(\Omega)$; if $\mathrm{mp}<\mathrm{N}$ and $\mathrm{q}=\mathrm{Np} /(\mathrm{N}-\mathrm{mp})$, then $\mathrm{W}^{\mathrm{m}, \mathrm{p}}(\Omega) \hookrightarrow \mathrm{L}^{\mathrm{q}}(\Omega)$; if $\mathrm{mp}=\mathrm{N}$, and $\mathrm{p}>1$, then for $1 \leq \mathrm{q}<+\infty, \mathrm{W}^{\mathrm{m}, \mathrm{p}}(\Omega) \rightarrow \mathrm{L}^{\mathrm{q}}(\Omega)$
2. If $\mathrm{mp}>\mathrm{N}$ then $\mathrm{W}^{\mathrm{m}, \mathrm{p}}(\Omega) \hookrightarrow \hookrightarrow \mathrm{C}_{\mathrm{B}}(\Omega)$; if $0<\mathrm{mp} \leq \mathrm{N} \quad$ and $\mathrm{q}_{0}=\mathrm{Np} /(\mathrm{N}-\mathrm{mp})$, then $\mathrm{W}^{\mathrm{m}, \mathrm{p}}(\Omega) \hookrightarrow \hookrightarrow \mathrm{L}^{\mathrm{q}}(\Omega), 1 \leq \mathrm{q}^{<\mathrm{q}_{0}} \quad ;$

Lemma 4 (Pascali and Sburlan[11]) If $\mathrm{B}: \mathrm{X} \rightarrow 2^{\mathrm{X}^{*}}$ is an everywhere defined, monotone and hemicontinuous operator, then B is maximal monotone.
Lemma 5 (Pascali and Sburlan[11]). If $B: X \rightarrow 2^{X^{*}}$ is maximal monotone and coercive, then $R(B)=X^{*}$
Lemma 6 (Pascali and Sburlan[11]). If $\Phi: X \rightarrow(-\infty,+\infty$]
is a proper, convex and lower semicontinuous function, then $\partial \Phi$ is maximal monotone from X to X^{*}.
Lemma 7 [Error! Reference source not found.]. If B_{1} and B_{2} are two maximal monotone operators in X such that $\left(\operatorname{intD}\left(B_{1}\right)\right) D\left(B_{2}\right) \neq \varnothing$, then $B_{1}+B_{2}$ is maximal monotone.
Lemma 8 (Calvert and Gupta[1]). Let $\mathrm{X}=\mathrm{L}^{\mathrm{p}}(\Omega)$ and Ω be a bounded domain in \Re^{N}. For $2 \leq \mathrm{p}<+\infty$, the duality mapping $J_{p}: L^{p}(\Omega) \rightarrow L^{p^{\prime}}(\Omega)$ defined by $J_{P} u=|u|^{p-1}$ sgn $u\|u\|_{p}^{2-p}$, for $u \in L^{P}(\Omega)$, satisfies condition (2); for $2 N /(N+1)<p \leq 2$ and $N \geq 1$, the duality mapping $J_{p}: L^{p}(\Omega) \rightarrow L^{p^{\prime}}(\Omega)$ defined by $J_{P} u=|u|^{p-1}$ sgn u, for $u \in L^{P}(\Omega)$, satisfies condition (2), where $(1 / \mathrm{p})+\left(1 / \mathrm{p}^{\prime}\right)=1$

III. Main Result

3.1 Notations and Assumptions of (Error! Reference source not found.)

We assume, in this paper, that $2 \mathrm{~N} /(\mathrm{N}+1)<\mathrm{p}<+\infty, 1 \leq \mathrm{q}_{1}, \mathrm{q}_{2}, \cdots, \mathrm{q}_{\mathrm{m}}<+\infty \quad$ if $\mathrm{p} \geq \mathrm{N}$, and
 denote the norms in $L^{p}(\Omega), \mathrm{L}^{\mathrm{q}_{1}}(\Omega), \mathrm{L}^{\mathrm{q}_{2}(\Omega), \cdots, \mathrm{L}^{\mathrm{q}_{\mathrm{m}}^{(\Omega)}}}$ and $\mathrm{W}^{1, \mathrm{p}}(\Omega)$ respectively. Let $(1 / \mathrm{p})+\left(1 / \mathrm{p}^{\prime}\right)=1,\left(1 / \mathrm{q}_{1}\right)+\left(1 / \mathrm{q}_{1}{ }^{\prime}\right)=1,\left(1 / \mathrm{q}_{2}\right)+\left(1 / \mathrm{q}_{2}{ }^{\prime}\right)=1, \cdots,\left(1 / \mathrm{q}_{\mathrm{m}}\right)+\left(1 / \mathrm{q}_{\mathrm{m}}{ }^{\prime}\right)=1$
In (Error! Reference source not found.), Ω is a bounded conical domain of a Euclidean space $\mathfrak{R}^{\mathrm{N}}$ with its boundary $\Gamma \in \mathrm{C}^{1}$,(c.f.[4]).
Let |.| denote the Euclidean norm in $\mathfrak{R}^{\mathrm{N}},\langle. .$,$\rangle \quad the Euclidean inner-product and v$ the exterior normal derivative of $\Gamma . \lambda$ is a nonnegative constant.
Lemma 1 Define the mapping $\mathrm{B}_{\mathrm{p}, \mathrm{q}_{1}, \mathrm{q}_{2}, \cdots, \mathrm{q}_{\mathrm{m}}}: \mathrm{W}^{1, \mathrm{p}}(\Omega) \rightarrow\left(\mathrm{W}^{1, \mathrm{p}}(\Omega)\right)^{*} \quad$ by

$$
\begin{aligned}
& \left.\left(\mathrm{v}, \mathrm{~B}_{\mathrm{p}, \mathrm{q}_{1}, \mathrm{q}_{2}, \cdots, \mathrm{q}_{\mathrm{m}}} \mathrm{u}\right) \quad=\left.\quad \int_{\Omega}\left\langle\left(1+\frac{|\nabla \mathrm{u}|^{\mathrm{p}}}{\sqrt{1+|\nabla \mathrm{u}|^{2 \mathrm{p}}}}\right)\right| \nabla \mathrm{u}\right|^{\mathrm{p}-2} \nabla \mathrm{u}, \nabla \mathrm{v}\right\rangle \mathrm{dx} \\
& \lambda \int_{\Omega}|u(x)|^{q_{1}}{ }^{-2} u(x) v(x) d x+\lambda \int_{\Omega}|u(x)|^{q_{2}}{ }^{-2} u(x) v(x) d x \\
& +\quad \cdots+\lambda \int_{\Omega}|u(x)|^{q_{m}}{ }^{-2} u(x) v(x) d x
\end{aligned}
$$

for any $u, v \in W^{1, p}(\Omega) \quad$.Then $B_{p, q_{1}, q_{2}}, \cdots, q_{m}$
is everywhere defined, strictly monotone, hemicontinuous and coercive.
The proof of the above lemma will be done in four steps:
[Sorry. Ignored \begin\{proof\} ... \end\{proof\}] }
Definition 2 Define a mapping $\mathrm{A}_{\mathrm{p}}: \mathrm{L}^{\mathrm{p}}(\Omega) \rightarrow 2{ }^{\mathrm{L}}{ }^{\mathrm{p}(\Omega)}$ as follows:
$D\left(A_{p}\right)=\left\{u \in L^{p}(\Omega) \mid\right.$ there exist an $f \in L^{p}(\Omega)$, such that $\left.f \in B_{p, q_{1}, q_{2}, \cdots, q_{m}} u+\partial \Phi_{p}(u)\right\}$
$E Q$ for $u \in D(A \backslash s \backslash \operatorname{do5}(p)) \backslash$, let $A \backslash s \backslash \operatorname{do5}(p) u=\{f \in \operatorname{L} \backslash \operatorname{s} \backslash u p 5(p)(\Omega) \backslash$, such that $f \in$
$\mathrm{B} \backslash \mathrm{s} \backslash \operatorname{do5}(\mathrm{p} \backslash \mathrm{q} \backslash \mathrm{s} \backslash \operatorname{do} 4(1) \backslash \mathrm{q} \backslash \mathrm{s} \backslash \operatorname{do} 4(2) \backslash, \cdots \backslash, \mathrm{q} \backslash \mathrm{s} \backslash \operatorname{do} 4(\mathrm{~m}) \mathrm{u}+\partial \Phi \backslash \mathrm{s} \backslash \operatorname{do} 5(\mathrm{p})(\mathrm{u})\}$
Definition 3 : The mapping
$\mathrm{A}_{\mathrm{p}}: \mathrm{L}^{\mathrm{p}}(\Omega) \rightarrow 2^{\mathrm{L}^{\mathrm{p}}(\Omega)}$ is m-accretive.
[Sorry. Ignored \begin\{proof\} ... \end\{proof\}] }
Then χ_{n} is monotone, Lipschitz with $\chi_{n}(0)=0$ and χ_{n}^{\prime} is continuous except at finitely many points on R. so $\left(\chi_{\mathrm{n}}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right), \partial \Phi_{\mathrm{p}}\left(\mathrm{u}_{1}\right)-\partial \Phi_{\mathrm{p}}\left(\mathrm{u}_{2}\right)\right) \geq 0$.
Then, for $u_{i} \in D\left(A_{p}\right)$ and $v_{i} \in A_{p} u_{i}, i=1,2, \quad$ we have

$$
\begin{array}{rlrl}
\left(v_{1}-v_{2}, J_{p}\left(u_{1}-u_{2}\right)\right) & = \\
\left(\left|u_{1}-u_{2}\right|^{p-1} \operatorname{sgn}^{2}\left(u_{1}-u_{2}\right), B_{p, q_{1}, q_{2}, \cdots, q_{m}} u_{1}-B_{p, q_{1}, q_{2}, \cdots, q_{m}}\right. & \left.u_{2}\right) & \\
& +\quad\left(\left|u_{1}-u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right), \partial \Phi_{p}\left(u_{1}\right)-\partial \Phi_{p}\left(u_{2}\right)\right) \\
& = & \\
\left(\left|u_{1}-u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right), B_{p, q_{1}, q_{2}, \cdots, q_{m}} u_{1}-B_{p, q_{1}, q_{2}, \cdots, q_{m}} u_{2}\right) & \\
& +\lim _{n \rightarrow \infty}\left(\chi_{n}\left(u_{1}-u_{2}\right), \partial \Phi_{p}\left(u_{1}\right)-\partial \Phi_{p}\left(u_{2}\right)\right) \geq o
\end{array}
$$

Step $2 R\left(1+\mu A_{p}\right)=L^{P}(\Omega)$, for every $\mu>0$.
We first define the mapping $\quad \mathrm{I}_{\mathrm{p}}: \mathrm{W}^{1, \mathrm{p}}(\Omega) \rightarrow\left(\mathrm{W}^{1, \mathrm{p}}(\Omega)\right)^{*}$ by $\quad \mathrm{I}_{\mathrm{p}} \mathrm{u}=\mathrm{u} \quad$ and $\left(\mathrm{v}, \mathrm{I}_{\mathrm{p}} \mathrm{u}\right)\left(\mathrm{W}^{1, \mathrm{p}_{(}}(\Omega)\right)^{*} \times \mathrm{W}^{1, \mathrm{p}}(\Omega)-(\mathrm{v}, \mathrm{u}) \mathrm{v}(\Omega) \quad$ for $\mathrm{u}, \mathrm{v} \in \mathrm{W}^{1, \mathrm{p}}(\Omega) \quad$, where $\langle\ldots,.\rangle{ }_{L}{ }_{2}(\Omega)$ denotes the inner product of $\mathrm{L}^{\mathrm{p}}(\Omega)$. Then I_{p} is maximal monotone [7].
Secondly, for any $\mu>0$, let the mapping $\mathrm{T}_{\mu}: \mathrm{W}^{1, \mathrm{p}}(\Omega) \rightarrow 2\left(\mathrm{~W}^{1, \mathrm{p}}(\Omega)\right)^{*} \quad$ be defined by

$$
\mathrm{T} \mu \mathrm{u}=\mathrm{I}_{\mathrm{p}} \mathrm{u}^{\mathrm{+} \mu} \mathrm{~B}_{\mathrm{p}, \mathrm{q}_{1}, \mathrm{q}_{2}}, \cdots, \mathrm{q}_{\mathrm{m}} \mathrm{u}^{\mathrm{u} \partial \Phi_{\mathrm{p}}(\mathrm{u})}
$$

,for $\mathrm{u} \in \mathrm{W}^{1, \mathrm{p}}(\Omega)$. Then similar to that in [7], by lemmas $2.4,2.6,2.7$ and 2.5 we see that T_{μ} is maximal monotone and coercive, so that $\mathrm{R}(\mathrm{T} \mu)=\left(\mathrm{W}^{1, \mathrm{p}}(\Omega)\right)^{*}$, for any $\mu>0$
Therefore, for any $f \in L^{P}(\Omega)$, there exists $u \in W^{1, p}(\Omega)$, such that

$$
\begin{equation*}
\mathrm{f}=\mathrm{T}_{\mu} \mathrm{u}^{\mathrm{u}+\mu \mathrm{B}_{\mathrm{p}, \mathrm{q}_{1}, \mathrm{q}_{2}}, \cdots, \mathrm{q}_{\mathrm{m}}}{\mathrm{u} \mu \partial \Phi_{\mathrm{p}}(\mathrm{u})}^{\text {(}} \tag{2}
\end{equation*}
$$

From the definition of A_{p}, it follows that $R\left(I+\mu A_{p}\right)=L^{p}(\Omega)$, for all $\mu>0$. This completes the proof.
Lemma 4 The mapping $A_{p}: L^{p}(\Omega) \rightarrow 2 L^{p}(\Omega)$, has a compact resolvent for $2 N /(N+1)<p<2$ and $N \geq 1$.
[Sorry. Ignored \begin\{proof\} ... \end\{proof\}] }
Remark 5 Since $\Phi_{p}(u+\alpha)=\Phi_{p}(u)$, for any $u \in W^{1, p}(\Omega)$ and $\alpha \in C_{0}^{\infty}(\Omega)$, we have $f \in A_{p} u$ implies that $f=B_{p, q_{1}, q_{2}}, \cdots, q_{m} \quad$ in the sense of distributions.
Proposition 6 For $f \in L^{p}(\Omega)$, if there exists $u \in L^{p}(\Omega)$ such that $f \in A_{p} u$, then u is the unique solution of (1.7).
[Sorry. Ignored \begin\{proof\} ... \end\{proof\}] }
Remark 7 If $\beta_{x} \equiv 0$ for any $x \in \Gamma$ then $\partial \Phi_{p}(u) \equiv 0$, for all $u \in W^{1, p}(\Omega)$.

Proposition 8 If $\beta_{\mathrm{x}} \equiv 0$ for any $\mathrm{x} \in \Gamma$ then $\left\{\mathrm{f} \in \mathrm{L}^{\mathrm{P}}(\Omega) \mid \int \mathrm{fdx}=0\right\} \subset \mathrm{R}\left(\mathrm{A}_{\mathrm{p}}\right)$.
Ω
[Sorry. Ignored \begin\{proof \} . . . \end\{proof\}] }
Definition 9 (see[1,7]). For $t \in R_{t}, x \in \Gamma$, let $\beta_{x}^{0}(t) \in \beta_{x}(t)$ be the element with least absolute value if $\beta_{x}(t) \neq 0$ and $\beta_{x}^{0}(t)= \pm \infty$, where $t>0$ or $t<0$ respectively, in case $\beta_{x}(t)=\varnothing$. Finally, let $\beta_{x}(t)={ }_{t \rightarrow \pm \infty} \beta_{x}^{0}(t)$ (in the extended sense) for $\mathrm{x} \in \Gamma \cdot \beta_{\mathrm{x}}(\mathrm{t})$ define measurable functions on Γ, in view of our assumptions on β_{x}.
Proposition 10 Let $f \in L^{p}(\Omega)$ such that

$$
\int_{\Gamma} \beta_{-}(\mathrm{x}) \mathrm{d} \Gamma(\mathrm{x})<\int_{\Omega} \mathrm{fdx}<\int_{\Gamma} \beta_{+}(\mathrm{x}) \mathrm{d} \Gamma(\mathrm{x})
$$

Then $f \in \operatorname{Int} R\left(A_{p}\right)$.

$$
\text { [Sorry. Ignored \begin\{proof\} . . . \end\{proof\}] }}
$$

This completes the proof.
Proposition $11 A_{p}+B_{1}: L^{\mathrm{p}}(\Omega) \rightarrow \mathrm{L}^{\mathrm{p}}($ Omega $)$ is m-accretive and has a compact resolvent.

$$
\text { [Sorry. Ignored \begin\{proof\} . . . \end\{proof\}] }}
$$

Theorem: Let $\mathrm{f} \in \mathrm{L}^{\mathrm{p}}(\Omega)$ be such that

$$
\int_{\Gamma} \beta_{-}(x) d \Gamma(x)+\int_{\Omega}^{g_{-}}(x) d x<\int_{\Omega} f(x) d x \quad<\quad \int_{\Gamma} \beta_{+}(x) d \Gamma(x)+\int_{\Omega} g_{+}(x) d x
$$

then(1.4) has a unique solution in $L^{p}(\Omega)$, where $2 \mathrm{~N} /(\mathrm{N}+1)<\mathrm{p}<+\infty$ and $\mathrm{N} \geq 1$
[Sorry. Ignored \begin\{proof\} ... \end\{proof\}] }
Remark: Compared to the work done in [1-7], not only the existence of the solution of (1.4) is obtained but also the uniqueness of the solution is obtained. Furthermore, our work extended the work of [12]

References

[1]. B.D.Calvert and C.P Gupta "Nonlinear elliptic boundary value problems in L^{p}-spaces and sums of ranges of accretive operators," Nonlinear Analysis, vol.2, no. 1, pp 1-26,1978.
[2]. L. Wei and Z. He;"The applications of sums of ranges of accretive operators to nonlinear equations involving the p -laplacian operator," Nonlinear Analysis: Theory, Methods and Applications, vol.24, no.2, pp 185-193, 1995.
[3]. L. Wei; "Existence of solutions of nonlinear elliptic boundary value problems," Mathematics in Practice and Theory, vol. 31, no. 3 pp 360-364, 2001 (chinese)
[4]. L. Wei and Z. Hen; "The Applications of Theories of accretive operators to non-linear elliptic boundary value problems in L p spaces" Nonlinear Analysis:Theory, Methods and Applcations, vol.46, no. 2, pp 199-21 1, 2001.
[5]. L. Wei and H.Y.Zhou ; "Existence of solutions of a family of non-linear boundary value problems in L^{2}-spaces", Applied Mathematics: a journal of Chinese unversities, vol.20, no. 2, pp 175-182, 2005.
[6]. L. Wei and H.Y. Zhou; "The existence of solutions of nonlinear boundary value problems involving the p-Laplacian operators in L^{s} -spaces", Journal of Systems science and complexity, vol.18, no. 4, pp 511-521, 2005.
[7]. L. Wei and R.P. Agrawal ;"existence of solutions to non-linear Neumann boundary value problems with generalized p-Laplacian operator", Computers and Mathematics with Applications, vol.56, no.2, pp 530-541, 2008.
[8]. Z.C.chen and T. Luo; "The eigenvalue problem of p-Laplacian-like equations, Acta Mathematica Sinica, vol.46, no. 4, pp 631-638, 2003(Chinese).
[9]. L.K. Li and Y.T. Guo; The Theory of Sobolov Spaces, Shanghai Science and Technology Press, Shanghai, china 1981.
[10]. L. Wei, L. Duan and H.Zhou; "Study of the existence and uniqueness of solution of generalized capillarity problem", Abstract and Applied Analysis, vol. 2012, Article ID 154307, 18 pages.
[11]. D. Pascali and S. Sburlan; Nonlinear Mappings Of monotone Type, Martinus Nijhoff, The Hagne, The Netherlands, 1978.
[12]. L. Wei, L. Duan and H.Zhou; Solution of nonlinear elliptic boundary value problems and its iterative construction, Abstract and Applied Analysis, vol. 2012, Article ID 210325, 14 pages.

