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Abstract: One of the most recent generalizations of concept of classical convergence of sequences (“a new type 

of convergence”) is statistical convergence defined by Fast. Recently, it became the centre of attraction for 
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I. Introduction 
The classical notion of Cauchy Convergence has been generalized in various ways through summability 

and sequence-to-function methods. The first generalizat ion was that of almost convergence which was initiated 

as early as 1932 by Banach (1932). It was studied in details by Lorentz (1948).  

One of the most recent generalizat ions of the concept of classical convergence of sequences (“new type 

of convergence”) has been introduced by Fast (1951). He introduced concepts such as statistic al convergence, 

Lacunary statistical convergence and 𝜆-statistical convergence. It was defined almost fifty years ago but recently 

it became the centre of attraction for many researchers. The objective of this study is to discuss fundamental 

concepts and results in this field along with various generalizat ions which have been subsequently formulated. 

With a view to expose the profound link between the classical theory and statistical convergence theory. We 

will also look at some construction from the theory of statistical convergence to consider relat ions between 

statistical convergence and concepts of convergence in statistics such as the mean (average) and standard 

deviation. 

Before starting to discuss on statistical convergence, we consider a very brief summary of concepts of 

convergence of sequences of real numbers and some other important defin itions related to sequences.  

 

II. Notions and Notations 
Definition 2.1: A sequence is a function whose domain of defin ition is the set ℕ of all natural numbers. 

Sequences obtain different names with respect to their range. If the range of the sequence is ℝ, then we call this 

sequence a real number sequence (or real sequence). If the terms are all rational numbers, then, we called this 

sequence rational number sequence (or rational sequence). Generally, we use the notation  
𝑥 =  𝑥𝑘 𝑘=1

∞     ∀  𝑘 ∈  ℕ 

To represent sequences. For each value of k, the term 𝑥𝑘 is known as 𝑘𝑡𝑕  term of x. The space of all sequences 

denoted by 𝜔.  

The above definition can be re-written informally as follows: 
A sequence  𝑥𝑘 𝑘=1

∞  of real numbers is a function 𝑥:  

𝐷(𝑥) ⊂ ℕ → ℝ of an in fin ite subset 𝐷(𝑥) of the natural numbers ℕ into the real numbers ℝ defined by  

𝑥 𝑘 = 𝑥𝑘 ∈ ℝ       ∀  𝑘 ∈  ℕ   

Example 2.1: The sequence  𝑥𝑘 𝑘=1
∞  where 𝑥𝑘 =

1

𝑘
 is an infin ite sequence  1,

1

2
,

1

3
,… ,

1

𝑘
,… . Formally, of course 

this is the function with domain ℕ, whose value at each k is 
1

𝑘
. The set of values is:  1,

1

2
,

1

3
,… .  

Example 2.2: Consider the sequence given by  𝑥𝑘 𝑘=1
∞ =   −1 𝑘  𝑘=1

∞ . This is also the infinite sequence 
 −1,1,−1, 1,…  . This sequence represents a function whose domain is ℕ and its set of values is  −1, 1 . This is 

an alternating sequence (a sequence in which the consecutive terms have opposite signs). 
Example 2.3:   The sequence  𝑥𝑘 𝑘=1

∞ =  3 𝑘=1
∞  is the constant sequence  3, 3, 3,…   whose set of values is the 

singleton  3 . 

Definition 2.2: Let {𝑥𝑘} be a sequence and let  𝑘𝑛   be a strictly  increasing sequence of natural numbers. The 

sequence  𝑥𝑘𝑛   is called a subsequence of {𝑥𝑘}. 
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Example 2.4: The sequence  
1

𝑘
 
𝑘=1

∞

 has subsequences  
1

2𝑘
 
𝑘=1

∞

,  
1

𝑘2
 
𝑘=1

∞

. 

Example 2.5: The set of prime numbers 2, 3, 5,7, 11, 13,… is a subsequence of the sequence  𝑘 𝑘=1
∞  of all 

positive integers.  

Definition 2.3: A sequence {𝑥𝑘} is called bounded from above if there exists 𝑀 ∈ ℝ, which satisfies the 

inequality  𝑥𝑘 ≤ 𝑀 for all 𝑘 ∈ ℕ. In this case, we say M is an upper bound for x. 

Definition 2.4: we say {𝑥𝑘} is bounded from below if there exists m∈ ℝ which satisfies the inequality 𝑚 ≤ 𝑥𝑘 
for all 𝑘 ∈ ℕ. In this case we say that m is a lower bound of x. 

Definition 2.5: We say that a sequence {𝑥𝑘} is bounded if there exists a real constant 𝑈 > 0, which satisfies the 

inequality  
 𝑥𝑘 ≤ 𝑈  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑘 ∈ ℕ 

Lemma 2.1: we say {𝑥𝑘} is bounded if and only if it is bounded from below and bounded from above.  

Recall that, 𝑙∞ =  𝑥 ∈ 𝜔: 𝑥𝑘  𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑   .  

Example 2.6: Sequences defined by 𝑥𝑘 =
𝑘−1

𝑘
 and 𝑦𝑘 =

1

2𝑘
 are both bounded. 

Analogous to the idea of ordinary bounded sequence, statistically bounded sequence is defined. 

Definition 2.6 [Fridy and Orhan, (1997)]: A sequence  𝑥𝑘  is said to be statistically bounded if there exists a 

number B such that 

𝛿 𝑘:  𝑥𝑘 > 𝐵 = 0 

Example 2.7: Let 𝑥 =  𝑥𝑘  be given by 

𝑥𝑘 =  
𝑘 ,                                         𝑖𝑓 𝑘  𝑖𝑠 𝑝𝑟𝑖𝑚𝑒
1,                 𝑖𝑓 𝑘 𝑖𝑠  𝑜𝑑𝑑 𝑏𝑢𝑡 𝑛𝑜𝑡  𝑝𝑟𝑖𝑚𝑒

0,                𝑖𝑓 𝑘  𝑖𝑠 𝑒𝑣𝑒𝑛  𝑏𝑢𝑡 𝑛𝑜𝑡  𝑝𝑟𝑖𝑚𝑒

  

It is easy to see that, x is not statistically convergent and unbounded above but it is statistically bounded.  

𝛿 𝑘:  𝑥𝑘 > 1 = 0 
Definition 2.7: A sequence  𝑥𝑘 𝑘=1

∞  of real numbers is said to converge to a real number l if and only if for each  

𝜀 > 0, there exists a natural number 𝑛(𝜀) such that  
 𝑥𝑘 − 𝑙 < 𝜀       ∀  𝑘 ≥ 𝑛(𝜀) 

In this we write:  

lim
𝑘→∞

𝑥𝑘 = 𝑙     𝑜𝑟    lim 𝑥𝑘 = 𝑙     𝑜𝑟   𝑥𝑘 → 𝑙     𝑎𝑠  𝑘 → ∞ 

The number l is called the limit of 𝑥𝑘. A sequence which does not converge to some real number is said to 

diverge. We use the notation c, to represent the space of convergent sequences,  

𝑐 =  𝑥 ∈ 𝜔: 𝑥𝑘  𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡   

Analogous to the idea of space of ordinary convergence sequence, the space of all statistically convergent 

sequences is denoted by 𝑐 . 

Definition 2.8: if a sequence  𝑥𝑘  of real numbers converges to zero, it is called  a nu ll sequence. The spaces of 

all null sequences is denoted by 𝑐0 , 𝑖 . 𝑒. 
𝑐0 =  𝑥 ∈ 𝜔: 𝑥𝑘 → 0 . 

Example 2.8: The sequence  𝑥𝑘  defined by 𝑥𝑘 =
𝑘 +3

𝑘2 −1
 is a null sequence. 

Remark 2.1: Obviously 𝑐0 ⊂ 𝑐 ⊂ 𝜔.   

Analogous to the idea of space of null convergence sequence, the space of statistically null convergent sequence 

is denoted by  𝑐0. 

Theorem 2.1: Every convergence sequence is bounded, however the converse may not be true. 

Remark 2.2 : In general, a  bounded sequence need not be convergent. In fact the sequence 𝑥𝑘 =  −1 𝑘  is 

bounded but not convergent.  
Theorem 2.2: A sequence  𝑥𝑘 𝑘=1

∞  is convergent to the limit l if and only if all of its subsequences converges to 

the same limit l. 

Theorem 2.3: (Balzano-Weierstrass). Every bounded sequence in ℝ has a convergent subsequence.    

Remark 2.3: For statistical analogue of Bolzano-Weierstrass [see Fridy (1993)] 

Theorem 2.4: If a sequence  𝑥𝑘  converges to a limit , then the limit is unique. 

Proof: Suppose, for contradiction, that the sequence   𝑥𝑘  converges to two limits 𝑥  and 𝑦, 𝑥 ≠ 𝑦. Then given 

any 𝜀 > 0, there exists a natural number 𝑛(𝜀) such that  

 𝑥𝑘 − 𝑥 <
𝜀

2
  ∀ 𝑘 ≥ 𝑛(𝜀). 

Also, there exists 𝑛(𝜀) ∈ ℕ such that   

 𝑥𝑘 − 𝑦 <
𝜀

2
  ∀ 𝑘 ≥ 𝑛 (𝜀). 

Hence, for all 𝑘 ≥ 𝑚𝑎𝑥  𝑛 𝜀 , 𝑛 (𝜀) , both inequalities implies  

 𝑥𝑘 − 𝑥 <
𝜀

2
 and  𝑥𝑘 − 𝑦 <

𝜀

2
 hold. Then  
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 𝑥 − 𝑦 =  𝑥 − 𝑥𝑘 + 𝑥𝑘 −𝑦  
≤  𝑥 − 𝑥𝑘 +  𝑥𝑘 − 𝑦  

<
𝜀

2
+
𝜀

2
= 𝜀  

For all 𝑛 ≥ 𝑚𝑎𝑥 𝑛 𝜀 , 𝑛 (𝜀) . 

This implies that 𝑥 = 𝑦.  Contradiction. Hence the theorem is proved. 

Definition 2.9 : for each 𝜀 > 0, and 𝑙 ∈ ℝ. The set 

𝐾ℰ 𝑙 =  𝑥 ∈ ℝ:  𝑥 − 𝑙 < 𝜀  

Is called the 𝜀 −neighbourhood of l.  

Lemma 2.2: Assume that 𝑥𝑘 → 𝑙. Then for every 𝜀 > 0, except finitely many terms of 𝑥𝑘, all other terms lie in  

𝐾ℰ 𝑙 . in other word,  𝑛 ∈ ℕ:  𝑥𝑘 − 𝑙 ≥ 𝜀  is finite.  

Definition 2.10: A sequence  𝑥𝑘  is said to be (monotone) increasing if 𝑥𝑘 ≤ 𝑥𝑘+1 for all values of k and 

(monotone) decreasing if 𝑥𝑘 ≥ 𝑥𝑘+1 for all k. If 𝑥𝑘 < 𝑥𝑘+1 for all k,   𝑥𝑘  is said to be strictly  increasing and if  

𝑥𝑘 > 𝑥𝑘+1 for all k,  𝑥𝑘  is said to be strictly decreasing. 

A sequence satisfying any of the above conditions is said to be monotone. 

Example 2.9: The sequence 1, 2, 3,…  𝑘,…  is a strictly increasing unbounded sequence. 

Example 2.10: The sequence  
1

𝑘
  is strictly decreasing sequence which converges to zero.  

Theorem 2.5: (monotone convergence theorem): A monotone sequence of real numbers is convergent if and 

only if it is bounded. 

Definition 2.11: Given a bounded sequence 𝑥 =   𝑥𝑘   of real numbers. The upper limit or limit superior of  

 𝑥𝑘  denoted by lim sup 𝑥𝑘 (or lim𝑘→∞
          𝑥𝑘) and is defined as   

lim sup𝑥𝑘 = lim𝑘→∞
          𝑥𝑘  

= inf
𝑛∈ℕ

sup 𝑥𝑘 : 𝑘 ≥ 𝑛  

Analogous to the idea of ordinary limit superior, statistical limit  superior of x were defined as follows [Fridy and 

Orhan, (1997)]: 

𝑆 − lim sup𝑥 =  
sup 𝐵𝑥 ,    𝑖𝑓  𝐵𝑥 ≠ ∅

−∞,         𝑖𝑓 𝐵𝑥 = ∅
  

Definition 2.12: Given a bounded sequence 𝑥 =   𝑥𝑘   of real numbers. The lower limit or limit inferior of   𝑥𝑘  

denoted by lim inf 𝑥𝑘  (or lim⁡𝑘→∞  𝑥𝑘) and is defined as   

lim inf 𝑥𝑘 =  lim⁡𝑘→∞  𝑥𝑘) 

= sup
𝑛 ∈ℕ

inf 𝑥𝑘 :𝑘 ≥ 𝑛  

Analogous to the idea of ordinary limit  inferio r, statistically limit inferior were defined as follows: 

Definition 2.13: [Fridy and Orhan, (1997)] The statistical limit inferior o f x is defined as  

𝑆 − lim inf 𝑥 =  
inf𝐴𝑥 ,    𝑖𝑓  𝐴𝑥 ≠ ∅

+∞,         𝑖𝑓 𝐴𝑥 = ∅
  

Analogous to the idea of ordinary convergence, statistically convergent sequences were defined as follows:  

As it is well known, the theory of statistical convergence and other types of convergences are all based on a 

density function. This is why we need to start with the defin ition of denstity function. 

Definition 2.14 [Niven and Zuckerman, (1980)]: Let A be a subset of ℕ. The natural density 𝛿(𝐴) is defined 

as 

𝛿 𝐴 = lim
𝑛→∞

1

𝑛
 𝐴𝑛  , 

Where 𝐴𝑛 =  𝑘 ≤ 𝑛:𝑘 ∈ 𝐴 , provided the limit exists. The vertical bars denote the cardinality (or order) of the 

enclosed set. 

 

III. Statistical Convergence Sequence 
Definition 3.1: [Fast, (1951)] A  sequence 𝑥 = (𝑥𝑘) is said to be statistically convergent to 𝑙 if for every 𝜀 > 0, 

we have 

𝛿  𝑘 ∈ 𝑁:  𝑥𝑘 − 𝑙 ≥ 𝜀  = 0. 

In this case, we write 𝑆 − 𝑙𝑖𝑚𝑥 = 𝑙, which is necessarily unique and S denotes the set of all statistically  

convergent sequences. By an index set, we mean a finite subset  𝑘𝑖   of N with 𝑘𝑖 ≤ 𝑘𝑖+1 . Thus, an infinite set  
 𝑘𝑖   is precisely the sequence   𝑘𝑖  𝑖∈𝑁  of indices. Note that a sequence x, is statistically convergent to l if and 

only if there is in fin ite index set 𝐾 =    𝑘𝑖  so that 𝛿 𝐾 = 1 and lim𝑘 𝑥𝑘 = 𝑙, Mursaleen and Edely (2002).  

Analogous to the following classical convergence notions; 
Definition 3.2: A sequence  𝑥𝑘 𝑘=1

∞  of real numbers is called  a Cauchy sequence (a fundamental sequence) if it  

satisfies the following :   ∀ 𝜀 > 0, ∃ 𝑛(𝜀) ∈ ℕ  such that  
 𝑥𝑘 − 𝑥𝑛  < 𝜀     ∀  𝑘 , 𝑛 ≥ 𝑛(𝜀) 
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That is equivalently 
 𝑥𝑘 − 𝑥𝑛 → 0,    𝑎𝑠  𝑘, 𝑛 → ∞. 

Theorem 3.1: Every real valued Cauchy sequence is bounded. 

Theorem 3.2: A sequence of real number is convergent if and only if it is a Cauchy sequence. 

We have; 

Definition 3.3 [Fridy, (1985)]: A sequence 𝑥 = (𝑥𝑘) is called statistically Cauchy sequence if for each 𝜀 > 0, 
there exists a natural number 𝑛 = 𝑛(𝜀) such that  

𝛿 𝑘 ∈ 𝑁:  𝑥𝑘 −𝑥𝑛  ≥ 𝜀 = 0, 
That is, 

lim
𝑛
 

1

𝑛
   𝑘 ≤ 𝑛:  𝑥𝑘 − 𝑥𝑛  ≥ 𝜀   = 0 

Theorem 3.3: It is also shown that a real sequence is statistically Cauchy if and only if it is statistically  

convergent. 

Proof: Suppose that 𝑥 =  𝑥𝑘  is statistically convergent to 𝑙. By defin ition there exists a subset 𝐾 of natural 

numbers with 𝛿 𝐾 = 1 and 𝑥 → 𝑙 on K  in  the ord inary sense. This means that x is a Cauchy sequence on K or 

equivalently x is statistical Cauchy sequence. 

Conversely, suppose that 𝑥 =  𝑥𝑘  is statistical Cauchy sequence. Since every sequence is statistically Cauchy if 

and only if there exists 𝐾 ⊂ ℕ with 𝛿 𝐾 = 1 and so x is Cauchy on K. Therefore it is convergent on K, which 

shows that x is statistical Cauchy sequence.   

Definition 3.4: We say that the sequence  𝑥𝑘  of real numbers tends to the limit l ∈ ℝ if and only if for each 

ℰ > 0, there exists 𝑛(𝜀) such that  
 𝑥𝑘 − 𝑙 < 𝜀    ∀  𝑘 ≥ 𝑙 

Analogous to the definition of a limit point, statistical limit points were defined as follows:  

Definition 3.5 [Fridy, (1993)]: A subsequence  𝑥𝑘(𝑛)  of sequence x is called a thin subsequence if 𝐾 =
 𝑘 𝑛 : 𝑛 ∈ ℕ  has natural density zero. If K does not have zero natural density, then the subsequence is said to 

be nonthin. 

We note that   𝑥𝑘(𝑛)  is a nonthin subsequence of x if either 𝛿 𝐾  is a positive number or K fails to have natural 

density. 

Definition 3.6 [Fridy, (1993)]: The number 𝜆 is a statistical limit point  of the number sequence x provided that 

there is a nonthin subsequence of x that converges to 𝜆. 

Definition 3.7 [Fridy, (1993)]: The number 𝛾 is a statistical cluster point or accumulation point of the number 

sequence x provided that for each 𝜀 > 0, the set  𝑘 ∈ ℕ:  𝑥𝑘 −𝛾 < 𝜀   does not have natural density zero.  

If Λ𝑥 , Γ𝑥  𝑎𝑛𝑑  𝐿𝑥  denote the set of all statistical limit points, set of all statistical cluster points and set of 

(ordinary) limit points, respectively, then it has been proved that  

 Λ𝑥 ⊆  Γ𝑥 ⊆  𝐿𝑥 . 

Example 3.1: let 𝑥𝑘 = 1, if 𝑘 = 𝑛2  and 𝑥𝑘 = 0 otherwise 𝐿𝑥 =  0,1  and Λ𝑥 =  0 .  

It is clear that  

Λ𝑥 ⊆  𝐿𝑥  for any sequence x. To show that Λ𝑥  𝑎𝑛𝑑   𝐿𝑥  can be different, consider a sequence x for which  

Λ𝑥 = 𝜙  while 𝐿𝑥 = ℝ, the set of real numbers. 

Example 3.2:  let us consider the sequence 𝑙 =  𝑥𝑘 :𝑘 = 1,2,3,…   whose terms are  

𝑥𝑘 =  
𝑘 ,             𝑤𝑕𝑒𝑛 𝑘 𝑖𝑠  𝑎 𝑠𝑞𝑢𝑎𝑟𝑒

1/𝑘 ,                        𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

Then, it is easy to see that 𝑙 is divergent in the ordinary  sense, while 0 is the statistical limit of l since 𝛿 𝐾 = 0, 

where 𝐾 =  𝑛2  𝑓𝑜𝑟 𝑛 = 1,2,3,…  . 
Not all properties of convergent sequences are true for statistical convergence. For example, it is known that a 

subsequence of convergent sequence is convergent. However, for statistical convergence, this is not so. Indeed, 

the sequence 𝑦 =  𝑘: 𝑘 = 1,2,3,…   is a subsequence of the statistical convergent sequence 𝑙 from example 3.2. 

At the same time, y is statistically divergent. 

Definition 3.8 [Fridy and Orhan, (1993)]: A sequence 𝜃 =  𝑘𝑟   satisfying: 

i. 𝑘0 = 0,  
ii. 𝑕𝑟 = 𝑘𝑟 − 𝑘𝑟−1 → ∞,   𝑟 → ∞ 

Is called a Lacunary sequence. 

For each Lacunary sequence 𝜃, we define the interval 𝐼𝑟 ≔ (𝑘𝑟 −1 ,𝑘𝑟 ] and the fraction 𝑞𝑟 =
𝑘𝑟

𝑘𝑟−1
. Lacunary 

statistical convergence has been introduced by Fridy and Orhan in the fo llowing way:  

Example 3.3: The sequence 𝜃 =  2𝑟   is a Lacunary sequence with 𝐼𝑟 ≔ (2𝑟 −1 , 2𝑟 ] and 𝑞𝑟 ≔ 2. 
Definition 3.9 [Fridy and Orhan, 1993)]: A sequence x is called Lacunary statistical convergent if for each 

𝜀 > 0, we have  
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lim
𝑟

1

𝑕𝑟
  𝑘 ∈ 𝐼𝑟 :  𝑥𝑘 − 𝑙 ≥ 𝜀  = 0 

And denoted by 𝑥𝑘 → 𝑙(𝜃 −𝑆) 

Lemma 1.3: For a lacunary sequence 𝜃 =  𝑘𝑟  , 𝑥𝑘 → 𝑙 implies 𝑥𝑘 → 𝑙  (𝜃 − 𝑆) if and only if lim infr 𝑞𝑟 > 1. 

Lemma 1.4: For a lacunary sequence 𝜃 =  𝑘𝑟  , 𝑥𝑘 → 𝑙 implies 𝑥𝑘 → 𝑙  (𝜃 − 𝑆) if and only if lim supr 𝑞𝑟 < ∞. 

As a consequence of the above lammas, we have: 

Theorem 3.4: Let  𝜃 =  𝑘𝑟   be a lacunary sequence. Then statistically convergence and 𝜃 − statistical  

convergence of 𝑥𝑘 → 𝑙 if and only if  

1 < liminf
𝑟
𝑞𝑟 < limsup

𝑟
𝑞𝑟 < ∞ 

Obviously, example 3.3 above satisfies the conditions of the above theorem for 𝑟 > 0. 
Remark 3.1: To defined 𝜆 −Statistical Convergence, first we need a sequence  𝜆𝑟  of positive non decreasing 

numbers such that 𝜆𝑟 → ∞,𝑎𝑠  𝑟 → ∞, 𝜆1 = 1 𝑎𝑛𝑑  𝜆𝑟+1 ≤ 𝜆 𝑟 + 1. Assume that 𝜔 is the space of all sequences 

satisfying these conditions. Then for each {𝜆 𝑟} ∈ 𝜔, and for each r, we defined intervals  

𝑀𝑟 =  𝑟 − 𝜆𝑟 + 1, 𝑟 . 
Definition 3.10 [Mursaleen, (2000)]: A sequence 𝑥  is said to be 𝜆 −statistical covergent to l, if for each 𝜀 > 0,  

lim
𝑟

1

𝜆𝑟
  𝑘 ∈ 𝑀𝑟 :  𝑥𝑘 − 𝑙 ≥ 𝜀  = 0. 

The 𝜆 −statistical convergence of x to l is represented by the notation 𝑥𝑘 → 𝑙 𝜆 − 𝑆 . 
Remark 3.2: For 𝜆 𝑟 = 𝑟 , 𝜆 −statistical convergence coincides with the statistical convergence. 

Further remarks: 

 

The idea of statistical convergence goes back to the first edition (published in Warsaw in 1935) of the 

monograph of Zygmund (1979). Formally, the concept of statistical convergence was introduced by Steinhaus 

(1951) and Fast (1951) and later reintroduced by Schoenberg (1959). Different mathematicians studied 

properties of statistical convergence and applied this concept in various fields such as Measure theory Miller, 

(1995), Trigonometric series Zygmund, (1979), Approximation theory Duman et al., (2003), Locally convex 

spaces Maddox, (1988), Finitely additive set functions Connor and Kline, (1996), in the study of subsets of the 

Stone-Chech compactificat ion of the set of natural numbers Connor and Swardson, (1993) and Banach spaces 

Connor et al., (2000).  

However, in general case, neither limits nor statistical limit can be calculated or measured with 

absolute precision. To reflect th is imprecision, and to model it by mathematical structures, several approaches in 

mathematics have been developed: fuzzy set theory, fuzzy logic, interval analysis, set valued analysis, etc. One 

of these approaches is the neoclassical analysis (Burgin, 1995, 2000). In it ordinary structure of analysis, that is, 

functions, sequences, series and operators are studied by means of fuzzy concepts: fuzzy limit, fuzzy continuity 

and fuzzy derivatives. For example continuous functions which are studied in the classical analysis become a 

part of the set of the fuzzy continuous functions in neoclassical analysis. Neoclassical analysis extends methods 

of calculus to reflect uncertainties that arise in computations and measurements. 

Belen and Yildirim (2015) defined the concepts of A-statistical convergence and A
j
-statistical 

convergence in a 2-normed space and present an example to show the importance of generalized form of 

convergence through an ideal. And they also introduced some new sequence spaces in a 2-Banach space and 

examine some inclusion relations between these spaces. Kukul (2014) studied αβ-statistical convergence and 

started with the discussion of statistical convergence. The concept of αβ -statistical convergence which is the 

main interest of his study has been considered in his work. He also showed that αβ-statistical convergence is a 

non-trivial extension of statistical, λ-statistical and lacunary statistical convergences. Finally, he also introduced 

boundedness of a sequence in the sense of αβ-statistical convergence. 

Nuray (1999) derived algebraic and order properties, preservation under uniform convergence, Cauchy 

properties, and properties of cluster points. And also showed that for certain types of statistical convergence 

stronger convergence properties also hold and also he further discussed the  relationship between generalized  

statistical convergence and subsets of the Stone-Cech compactification of the integers.  

Bala (2011) introduced the concept of weak statistical convergence of sequence of functionals in a 

normed space. He also showed that in a reflexive space, weak statistically convergent sequences of functional 

are the same as weakly statistically convergent sequences of functionals.  Gumus (2015) in h is study, he 

provided a new approach to I - statistical convergence. And he also introduced a new concept with I - statistical 

convergence and weak convergence together and call it weak I - statistical convergence or WS(I ) - 

convergence. Then he introduced this concept for lacunary sequences and obtained lacunary weak I- statistical 

convergence i.e. WSq (I ) - convergence.  

Hazarika and Sava (2013) in their study introduced the concept of 𝜆-statistical convergence in n-

normed spaces. Some inclusion relations between the sets of statistically convergent and   𝜆-statistically  
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convergent sequences are established. They also find its relations to statistical convergence, (C,1)-summability 

and strong (V; 𝜆 )-summability in n-normed spaces.  Kaya, Kucukaslan and Wagner (2013) investigated the 

properties of statistically convergent sequences. Also they introduced definition of statistical monotonicity and 

upper (or lower) peak points of real valued sequences. They also studied the interplay between the statistical 

convergence and the above concepts. Finally, the statistically monotonicity is g eneralized by using a matrix 

transformation. 

Borgohain (2011). Studied the concept of density for sets of natural numbers in some lacunary A- 

convergent sequence spaces. He also investigated some relat ion between the ordinary convergence and module 

statistical convergence for every unbounded modulus function. Moreover he also studied some results on the 

newly defined lacunary f -statistically A-convergent sequence spaces with respect to some Musielak-Orlicz 

function.  

Dutta, (2013) introduces a new concept of strong summability and statistical convergence of sequence 

of fuzzy  numbers and established relations between them.  Erkus and Duman (2003) use the concept of A-

statistical convergence which is a regular (non-matrix) summability method, and obtained a general Korovkin  

type approximation theorem which concerns the problem of approximating a function f by means of a sequence 

{𝐿𝑛𝑓 } of positive linear operators.   

Vinod et al (2012) conducted a study to see how weak ideal convergence „looks like‟ in lp spaces and 

extend the recently introduced concept of weak∗ statistical convergence to have a new concept of weak∗ ideal 

convergence. And they gave the necessary and sufficient conditions for a sequence of bounded linear functional 

on a Banach space to be weak∗ ideal convergent. Esi (summitted) defined the concept of lacunary double 

∆𝑚 −statistical convergent sequences in probabilistic normed  space and gave some results. The main purpose of 

his study was to generalize the results for double sequences on statistical convergence in probabilistic normed  

space given by Esi and O zdemir (2003) earlier and obtained some results on lacunary statistical convergence for 

double generalized d ifference sequences on probabilistic normed spaces. The results th ey obtained are more 

general than the results of Esi (2003).  

Miller and Orhan (2004) Studied the basis for comparing rates of convergence of two null sequences 

which shows that “𝑥 =  𝑥𝑛   converges (stat T) faster than 𝑧 =  𝑧𝑛   provided that  (𝑥𝑛 = 𝑧𝑛 )  is T-statistically  

convergent to zero" where 𝑇 =  𝑡𝑚𝑛   is a mean. They also extended the previously known results either on the 

ordinary convergence or statistical rates of convergence of two null sequences. They also considered lacunary  

statistical rates of convergence. 

Based on the concept of new type of statistical convergence defined by Aktuglu, Srivastava (2015) has 

introduced the weighted 𝛼𝛽 −statistical convergence of order 𝜃 in case of fuzzy functions and classified it into 

pointwise, uniform and equi-statistical convergence. He has checked some basic properties and investigated 

convergences in terms of their 𝛼 −cuts. The interrelations among them are also established. He has also proved 

that continuity, boundedness etc are preserved in the equi-statistical sense under some suitable conditions, but 

not in pointwise sense.  

Bardaro et al (2015) dealt with a new type of statistical convergence for double sequences, called Ψ-𝐴-

statistical convergence, and proved a Korovkin-type approximation theorem with respect to this type of 

convergence in modular spaces. Finally, they gave some applications to moment -type operators in Orlicz spaces. 

Kostyrko et al (2000) introduced the concept of I-convergence of sequences of real numbers based on 

the notion of the ideal of subsets of N. The I-convergence gives a unifying look on several types of convergence 

related to the statistical convergence. In a sense it is equivalent to the concept of μ-statistical convergence 

introduced by J. Connor (μ being a two valued measure defined on a subfield of  2𝑁 ). 

Savas and Esi (2012) defined statistical analogues of convergence and Cauchy for triple sequences on 

probabilistic normed space. Ulusu and Nuray (2012) defined lacunary statistical convergence for sequences of 

sets and study in detail the relationship between other convergence concepts. 

Note: It should be noted that, Statistical convergence is a natural generalization of the usual (classical) 

convergence of sequences. The idea which is used to define new type of convergence was the following; a 

sequence may have infinitely  many terms which  are not including in 𝜀 −neighbourhoods of the limit  point for 𝜀 

small enough but the set of indices of such terms have density zero. As it is well known this is not possible in  

ordinary sense. Therefore, new type of convergences defined in this way give us a new type of convergence 

which is different from the ordinary convergence. In many years, researchers focused on convergences which 

are obtained from d ifferent density functions. But a careful observation shows that all density functions are 

based on different class of intervals. For example, statistical convergence and lacunary convergence are based 

on intervals [1, n ] and (𝑘𝑛 −1 ,𝑘𝑛 ]. it should be noted that, any convergence sequence is statistically convergent 

but the converse is not true.  

Recall that all fin ite subsets of natural numbers have density zero. If we combine this fact by that of 

ordinary convergence of a sequence to a real number l, implies that  
 𝑘:  𝑥𝑘 − 𝑙 ≥ 𝜀  
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is a finite set which shows that ordinary convergence implies statistical convergence. Also the boundedness 

property does not hold by statistical convergence. Recall that in the sense of ordinary convergence, convergent 

sequences are all bounded. So this also shows that statistical convergence is different from ordinary  

convergence. Every convergence sequence is statistically convergent with same limit. Sequences which are 

statistically convergent may neither be convergent nor bounded.  

Example 3.4: Consider the sequence 𝑥 =  𝑥𝑘  defined by 

𝑥𝑘 =  
𝑘 ,              𝑖𝑓 𝑘 𝑖𝑠 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒

0,                       𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

It can be seen that this sequence is statistically convergent to zero but it neither convergent nor bounded 

ordinarily. 

Example 3.5: Consider a sequence  𝑥 =  𝑥𝑘  defined by 

𝑥𝑘 =  
1,                       𝑖𝑓 𝑘 = 2𝑛

 
2,                 𝑖𝑓 𝑘 = 2𝑛 − 1

 , for 𝑛 = 1,2,3,… 

This sequence is not statistically convergent 

 

IV. Statistics in Statistical Convergence 
Statistics is a branch of mathematics concerned with the collection, organising, analysing, summarising 

and interpretation of numerical facts about a given situation in order to draw valid conclusion. There are two 

branches of statistics: inferential and descriptive. Inferential statistics is usually used for two tasks: to estimate 

the properties of a population given sample characteristics and to predict property of a system given its past and 

current properties. To do this, specific statistical constructions were invented. The most popular and useful of 

them are the average or mean (or more precisely arithmetic mean) 𝜇 and standard deviation 𝜎 (variance 𝜎2).  

To make predict ion for future, statistics accumulates data for some period of time. To know abo ut the 

whole population, samples are used. Normally, such inferences (for future or for population) are based on some 

assumptions on limit process and their convergence. Iterative processes are used widely in statistics. For 

example, the empirical approach to probability based on the law (or better to say supposition) of large numbers, 

states that a procedure repeated again and again, the relative frequency probability approaches the actual 

probability. The foundation for estimating population parameters and hypothesis testing is formed by the central 

limit theorem which tell us how sample mean change when the sample size grows. In experiments, scientists 

measure how statistical characteristics (e.g., means or standard deviations converge Harris and Chiang ( 1999). 

Boshernitzan et al (2000) consider generalizations of the pointwise and mean ergodic theorems to 

ergodic theorems averaging along different subsequences of the integers or real numbers. The Birkhoff  and Von 

Neumann ergodic theorems give conclusions about convergence of average measurements of systems when the 

measurements are made at integer times. They also considered the case when the measurements are made at 

times a(n) or ([a(n)]) where the function a(x) is taken from a class of functions called a  Hardy field, and also 

assume that  𝑎(𝑥)  goes to infinity slower than some positive power of x. A special, well -known Hardy field is 

Hardy's class of logarithmico-exponential functions. Their main interest is to point out that for a function a(x) as 

described above, a complete characterization of the ergodic averaging behaviour of the sequence ([a(n)]) is 

possible in terms of the distance of a(x) from (certain ) polynomials. 

Chu (2008) studied weighted polynomial mult iple ergodic averages. A sequence of weights is called 

universally good if any polynomial multiple ergodic average with this sequence of weights converges in 𝐿2. 

They also found a necessary condition and show that for any bounded measurable function ∅ on an ergodic 

system, the sequence ∅(𝑇𝑛𝑥) is universally good for almost every x. 

Host and Kra (2003) studied the 𝐿2-convergence of two types of ergodic averages. The first is the 

average of a product of functions evaluated at return times along arithmetic progressions, such as the 

expressions appearing in Furstenberg's proof of Szemere di's Theorem. The second average is taken  along cubes 

whose sizes tend to +∞. For each average and showed that it is sufficient to prove the convergence for special 

systems, the characteristic factors. They built these factors in a general way, independent of the type of the 

average. To each of these factors they associated a natural group of transformat ions and give them the structure 

of a nilmanifold. From the second convergence result they derived a combinatoria l interpretation for the 

arithmetic structure inside a set of integers of positive upper density.  

Convergence of means/averages and standard deviations have been studied by many authors and 

applied to different problems (Akcoglu and Sucheston, 1975: Akcoglu and Del Junco, 1975: Assani, 2003, 

2005: Dunford  and Schwartz, 1955: Frantzikinakis and Kra, 2005: Host and Kra, 2005: Jones and Rosenblatt, 

1992: Leibman, 2002, 2005, Vapnik and Chervonenkis, 1981). Convergence of statistical characteristics such as 

mean and standard deviations are related to statistical convergence. 
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Note: Finally it is clear that, statistical convergence is not a natural generalizat ion of convergence in statistics. 

But rather a conditional equivalent to convergence in statistics as follows: 

A sequence l is statistically convergent if and only if its sequence of partial averages 𝜇(𝑙) converges and its 

sequence of partial standard deviations 𝜎(𝑙) converges to zero. 

To each sequence l = {𝑥𝑘 ; k = 1,2,3,…} of real numbers, it is possible to correspond a new sequence 𝜇(l) = {𝜇𝑛 

= (1/n)  𝑥𝑘
𝑛
𝑘=1 ; n = 1,2,3,…} of its partial averages (means). Here a part ial average of l is equal to 𝜇𝑛 = (1/n) 

 𝑥𝑘
𝑛
𝑘=1 . 

Sequences of partial averages/means play an important role in the theory of ergodic systems Billingsley (1965). 

Indeed, the definition of an ergodic system is based on the concept of the “time average” of the values of some 

appropriate function g arguments for which are dynamic transformations T of a point x from the manifo ld of the 

dynamical system. This average is given by the formula  

g(x) = lim (1/n)  𝑔(𝑇𝑘𝑥)𝑛 −1
𝑘=1 . 

In other words, the dynamic average is the limit of the partial averages/means of the  sequence    {𝑇𝑘𝑥  ; k 

=1,2,3,…}. 

Let l  = {𝑥𝑘 : 𝑘 = 1,2,3,…} be a bounded sequence, i.e., there is a number m such that |𝑥𝑘| < m for all k∈ ℕ. Th is 

condition is usually true for all sequences generated by measurements or computations, i.e., for all s equences of 

data that come from real life. 

 

Theorem 4.1 [Burgin and Duman, (2006)]: If 𝑥  = S-lim l, then x = lim 𝜇(l). 

Proof: Since 𝑥 = 𝑆 − 𝑙𝑖𝑚  𝑙 , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦  𝜀  >  0, we have  

lim
𝑛→∞

(1/𝑛)  {𝑘 ≤ 𝑛, 𝑘 ∈  ℕ: |𝑥𝑘 − 𝑥| ≥ 𝜀} =  0 

As |𝑥𝑘|  <  𝑚  for all 𝑘 ∈  ℕ, there is a number 𝑝 such that  𝑥𝑘 − 𝑥 < 𝑝 for all 𝑘 ∈  ℕ. Namely,   𝑥𝑘 − 𝑥 ≤
 𝑥𝑘 +  𝑥 = 𝑝. 

Taking the set 𝐿𝑛 ,𝜀
 𝑥 = {𝑘 ≤ 𝑛, 𝑘 ∈  ℕ: |𝑥𝑘 − 𝑥| ≥ 𝜀}, denoting 

 𝐿𝑛 ,𝜀
 𝑥  by 𝑢𝑛 , and using the hypothesis |𝑥𝑘| < m fo r all 𝑘 ∈  ℕ, we have the following system of inequalit ies: 

 𝜇𝑛 − 𝑥 =  (1/𝑛) 𝑥𝑘 − 𝑥

𝑛

𝑘=1

  

≤ (1/𝑛)  𝑥𝑘 − 𝑥 

𝑛

𝑘=1

 

≤
1

𝑛
{𝑘𝑢𝑛 +  𝑛 − 𝑢𝑛  𝜀} 

≤
1

𝑛
{𝑘𝑢𝑛 + 𝑛𝜀} 

= 𝜀 + 𝑘  
𝑢𝑛

𝑛
  

From equation (1) above, we get, for sufficiently large n, the inequality  𝜇𝑛 − 𝑥 < 𝜀 + 𝑘𝜀  Thus, 𝑥 = lim μ(𝑙). 

Hence, the theorem is proved. 

Remark 4.1. However, convergence of the partial averages/means of a sequence does not imply statistical 

convergence of this sequence as the following example demonstrates. 

Example 4.1: Let us consider the sequence l = {𝑥𝑘 : 𝑘 = 1,2,3,…} whose terms are                𝑥𝑘 = (−1)𝑘 𝑘. 

This sequence is statistically divergent although lim 𝜇(l) = 0. 

Taking a sequence  l = {𝑥𝑘 : 𝑘 = 1,2,3,…} of real numbers, it  is possible to construct not only the sequence 𝜇(l) 

= { 𝜇𝑛 =   
1

𝑛
  𝑥𝑘

𝑛
𝑘 =1 ; 𝑛 = 1,2,3,… } of its partial averages (means) but also the sequences 𝜎(l) = {𝜎𝑛 =

(
1

𝑛
 (𝑥𝑘 − 𝜇𝑛 )2𝑛
𝑘=1 )

1
2 , n = 1,2,3,…} of its partial standard deviations  𝜎𝑛  and 𝜎𝑛

2 𝑙 = {𝜎𝑛
2 =

1

𝑛
 (𝑥𝑘 −
𝑛
𝑘 =1

𝜇𝑛)2, 𝑛 = 1,2,3,…} of its partial variances 𝜎𝑛2. 

 Theorem 4.2 [Burgin and Duman, (2006)]: If 𝑥 = 𝑆 − lim𝑙 and  𝑥𝑘 < 𝑚  for all 𝑘 ∈ ℕ, then, lim  𝜎 𝑙 = 0. 

Proof: We will show that lim 𝜎2 𝑙 = 0. By the defin ition 𝜎𝑛
2 =

1

𝑛
 (𝑥𝑘 − 𝜇𝑛 )2𝑛
𝑘=1 =  

1

𝑛
   𝑥𝑘 

2 − 𝜇𝑛
2𝑛

𝑘=1 . 

Thus 𝜎2 𝑙 = lim𝑛→∞ 
1

𝑛
   𝑥𝑘 

2 − lim𝑛→∞ 𝜇𝑛
2 .𝑛

𝑘=1   

If  𝑥𝑘 < 𝑚  for all 𝑘 ∈ ℕ, then there exists a number p such that  𝑥𝑘
2 − 𝑥2 < 𝑝 for all 𝑘 ∈ ℕ.  

Namely,  𝑥𝑘
2 − 𝑥2 ≤  𝑥𝑘 

2 +  𝑥 2 < 𝑚2 +  𝑥 2 < 𝑚2 +  𝑥 2 + 𝑚 +  𝑥 = 𝑝. Let us consider the absolute value 

of the difference 𝜇𝑛
2 −  

1

𝑛
   𝑥𝑘 

2𝑛
𝑘=1 = 𝜎𝑛

2. Taking  the set                 𝐿𝑛 ,𝜀
 𝑥 =  𝑘 ≤ 𝑛 ,𝑘 ∈ ℕ:  𝑥𝑘 − 𝑥 ≥ 𝜀 , 

denoting  𝐿𝑛 ,𝜀
 𝑥   by 𝑢𝑛 , and using the hypothesis  𝑥𝑘 < 𝑚  for all  𝑘 ∈ ℕ, we have the following inequalities: 
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 𝜎𝑛
2 =   

1

𝑛
   𝑥𝑘 

2 − 𝜇𝑛
2

𝑛

𝑘=1

  

=   
1

𝑛
   𝑥𝑘

2 − 𝑥2 − (𝜇𝑛
2 − 𝑥2)

𝑛

𝑘=1

  

≤  
1

𝑛
   𝑥𝑘

2 − 𝑥2 +  𝜇𝑛
2 − 𝑥2 

𝑛

𝑘=1

 

<  
𝑝

𝑛
   𝑥𝑘 − 𝑥 +  𝜇𝑛

2 − 𝑥2 

𝑛

𝑘=1

 

<  
𝑝

𝑛
  𝑢𝑛 +  𝑛 − 𝑢𝑛  𝜀 +  𝜇𝑛

2 − 𝑥2  

<  
𝑝

𝑛
  𝑢𝑛 + 𝑛𝜀 +  𝜇𝑛

2 − 𝑥2  

= 𝑝  
𝑢𝑛

𝑛
 + 𝜀𝑝 +  𝜇𝑛

2 − 𝑥2  

As  𝑥𝑘
2 − 𝑥2 =  𝑥𝑘 − 𝑥   𝑥𝑘 + 𝑥 = 𝑝.  𝑥𝑘 − 𝑥 . By  theorem 4.1, we have 𝑥 = lim𝜇 𝑙 , which guarantees that 

lim 𝜇𝑛
2 = 𝑥2 . Also by theorem 4.1, lim  

𝜇𝑛

𝑛
 = 0.    

Since 𝜀 > 0, was arb itrary, the right hand side of the above inequality tends to zero as  𝑛 → ∞. Therefore, we 

have lim 𝜎 𝑙 = 0. Hence, the theorem is proved. 

Corollary 4.1: If  𝑥 = 𝑆 − 𝑙𝑖𝑚  𝑙 and | 𝑥𝑘  |  <  𝑚  for all 𝑘 ∈ ℕ, then lim 𝜎2(l) = 0. 

Theorem 4.3 [Burgin and Duman, (2006)]: A sequence l is statistically  convergent if its sequence of partial 

averages 𝜇(𝑙) converges and 𝑥𝑘 ≤ lim⁡𝜇(𝑙) (𝑜𝑟   𝑥𝑘 ≥ lim⁡𝜇(𝑙) for all 𝑘 =  1, 2, 3,… ) 

Proof: Let us assume that 𝑥 =  𝑙𝑖𝑚 𝜇(𝑙), 𝑥𝑘 ≤ lim 𝜇(𝑙) and take some ε > 0, the set       𝐿𝑛 ,𝜀
 𝑥 =

 𝑘 ≤ 𝑛, 𝑘 ∈ ℕ:  𝑥𝑘 − 𝑥 ≥ 𝜀 , and denote 𝐿𝑛 ,𝜀
 𝑥   by 𝑢𝑛 . then we have  

 𝑥 − 𝑢𝑛  =  𝑥 −  
1

𝑛
  𝑥𝑘

𝑛

𝑘=1

  

=   
1

𝑛
   𝑥 − 𝑥𝑘 

𝑛

𝑘=1

  

=  
1

𝑛
   𝑥 − 𝑥𝑘 

𝑛

𝑘=1

 

≥  
1

𝑛
   𝑥 − 𝑥𝑘 

𝑛

𝑘=1

 

≥ 𝜀 𝑥 − 𝑥𝑘  

≥  
𝑢𝑛

𝑛
 𝜀  

Consequently, lim𝑛→∞
 𝑥 − 𝜇𝑛  ≥ lim𝑛→∞  

𝑢𝑛

𝑛
 𝜀 . as lim𝑛→∞

 𝑥 − 𝜇𝑛  = 0, and 𝜀 is a fixed number, we have 

lim𝑛→∞  
1

𝑛
   𝑘 ≤ 𝑛, 𝑘 ∈ ℕ:  𝑥𝑘 − 𝑥 ≥ 𝜀  = 0, i.e, 𝑥 = 𝑆 − lim 𝑙.  

The case when  𝑥𝑘 ≥ lim⁡𝜇(𝑙) for all 𝑘 =  1, 2, 3,…  is considered in a similar way. Hence, the theorem is 

proved as 𝜀 is an arbitrary positive number.     

Theorem 4.4 [Burgin and Duman, (2006)]: A sequence l is statistically convergent if and only if it sequence 

of partial averages 𝜇(𝑙) converges and its sequences of partial standard deviation 𝜎(𝑙) converges to zero. 

Proof: Necessary condition follows from theorem 4.1 and 4.2.  

Sufficient condition: let us suppose that 𝑥 = lim⁡𝜇(𝑙), lim𝜎 𝑙 = 0, and take some 𝜀 > 0. This implies 

that for any 𝜆 > 0, there exists a number n such that 𝜆 >  𝑥 − 𝜇𝑛  . then taking a number n such that it implies 

the inequality 𝜀 >  𝜆, we have 

   𝜎𝑛
2 =  

1

𝑛
   𝑥𝑘 − 𝜇𝑛  

2𝑛
𝑘 =1  

   ≥  
1

𝑛
    𝑥𝑘 − 𝜇𝑛  

2;  𝑥𝑘 − 𝜇𝑛  ≥ 𝜀 𝑛
𝑘 =1  

    
1

𝑛
     𝑥𝑘 − 𝑥 +  𝑥 − 𝜇𝑛   

2
;  𝑥𝑘 − 𝑥 ≥ 𝜀 𝑛

𝑘=1  

    
1

𝑛
     𝑥𝑘 − 𝑥 ± 𝜆 

2
;  𝑥𝑘 − 𝑥 ≥ 𝜀 𝑛

𝑘=1                                    (4.1) 
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1

𝑛
    𝑥𝑘 − 𝑥 2 ± 2𝜆 𝑥𝑘 − 𝑥 + 𝜆2);  𝑥𝑘 − 𝑥 ≥ 𝜀 

𝑛

𝑘=1

 

 
1

𝑛
    𝑥𝑘 − 𝜇𝑛  

2;  𝑥𝑘 − 𝑥 ≥ 𝜀 𝑛
𝑘=1 ± 2𝜆  

1

𝑛
    𝑥𝑘 − 𝑥 ;   𝑥𝑘 − 𝑥 ≥ 𝜀 𝑛

𝑘=1 + 𝜆2        (4.2) 

As  𝑥𝑘 − 𝜇𝑛  =  𝑥𝑘 − 𝑥 + (𝑥 − 𝜇𝑛 ) and we take 𝜆 or –𝜆  in the expression (4.1) according  to the fo llowing  

rules: 

1) If  𝑥𝑘 − 𝑥 ≥ 0 and  𝑥 − 𝜇𝑛  ≥ 0, then  𝑥𝑘 − 𝑥 +  𝑥 − 𝜇𝑛  ≥  𝑥𝑘 − 𝑥 >  𝑥𝑘 − 𝑥 − 𝜆 , we take – 𝜆; 
2) If  𝑥𝑘 − 𝑥 ≥ 0 and  𝑥 − 𝜇𝑛  ≤ 0,  𝑥𝑘 − 𝑥 +  𝑥 − 𝜇𝑛  ≥  𝑥𝑘 − 𝑥 −  𝑥 − 𝜇𝑛  >  𝑥𝑘 − 𝑥 − 𝜆, and we 

take –𝜆 ; 
3) If  𝑥𝑘 − 𝑥 ≤ 0 and  𝑥 − 𝜇𝑛  ≥ 0, then   𝑥𝑘 − 𝑥 +  𝑥 − 𝜇𝑛   =   𝑥 − 𝑥𝑘 −  𝑥 − 𝑥𝑘  >  (𝑥 − 𝑥𝑘)−

𝜆=𝑥𝑘−𝑥+𝜆, and we take +𝜆 ; 
4) If  𝑥𝑘 − 𝑥 ≤ 0 and  𝑥 − 𝜇𝑛  ≤ 0, then   𝑥𝑘 − 𝑥 +  𝑥 − 𝜇𝑛   ≥  𝑥 − 𝑥𝑘 >   𝑥𝑘 − 𝑥 + 𝜆  as 𝑥𝑘 − 𝑥 <

−𝜀, and we take +𝜆. 

In the expression (4.2),  it  is possible to take a sequence  𝜆𝑝 ;𝑝 = 1,2,3,…   such that the sequence 𝜆𝑘
2  converges 

to 0 because the sequence  𝜇𝑛 ;𝑛 = 1,2,3,…   converges to x when n tends to ∞. The sum 2𝜆𝑘   
1

𝑛
    𝑥𝑘 −

𝑛
𝑘=1

𝑥; 𝑥𝑘−𝑥≥𝜀 also converges to 0 when p tends to ∞ because 𝜆𝑝 converges to 0 and  

 
1

𝑛
   𝑥𝑘 − 𝑥 <  

1

𝑛
    𝑥𝑘 +  𝑥  ≤ 𝑚 +  𝑥 . 

At the same time, the sequence  𝜎𝑛 : 𝑛 = 1,2,3,…   also converges to 0. Thus,  

lim
𝑛→∞

 
1

𝑛
    𝑥𝑘 − 𝜇𝑛  

2;  𝑥𝑘 −𝑥 ≥ 𝜀 = 0 

This implies that  

lim
𝑛→∞

 
1

𝑛
    𝑥𝑘 − 𝜇𝑛  

2;  𝑥𝑘 − 𝑥 ≥ 𝜀 = 0 

At the same time, 

lim
𝑛→∞

 
1

𝑛
    𝑥𝑘 − 𝜇𝑛  

2;  𝑥𝑘 − 𝑥 ≥ 𝜀 ≥ 𝜀 ∙ lim
𝑛→∞

 
1

𝑛
   𝑘 ≤ 𝑛, 𝑘 ∈ ℕ;  𝑥𝑘 − 𝑥 ≥ 𝜀  = 0 

For any 𝜀 > 0 as 𝜀 is an arbit rary positive number, that is,  

𝑥 = 𝑆 − lim⁡𝑙 
Hence, the theorem is proved. 

 

V. Conclusion 
We have reviewed the classical theory of ordinary convergence of sequences which successfully shows 

the link between ordinary convergence and statistical convergence of sequences. Finally, we exposed 

profoundly the link between statistical convergence and convergence in statistics such as mean (average) and 

standard deviation.  

It should noted here that, all results on statistical convergence of single sequence have similar versions 

for statistical convergence of double sequences. For further reading on results for double sequences [see 

Mursaleen and Edely (2003)], [Mursaleen (2004)], Cakan, C. et al (2006), Asi, A. (2013), Miller, H. I. And 

Miller, V. (2008), Sarabadan, S. And Talabi, S. (2012), Alotaibi, A. M. (2010), Vinod, C. T. And Sarma, B. 

(2006), Patterson, R. F. (1999, 2002) and many others.   
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