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Abstract: The discretized approach for the space variable will be used in this paper to transform nonlinear 
parabolic partial differential equation into system of ordinary differential equations, then using the 
backstepping transformation approach to stabilize and solve the obtained system of nonlinear ordinary 
differential equations, based on evaluating the Lyapunov function of the system which stabilize the original 
nonlinear partial differential equation.   
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I. Introduction: 
In the last ten years of the last century, the feedback design for nonlinear systems has experienced a 

growing popularity and many issues of major interest, with the rapid development of electrical circuit, 
mechanical systems, control systems and other engineering and scientific disciplines, they need to absorb and 
digest a wide range of nonlinear analysis tools, [5]. 

These nonlinear phenomena make the study of stabilization need an active method that can pass and 
make it stable. In that time the backstepping method appeared and became as a robust version of feedback 
linearization for nonlinear systems with uncertainties. Backstepping was particularly inspired by situations in 
which a plant nonlinearity, and the control input that needs to compensate for the effects of the nonlinearity are 
in different equations, [8]. 

Because backstepping method has the ability to cope with not only control synthesis challenges of this 
type but also much broader classes of systems and problems, such as unmeasured states, unknown parameters, 
zero dynamics, stochastic disturbances, and systems that are neither feedback linearizable nor even completely 
controllable, [8]. 

Backstepping method is a particular approach to stabilize dynamic systems and is particularly 
successful in the area of nonlinear control problems, [7]. Backstepping is unlike any of the methods previously 
developed in literatures for controlling partial differential equations (PDEs). It differs from optimal control 
methods in that it sacrifices optimality, [10]. 

The idea of integrator backstepping seems to be appeared simultaneously and often implicitly, in the 
works of Koditschek in 1987 [6], Sonntag and Sussmann in 1988 [11], Tsinias in 1989 [12] and Byrnes and 
Isidori in 1989 [3]. 

We will introduce in this paper a new discretized backstepping approach for finding the boundary 
controller function which stabilizes the nonlinear parabolic PDEs by transformation into an equivalent stable 
closed loop. This approach has its basic idea on transforming the PDE into a system of ordinary differential 
equations (ODE) and using the backstepping method to solve the resulting system which make our system 
stable. This approach is more easy and powerful than other approaches. 
 

II.  Fundamental of Backstepping Method 
 The method that we will present here reveals a key issue for finding the backstepping controls for 
arbitrarily unstable systems of nonlinear parabolic PDEs. By coordinate transformation into a target system 
which is equivalent to the original one, [5]. 
 The stabilization problems for nonlinear systems are today the most commonly solved problems using 
the methods of feedback linearization and backstepping. These methods apply diffeomorphic coordinate 
transformations that transforms the system equations in the form where the stabilization problem becomes easy 
(the control input has access to all the nonlinearities). 
 The difference between the feedback linearization and backstepping methods is that feedback 
linearization was invented for systems with perfect models, while backstepping, developed later, allows some 
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flexibility to deal with systems that contain perturbations, disturbances, and unmodeled dynamics therefore 
mixing these two methods will give a very accurate results, [1]. 
 The main idea of backstepping method for nonlinear equations is to find the coordinate transformation: 
ݓ  ൌ ݑ െ  ሻ …(1)ݑሺߙ
which transforms the unstable nonlinear parabolic PDEs: 
,ݐ௧ሺݑ  ሻݔ ൌ ,ݐ௫௫ሺݑ ሻݔ ൅ ݂ሺݑ௜ሻ …(2)  
with initial and boundary conditions: 
,ሺ0ݑ  ሻݔ ൌ ݃ሺݔሻ, ∋ ݔ   ሾ0,1ሿ  …(3) 
,ݐሺݑ  0ሻ ൌ 0, ,ݐሺݑ  1ሻ ൌ ܷሺݐሻ, ݐ  ൒ 0 …(4) 
into the exponentially stable target system: 
,ݐ௧ሺݓ  ሻݔ ൌ ,ݐ௫௫ሺݓ  ሻ …(5)ݔ
with boundary conditions 
,ݐሺݓ  0ሻ ൌ ,ݐሺݓ,0 1ሻ ൌ 0 …(6) 
where0 ൏ ݔ ൏ 1, ݐ  ൒ 0 and ݂ is a nonlinear functions of ݑ and ܷሺݐሻ:	ܥሾ0, 1ሿ → ,ሾ0ܥ	 1ሿ is the nonlinear 
feedback control function. 
 

III. Solution of Nonlinear Parabolic Partial Differential Equations: 
 The nonlinear parabolic PDEs (2)-(4), will be discretized into an equivalent system of nonlinear ODEs 
and upon using the coordinate transformation (1) to transform this system of ODEs to an equivalent one related 
to the target system (5)-(6) which is exponentially stable. 
 This approach may be divided into three steps: 

Step 1: Fix ݊ ∈ Գ and ݄ ൌ
ଵ

௡ାଵ
 is the step size of the discretization over [0, 1]. Also let ݑ௜ሺݐሻ ൌ ,ݐሺݑ ݄݅ሻ for all 

݅ ൌ 0,1, … , ݊ ൅ 1, where it is assumed that ݑ଴ሺݐሻ is the first boundary condition and ݑ௡ାଵሺݐሻ is the control 
function and using the central difference discretization for ݑ௫௫ሺݐ,   :ሻ, we haveݔ
଴ݑ  ൌ 0 …(7)  

 
ௗ௨೔
ௗ௧

ൌ
௨೔శభିଶ௨೔ା௨೔షభ

௛మ
൅ ݂ሺݑ௜ሻ …(8) 

௡ାଵݑ  ൌ ܷሺݐሻ …(9) 
Similar discretization for the target system (5)-(6), will give: 
଴ݓ  ൌ 0 …(10) 

 
ௗ௪೔
ௗ௧

ൌ
௪೔శభିଶ௪೔ା௪೔షభ

௛మ
 …(11) 

௡ାଵݓ  ൌ 0 …(12) 
Step 2: Using the discretized backstepping coordinate transformation: 
௜ݓ  ൌ ௜ݑ െ ௜ିଵሺݑଵ, ,ଶݑ … , ݅ ,௜ିଵሻݑ ൌ 1,2, … , ݊ …(13) 
 To find the value of ௜, which make the nonlinear parabolic PDEs (2)-(4) stable, driving equation with 
respect to ݐ and using the chain ruleone may get: 

 
ௗ௪೔
ௗ௧

ൌ
ௗ௨೔
ௗ௧
െ ቂ

డ೔షభ
డ௨భ

డ௨భ
డ௧

൅
డ೔షభ
డ௨మ

డ௨మ
డ௧
൅ ⋯൅

డ೔షభ
డ௨೔షభ

డ௨೔షభ
డ௧

ቃ …(14) 

Then substituting equations (8) and (11) in (14) and multiply the resulting equation by ݄ଶ, to get:  

௜ାଵݓ  െ ௜ݓ2 ൅ ௜ିଵݓ ൌ ௜ାଵݑ െ ௜ݑ2 ൅ ௜ିଵݑ ൅ ݄ଶ݂൫ݑ௜ሺݐሻ൯ െ ݄ଶ ∑
డ೔షభ
డ௨ೕ

డ௨ೕ
డ௧

௜ିଵ
௝ୀଵ  …(15) 

From equation (14) in connection with equation (15) 
௜ାଵݑ  െ ௜ െ ௜ݑ2 ൅ 2௜ିଵ ൅ ௜ିଵݑ െ ௜ିଶ ൌ																								 
௜ାଵݑ  െ ௜ݑ2 ൅ ௜ିଵݑ ൅ ݄ଶ݂൫ݑ௜ሺݐሻ൯ െ ݄ଶ ∑

డ೔షభ
డ௨ೕ

డ௨ೕ
డ௧

௜ିଵ
௝ୀଵ  …(16) 

Eliminateݑ that have the same index from both sides of equation (16) to get: 

 ௜ ൌ 2௜ିଵ െ ௜ିଶ െ ݄ଶ݂൫ݑ௜ሺݐሻ൯ ൅ ∑ డ೔షభ
డ௨ೕ

௝ାଵݑൣ െ ௝ݑ2 ൅ ௝ିଵݑ ൅ ݄ଶ݂൫ݑ௜ሺݐሻ൯൧
௜ିଵ
௝ୀଵ , …(17) 

for all ݅ ൌ 1, 2, … , ݊. 
 It is necessary to note that from equations (7) and (11), we have ଴ ൌ ିଵ ൌ 0. 
At last from equations (9), (12) and (13) the controller boundary function is given by: 
 ܷሺݐሻ ൌ ௡ሺݑଵ, ,ଶݑ … ,  ௡ሻ. …(18)ݑ
which is the  nonlinear boundary condition that make equation (2) stable (see [4], [13]).  
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Step 3: Substitute ܷሺݐሻgiven by equation (18) back into equation (8) for ݅ ൌ ݊, a system of nonlinear݊ first 
order ODEs, is obtained. 

The solution of obtained system of ODEs may be found by the linearization method or any other 
numerical method for solving systems of nonlinear ODEs (see [2]) and (see [9]). The more easy method is using 
any suitable computer programs like Maple computer software to solve the nonlinear system of ODEs by three 
steps only. 

 
IV. Illustrative Example 

 Consider the heat equation: 
,ݐ௧ሺݑ  ሻݔ ൌ ,ݐ௫௫ሺݑ ሻݔ ൅ ,ݐଶሺݑ  ሻ …(19)ݔ
with boundary conditions: 
,ݐሺݑ  0ሻ ൌ ,ݐሺݑ ,0 1ሻ ൌ ܷሺݐሻ 
where0 ൑ ݔ ൑ 1, ݐ  ൒ 0 and ܷ is the unknown control functions. 
 Hence using the same steps given above, we proceed as follows: 
Step 1: Using the finite difference discretization for the space variable will give: 

 
ௗ௨೔
ௗ௧

ൌ
௨೔శభିଶ௨೔ା௨೔షభ

௛మ
൅ ݂ሺݑ௜ሻ,  

where ݄ ൌ
ଵ

ேାଵ
௜ݑ , ൌ 1,2, … ,ܰ and  ݑ଴, ݑேାଵ are the boundary conditions. 

 For simplicity, let ܰ ൌ 3 and hence ݄ ൌ
ଵ

ଷାଵ
ൌ 0.25. Therefore, the nonlinear discretized system of 

ODEs is given by: 

ሶଵݑ  ൌ
௨మିଶ௨భା௨బ
ሺ଴.ଶହሻమ

൅ ሶଵݑ ⟹ଵଶݑ ൌ ଶݑ16 െ ଵݑ32 ൅  ଵଶݑ

ሶݑ  ଶ ൌ
௨యିଶ௨మା௨భ
ሺ଴.ଶହሻమ

൅ ଶݑ
ଶ⟹ ݑሶ ଶ ൌ ଷݑ16 െ ଶݑ32 ൅ ଵݑ16 ൅ ଶݑ

ଶ 

ሶݑ  ଷ ൌ
௨రିଶ௨యା௨మ
ሺ଴.ଶହሻమ

൅ ଷݑ
ଶ⟹ ݑሶ ଷ ൌ 16ܷ െ ଷݑ32 ൅ ଶݑ16 ൅ ଷݑ

ଶ 

Step 2: Now, the resulting system of differential equation will be solved by backstepping method, as follows: 
 For ݊ ൌ 1: 
Let ݓଵ ൌ ሶݓ ଵ and henceݑ ଵ ൌ ሶଵݑ ൌ ଶݑ16 െ ଵݑ32 ൅  .ଵଶݑ
Let ݑଶ ൌ ଶݓ ଵሻ, with errorݑଵሺߙ ൌ ଶݑ െ  .ଵሻݑଵሺߙ
Since ݑଶ ൌ ଶݓ ൅ ሶݓ ଵ, henceߙ ଵ ൌ 16ሺݓଶ ൅ ଵሻߙ െ ଵݓ32 ൅  .ଵଶݑ
 Now, consider the control Lyapunov function 

 ଵܸ ൌ
ଵ

ଶ
  ,ଵଶݓ

and drive ଵܸ with respect to time. 

 ሶܸଵ ൌ
ௗ௏భ
ௗ௧

 

 					ൌ
ௗ௏భ
ௗ௪భ

ௗ௪భ
ௗ௧

 

 					ൌ ଶݓଵሺ16ݓ ൅ ଵߙ16 െ ଵݓ32 ൅  ଵଶሻݑ
 					ൌ ଵߙଵሺ16ݓ െ ଵݓ32 ൅ ଵଶሻݑ ൅  ଶݓଵݓ16
Now, select: 
ଵߙ16  ൌ െ݇ଵݓଵ െ ଵݓ32 ൅  ଵଶݑ
and since ݓଵ ൌ  :ଵ, hencedrive with respect to time, giveݑ
ሶଵߙ16  ൌ ሺെ݇ଵ ൅ 32 െ ሶݑଵሻݑ2 ଵ 
 										ൌ ሺെ݇ଵ ൅ 32 െ ଶݑଵሻሺ16ݑ2 െ ଵݑ32 ൅  ଵଶሻݑ
Then: 
ሶܸଵ ൌ െ݇ଵݓଵଶ ൅ ଶ, where ݇ଵݓଵݓ16 ൐ 0. 

Clearly if ݓଶ ൌ 0, then ሶܸଵ ൌ െ݇ଵݓଵଶ, and ݓଵ is guaranteed to converge to zero asymptotically. 
 For ݊ ൌ 2: 
From the results when ݊ ൌ 1 
ଶݓ  ൌ ଶݑ െ  ଵߙ
and hence 
ሶݓ  ଶ ൌ ሶݑ ଶ െ  ሶଵߙ
      ൌ ଷݑ16 െ ଶݑ32 ൅ ଵݑ16 ൅ ଶݑ

ଶ ൅
ଵ

ଵ଺
ሺെ݇ଵ ൅ 32 െ ଶݑଵሻሺ16ݑ2 െ ଵݑ32 ൅  ଵଶሻ …(20)ݑ

In which ݑଷ is considered as a virtual control input. 
Now, define a virtual control low ߙଶ (error) for ݓଷ by: 
ଷݓ  ൌ ଷݑ െ ,ଵݑଶሺߙ ଷݑ⟹ଶሻݑ ൌ ଷݓ ൅ ,ଵݑଶሺߙ  ଶሻ …(21)ݑ
then equation (21) will be reduced to: 
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ሶݓ  ଶ ൌ 16ሺݓଷ ൅ ଶሻߙ െ ଶݑ32 ൅ ଵݑ16 ൅ ଶݑ
ଶ ൅

ଵ

ଵ଺
ሺെ݇ଵ ൅ 32 െ ଶݑଵሻሺ16ݑ2 െ ଵݑ32 ൅  ଵଶሻݑ

the objective is to ensure ݓଶ → 0, thus we consider the Lyapunov function: 

 ଶܸ ൌ ଵܸ ൅
ଵ

ଶ
ଶݓ
ଶ 

and therefore: 
 ሶܸଶ ൌ ሶܸଵ ൅ ሶݓଶݓ ଶ 

 					ൌ െ݇ଵݓଵଶ ൅ ଶݓଵݓ16 ൅ ଶݓ ൬16ሺݓଷ ൅ ଶሻߙ െ ଶݑ32 ൅ ଵݑ16 ൅ ଶݑ
ଶ ൅	

ଵ

ଵ଺
ሺെ݇ଵ ൅ 32 െ ଶݑଵሻሺ16ݑ2 െ

ଵݑ32																							 ൅  ଵଶሻ൰ݑ

 					ൌ െ݇ଵݓଵଶ െ ݇ଶݓଶ
ଶ ൅ ଶݓଵݓ16 ൅ ଷݓଶݓ16 ൅ ଶݓ ൬16ߙଶ ൅ ଵݑ16 ൅ ݇ଶݓଶ െ ଶݑ32 ൅ ଶݑ

ଶ ൅
ଵ

ଵ଺
ሺെ݇ଵ ൅

																						32 െ ଶݑଵሻሺ16ݑ2	 െ ଵݑ32 ൅  ଵଶሻ൰ݑ

while ݓଷ cannot be removed, let: 

ଶߙ16  ൌ െ16ݑଵ െ ݇ଶݓଶ ൅ ଶݑ32 െ ଶݑ
ଶ െ

ଵ

ଵ଺
ሺെ݇ଵ ൅ 32 െ ଶݑଵሻሺ16ݑ2 െ ଵݑ32 ൅  ଵଶሻݑ

hence: 
 ሶܸଶ ൌ െ݇ଵݓଵଶ െ ݇ଶݓଶ

ଶ ൅  ଷݓଶݓ16
if ݓଷ ൌ 0, then ሶܸଶ ൌ െ∑ ݇௜ݓ௜

ଶଶ
௜ୀଵ , and ݓଵ,ݓଶ are converge to zero asymptotically. 

 For ݊ ൌ 3:  
As in the case when ݊ ൌ 1, 2, and from equation (22) 
ଷݓ  ൌ ଷݑ െ ,ଵݑଶሺߙ  ଶሻݑ
Therefore 

ሶݓ  ଷ ൌ ሶݑ ଷ െ ሶଶߙ ൌ ሶݑ ଷ െ
ௗఈమ
ௗ௨భ

ሶݑ ଵ െ
ௗఈమ
ௗ௨మ

ሶݑ ଶ 

and the new Lyapunov function: 

 ଷܸ ൌ ଶܸ ൅
ଵ

ଶ
ଷݓ
ଶ 

with total derivative: 
 ሶܸଷ ൌ ሶܸଶ ൅ ሶݓଷݓ ଷ 

 					ൌ െ∑ ݇௜ݓ௜
ଶଶ

௜ୀଵ ൅ ଷݓଶݓ16 ൅ ଷݓ ቆሺ16ܷ െ ଷݑ32 ൅ ଶݑ16 ൅ ଷݑ
ଶሻ െ	

ௗఈమ
ௗ௨భ

ሺ16ݑଶ െ ଵݑ32 ൅ ଵଶሻݑ െ

																							
ௗఈమ
ௗ௨మ

ሺ16ݑଷ െ ଶݑ32 ൅ ଵݑ16 ൅ ଶݑ
ଶሻቇ 

 					ൌ െ∑ ݇௜ݓ௜
ଶଶ

௜ୀଵ െ ݇ଷݓଷ
ଶ ൅ ଷݓ ቆሺ16ܷ െ ଷݑ32 ൅ ଶݑ16 ൅ ଷݑ

ଶሻ ൅ ݇ଷݓଷ ൅ ଶݓ16	 െ
ௗఈమ
ௗ௨భ

ሺ16ݑଶ െ ଵݑ32 ൅

ଵଶሻݑ																							 െ
ௗఈమ
ௗ௨మ

ሺ16ݑଷ െ ଶݑ32 ൅ ଵݑ16 ൅ ଶݑ
ଶሻቇ 

Since ݓଷ ് 0, then: 

 ቆ16ܷ െ ଷݑ32 ൅ ଶݑ16 ൅ ଷݑ
ଶ ൅ ݇ଷݖଷ ൅ ଶݖ16 െ

ௗఈమ
ௗ௨భ

ሺ16ݑଶ െ ଵݑ32 ൅ ଵଶሻݑ െ
ௗఈమ
ௗ௨మ

ሺ16ݑଷ െ ଶݑ32 ൅ ଵݑ16 ൅

ଶݑ																		
ଶሻቇ ൌ 0 

which will make the system stable, i.e., 
 ሶܸଷ ൌ െ∑ ݇௜ݖ௜

ଶଷ
௜ୀଵ ൑ 0, ݇௜ ൐ 0, ݅ ൌ 1,2,3. 

 Finally, the controller ܷሺݐሻ ൌ ,ݐሺݑ 1ሻ is given by: 

 ܷሺݐሻ ൌ
ଵ

ଵ଺
ቆ32ݑଷ െ ଶݑ16 െ ଷݑ

ଶ െ ݇ଷݓଷ െ ଶݓ16 ൅
ௗఈమ
ௗ௨భ

ሺ16ݑଶ െ ଵݑ32 ൅ ଵଶሻݑ ൅
ௗఈమ
ௗ௨మ

ሺ16ݑଷ െ ଶݑ32 ൅

ଵݑ16																											 ൅ ଶݑ
ଶሻቇ 

Step 3: Since ݇௜ ൐ 0, ݅ ൌ 1,2,3 and for computation and comparison purpose let ݇௜ ൌ 32, ݅ ൌ 1,2,3, then: 

 ܷሺݐሻ ൌ െ3ݑଶ ൅
మభయ
ఴ
ଶݑଵݑ െ

లల
భల
ଷݑଵݑ െ

భ
ఴ
ଷݑଶݑ െ

యవఱ
భల
ଵଶݑ െ ଶݑ4

ଶ െ
ଵ

ଵ଺
ଷݑ
ଶ ൅	 వళయ

లర
ଵݑ
ଷ െ

ଵ

ଵଶ଼
ଶݑ
ଷ െ లల

మఱల
ଶݑଵݑ

ଶ െ

																											
ଵହଶଵ

ଵଶ଼
ଵଶݑଶݑ െ

ଽଷ

ଵଶ଼
 ଵସݑ

Therefore the resulting nonlinear system of ODEs is given by: 



The Discretized Backstepping Method for Stabilizing and Solving Nonlinear Parabolic Partial … 

DOI: 10.9790/5728-12130712                                           www.iosrjournals.org                                       11 | Page 

‐7.5

‐6.5

‐5.5

‐4.5

‐3.5

‐2.5

‐1.5

‐0.5

0.5

0 0.25 0.5 0.75 1
u(1,t)

t

1
0.9

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t

-7
-6
-5
-4
-3
-2
-1
0
1
2

u(
t,x

)

 

ሶଵݑ ൌ ଶݑ16 െ ଵݑ32 ൅ 																																																																											ଵଶݑ
ሶݑ ଶ ൌ ଷݑ16 െ ଶݑ32 ൅ ଵݑ16 ൅ ଶݑ

ଶ																																																											
ሶݑ ଷ ൌ െ32ݑଷ െ ଶݑ32 ൅ ଶݑଵݑ426 െ ଷݑଵݑ66 െ ଷݑଶݑ2 െ																	

ଵଶݑ395										 െ ଶݑ64
ଶ ൅ వళయ

ర
ଵݑ
ଷ െ

ଵ

଼
ଶݑ
ଷ െ లల

భల
ଶݑଵݑ

ଶ െ
ଵହଶଵ

଼
ଵଶݑଶݑ െ

ଽଷ

଼
ଵସۙݑ
ۖ
ۘ

ۖ
ۗ

 …(22) 

 Solve system (22) using linearization method with the corporation of the computer software Maple 
results the following solution: 
ଵݑ  ൌ ݁ିଷଶ௧൫ܿଵ ൅ ܿଶ െ ܿଶܿݏ݋ሺ16ݐሻ ൅ ܿଷ݊݅ݏሺ16ݐሻ൯ 
ଶݑ  ൌ ݁ିଷଶ௧൫ܿଶ݊݅ݏሺ16ݐሻ ൅ ܿଷܿݏ݋ሺ16ݐሻ൯ 
ଷݑ  ൌ െ݁ିଷଶ௧൫ܿଵ ൅ ܿଶ െ 2ܿଶܿݏ݋ሺ16ݐሻ ൅ 2ܿଷ݊݅ݏሺ16ݐሻ൯ 
where cଵ,cଶ and cଷ are any arbitrary constants depending on the initial condition of the PDE (19) or equivalently 
the system of ODEs (22). 
 Figure (1) illustrate the numerical solution of system (22) for different values of ݐ ∈ ሾ0,1ሿ with initial 
condition ݑሺ0, ሻݔ ൌ 1, which is equivalent to the solution of the original PDE (19). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.(1) Closed-loop response with controller for the heat equation (19). 

 
 
while the controlled function ܷሺݐሻ is presented in Fig.(2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(2) The control functionܷሺݐሻ ൌ ,ݐሺݑ 1ሻ. 
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V. Conclusions 
A nonlinear controller based on Lyapunov function method and backstepping design achieves global 

asymptotic stabilization of unstable nonlinear heat equation has been derived. The result holds for any finite 
discretization in space of the original PDE model. 

The followed approach in this work indicates that a control law designed using only three steps of 
backstepping can be successfully used to stabilize the nonlinear heat equation. 

The followed approach of derivation is easy to apply for stabilizing and solving PDEs which depends 
on mixing the straightforward approach in the theory of discretization of PDEs, theory of system of ODEs and 
theory of stability using Lyapunov functions. 

The obtained results of the undertaken illustrative example are very accurate in comparison with results 
obtained by other researchers. 
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