Pgrw-Continuous and Pgrw-Irresolute Maps in Topological Spaces

R. S. Wali¹ and Vijaykumari T. Chilakwad²

¹(Department of Mathematics, Bhandari Rathi College, Guledagud-587 203, Karnataka State, India),
²(Department of Mathematics, Government First Grade College, Dharwad, Karnataka State, India.)

Abstract: This paper introduces pre generalized regular weakly continuous maps, pgrω-irresolute maps, strongly pgrω-continuous maps, perfectly pgrω-continuous maps and studies some of their properties.

Keywords: pgrω-closed sets, pgrω-open sets, pgrω-continuous maps, pgrω-irresolute maps, strongly pgrω-continuous maps, perfectly pgrω-continuous maps.

I. Introduction

N. Levine[1] introduced Semi-open sets and semi-continuity in topological spaces. The concept of regular continuous and Completely-continuous functions was first introduced by Arya. S. P. and Gupta.R[2]. Later Y. Gnanamal [3] studied the concept of generalized pre regular continuous functions. Also, the concept of ω-continuous functions was introduced by S S Benchali et al [4]. R S Wali et al[5] introduced and studied the properties of pgrω-Continuous and pgrω-Irresolute Maps. Recently R S Wali et al[6] introduced and studied the properties of pgrω-closed sets. The purpose of this paper is to introduce a new class of functions, namely, pgrω-continuous functions and pgrω-irresolute functions, strongly pgrω-continuous maps, perfectly pgrω-continuous maps. Also we study some of the characterization and basic properties of pgrω-continuous functions.

II. Preliminaries

Definition 2.1: A subset A of a topological space (X, T) is called

- a pre-open set[7] if A ⊆ int(cl(A)) and pre-closed set if cl(int(A)) ⊆ A.
- an α-open set[8] if A ⊆ int(cl(int(A))) and α -closed set if cl(int(cl(A))) ⊆ A.
- a semi-preopen set (=β-open)[9] if A⊆cl(int(cl(A))) and a semi-pre closed set (=β-closed) if int(cl(int(A)))⊆A.
- a regular open set[10] if A = int(cl(A)) and a regular closed set if A = cl(int(A)).
- a generalized closed set (briefly g-closed)[11] if cl(A) ⊆ U whenever A ⊆ U and U is open in X.
- a regular generalized closed set(briefly rg-closed)[11] if cl(A)⊆U whenever A⊆U and U is regular open in X.
- a α -generalized closed set(briefly ag -closed)[12] if acl(A)⊆U whenever A⊆U and U is open in X.
- a generalized pre regular closed set(briefly gpr-closed)[3] if pcl(A) ⊆ U whenever A ⊆ U and U is regular open in X.
- a generalized semi-pre closed set(briefly gsp-closed)[13] if spcl(A) ⊆ U whenever A⊆U and U is open in X.
- a regular generalized α-closed set[14] (briefly, rga-closed) if acl (A)⊆ U whenever A⊆ U and U is regular α-open in X.
- an α-regular generalized closed[15] (briefly agr-closed) set if acl(A)⊆ U whenever A⊆ U and U is regular α-open in X.
- a ωα- closed set[16] if acl(A) ⊆ U whenever A⊆ U and U is ω-open in X.
- a generalized pre closed (briefly gp-closed) set[17] if pcl(A)⊆U whenever A⊆U and U is open in X.
- a α-regular w- closed set[5] if acl(A) ⊆ U whenever A⊆U and U is rw -open in X.
- a generalized pre regular weakly closed (briefly gprw-closed) set [18] if pcl(A)⊆U whenever A⊆ U and U is regular semi- open in X.
- a #rg-closed[19] if cl(A)⊆U whenever A⊆U and U is rw-open.
- a regular generalized weak (briefly rgw-closed) set[20] if cl(int(A)) ⊆ U whenever A ⊆ U and U is regular semi open in X.
- ageneralized semi pre regular closed (briefly gspr-closed) set [21] if spcl(A)⊆ U whenever A⊆U and U is regular open in X.

The complements of the above mentioned closed sets in (5) - (18), are called the respective open sets.
Definition 2.2: Let (X, T) be a topological space and A ∈ X. The intersection of all closed (resp pre-closed, α-closed and semi-pre-closed) subsets of the space X containing A is called the closure (resp pre-closure, α-closure and Semi-pre-closure) of A and is denoted by cl(A) (resp pcl(A), acl(A), spcl(A)).

2.3 Pre Generalised Regular Weakly Closed Set:
Definition: A subset A of a topological space (X, T) is called a pre generalised regular weakly closed set [6] if pcl(A) ⊆ U whenever A ⊆ U and U is a rw-open set.

• Theorem: Every pgrw-closed set is gp-closed.
• Theorem: Every pre-closed set is pgrw-closed.
• Corollary: Every α-closed set is pgrw-closed.
• Corollary: Every closed set is pgrw-closed.
• Corollary: Every regular closed set is pgrw-closed.
• Corollary: Every arw-closed set is pgrw-closed.
• Theorem: Every pgrw-closed set is gsp-closed.
• Corollary: Every pgrw-closed set is gspr-closed.
• Corollary: Every pgrw-closed set is gpr-closed.
• Theorem: If A is open and gp-closed, then A is pgrw-closed.
• Theorem: If A is both w-open and wα-closed, then A is pgrw-closed.
• Theorem: If A is both regular-open and rg-closed, then A is pgrw-closed.
• Theorem: If A is both open and g-closed, then A is pgrw-closed.
• Theorem: If A is regular-open and gpr-closed, then it is pgrw-closed.
• Theorem: If A is regular-open and agr-closed, then it is pgrw-closed.
• Theorem: If A is open and αgr-closed, then it is pgrw-closed.
• Theorem: If A is regular open and pgr-closed, then A is p-pre-closed.

2.4: Definition: A subset A of a topological space X is called a pre generalised regular weakly open (briefly pgrw-open) set in X if the complement A^c of A is pgrw-closed in X.

Theorem: (X, T) is a topological space.

i) Every open (α-open, regular-open, ar-o-open, #rg-open, pgr-open) set is pgrw-open.
ii) Every pgrw-open set is gspr–open (gp-open, gp-open and gpr-open).

Definition 2.5: A map f: (X, τ)→(Y, σ) is said to be

• Completely–continuous[22] if f⁻¹ (V) is regular closed in X for every closed subset V of Y
• Strongly–continuous[23] if f⁻¹ (V) is Clopen (both open and closed) in X for every subset V of Y.
• α–continuous[8] if f⁻¹ (V) is α–closed in X for every closed subset V of Y.
• rwg–continuous[24] if f⁻¹ (V) is rwg–closed in X for every closed subset V of Y.
• gp–continuous[25] if f⁻¹ (V) is gp–closed in X for every closed subset V of Y.
• gpr–continuous[3] if f⁻¹ (V) is gpr–closed in X for every closed subset V of Y.
• agr–continuous[15] if f⁻¹ (V) is agr–closed in X for every closed subset V of Y.
• oα–continuous[4] if f⁻¹ (V) is oα–closed in X for every closed subset V of Y.
• gspr–continuous[21] if f⁻¹ (V) is gspr–closed in X for every closed subset V of Y.
• g–continuous[25] if f⁻¹ (V) is g–closed in X for every closed subset V of Y.
• o–continuous[26] if f⁻¹ (V) is o–closed in X for every closed subset V of Y.
• rg–continuous[14] if f⁻¹ (V) is rg–closed in X for every closed subset V of Y.
• gsp–continuous[13] if f⁻¹ (V) is gsp–closed in X for every closed subset V of Y.
• gprw–continuous[18] if f⁻¹ (V) is gprw–closed in X for every closed subset V of Y.
• wrg–continuous[27] if f⁻¹ (V) is wrg–closed in X for every closed subset V of Y.
• #rg–continuous[28] if f⁻¹ (V) is #rg–closed in X for every closed subset V of Y.
• pre–continuous[7] if f⁻¹ (V) is preopen in X for every open set V in Y.
• rg–continuous[29] if the inverse image of every closed set in Y is rg–closed in X.
• semi-pre continuous (β– continuous)[30] if the inverse image of each open set in Y is a semi-preopen set in X.
• semi–generalized continuous (sg–continuous)[31] if for every closed set F of Y the inverse image f⁻¹ (F) is sg–closed in X.
• ro–continuous[32] if f⁻¹ (V) is rw–closed in X for every closed subset V of Y.
• α regular o–continuous (aro–Continuous)[5] if f⁻¹ (V) is aro–Closed in X for every closed set V in Y.
• contra continuous [16] if \(f^{-1}(V) \) is open in \(X \) for every closed subset \(V \) of \(Y \).

Definition 2.6: A map \(f: (X, t) \rightarrow (Y, c) \) is said to be
\begin{itemize}
 \item \(\alpha \)-irresolute [8] if \(f^{-1}(V) \) is \(\alpha \)-closed in \(X \) for every \(\alpha \)-closed subset \(V \) of \(Y \).
 \item irresolute [33] if \(f^{-1}(V) \) is semi-closed in \(X \) for every semi-closed subset \(V \) of \(Y \).
 \item contra \(\omega \)-irresolute [26] if \(f^{-1}(V) \) is \(\omega \)-open in \(X \) for every \(\omega \)-open subset \(V \) of \(Y \).
 \item contra irresolute [17] if \(f^{-1}(V) \) is semi-open in \(X \) for every semi-open subset \(V \) of \(Y \).
 \item contra \(r \)-irresolute [34] if \(f^{-1}(V) \) is regular-open in \(X \) for every regular-open subset \(V \) of \(Y \).
\end{itemize}

III. Pgrw-Continuous Map:

Definition 3.1: A map \(f: (X, T_1) \rightarrow (Y, T_2) \) is called a pre generalised regular weakly-continuous map (pgrw-continuous map) if the inverse image \(f^{-1}(V) \) of every closed subset \(V \) of \(Y \) is pgrw-closed in \(X \).

Example 3.2: Let \(X = \{a, b, c, d\}, T_1 = \{\{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\} \text{ and } Y = \{a, b, c\} \text{ and } T_2 = \{Y, \emptyset, \{a\}\} \). Define a map \(f: X \rightarrow Y \) by \(f(a) = b, f(b) = c, f(c) = a, f(d) = c \). The closed sets in \(T_2 \) are \(Y, \emptyset, \{b, c\} \). The pgrw-closed sets in \(T_1 \) are \(\emptyset, \{a\}, \{b, c\}, \{a, b\}, \{a, b, c\} \). Inverse images of \(Y, \emptyset, \{b, c\} \) are \(X, \emptyset, \{a, b, d\} \) which are pgrw closed sets.

Proof: \(f \) is pgrw-continuous map.

Theorem 3.3: A map \(f: (X, T_1) \rightarrow (Y, T_2) \) is pgrw-continuous if and only if the inverse image of every open set in \(Y \) is a pgrw-open set in \(X \).

Proof: Suppose \(f: (X, T_1) \rightarrow (Y, T_2) \) is pgrw-continuous. Let \(U \) be an open set in \(Y \). Then \(U^c \) is closed in \(Y \). Therefore \(f^{-1}(U^c) \) is pgrw-closed in \(X \).

Conversely, suppose \(f: (X, T_1) \rightarrow (Y, T_2) \) is such that the inverse image of every open set is in \(Y \) is pgrw-open in \(X \). Let \(F \) be a closed set in \(Y \). Then \(F^c \) is open in \(Y \). \(f^{-1}(F^c) = X \setminus f^{-1}(F) \). \(f^{-1}(F) \) is pgrw-closed in \(X \). \(f \) is a pgrw-continuous map.

Theorem 3.4: If \(f: (X, T_1) \rightarrow (Y, T_2) \) is continuous, then it is pgrw-continuous.

Proof: Let \(F \) be a closed subset in \(Y \). \(f \) is continuous. \(f^{-1}(F) \) is a closed set in \(X \). As every closed set is pgrw-closed, \(f^{-1}(F) \) is pgrw-closed. \(f \) is pgrw-continuous map.

The converse is not true.

Example 3.5: Consider example 3.2. \(\{b, c\} \) is closed in \(Y \) and its inverse image \(\{a, b, d\} \) is not closed in \(X \).

Theorem 3.6: If \(f: (X, T_1) \rightarrow (Y, T_2) \) is completely continuous, then \(f \) is pgrw-continuous.

Proof: Assume \(f: (X, T_1) \rightarrow (Y, T_2) \) is completely continuous. Let \(F \) be a closed set in \(Y \). Then \(f^{-1}(F) \) is regular-closed in \(X \).

\(f^{-1}(F) \) is pgrw-closed in \(X \) as every regular-closed set is pgrw-closed.

\(f \) is pgrw-continuous.

The converse is not true.

Example 3.7: In the above example 3.2 \(f \) is pgrw-continuous. But not completely continuous.

Theorem 3.8: If \(f: (X, T_1) \rightarrow (Y, T_2) \) is pre-continuous, then \(f \) is pgrw-continuous.

Proof: A map \(f: (X, T_1) \rightarrow (Y, T_2) \) is pre-continuous. Let \(F \) be a closed set in \(Y \). Then \(f^{-1}(F) \) is pre-closed in \(X \).

\(f \) is pgrw-continuous. The converse is not true.

Example 3.9: \(X = \{a, b, c, d\}, T_1 = \{\{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\} \)
\(Y = \{a, b, c\}, T_2 = \{\{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\} \)
Closed sets in \(T_1 \) are \(X, \emptyset, \{a\}, \{b\}, \{a, c\}, \{c\} \).
Closed sets in \(T_2 \) are \(X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{c\} \).

Define \(f(a) = c, f(b) = a, f(c) = b, f(d) = c \). Inverse images of closed sets in \(Y \) are \(X, \emptyset, \{a\}, \{a, c\}, \{a, b\}, \{a, d\} \).

Then \(f \) is pgrw-continuous. But \(f \) is not pre-continuous since \(f^{-1}\{\{a, c\}\} = \{a, b\} \) is not pre-closed.
Theorem 3.10: If a map \(f : (X, T_1) \to (Y, T_2) \) is \(\alpha \)-continuous, then \(f \) is pgrw-continuous.

Proof: A map \(f : X \to Y \) is \(\alpha \)-continuous.

Let \(F \) be closed in \(Y \). Then \(f^{-1}(F) \) is \(\alpha \)-closed in \(X \).

Then \(f^{-1}(F) \) is pgrw-closed in \(X \) because every \(\alpha \)-closed is pgrw-closed.

\(\therefore \) \(f \) is pgrw-continuous map.

The converse is not true.

Example 3.11: \(X = Y = \{a, b, c, d\} \),
\(T_1 = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \)
\(T_2 = \{Y, \varnothing, \{a\}, \{b\}, \{a, b, c\}\} \)
Closed sets in \(T_1 \) are \(Y, \varnothing, \{a, b, c\}, \{a, c\}, \{b, c\}, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \).

Pgrw-closed sets in \(T_1 \) are \(\{a\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \).

Define \(f(a) = c, f(b) = a, f(c) = b, f(d) = d \). Inverse images of closed sets in \(Y \) are \(X, \varnothing, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\} \).

Then \(f \) is pgrw-continuous. But \(f \) is not \(\alpha \)-continuous.

Theorem 3.12: If a map \(f : (X, T_1) \to (Y, T_2) \) is \#rg -continuous, then \(f \) is pgrw-continuous.

The converse is not true.

Example 3.13: \(X = \{a, b, c, d\}, T_1 = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \)
\(Y = \{a, b, c\}, T_2 = \{Y, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \)
Closed sets in \((Y, T_2) \) are \(Y, \varnothing, \{a\}, \{b\}, \{a, b\} \).

Pgrw-closed sets in \(T_1 \) are \(\{Y, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} \).

\#rg-closed sets in \(Y \) are \(\{a\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\).

Define \(f(a) = c, f(b) = a, f(c) = b, f(d) = a \).

Inverse images of closed sets in \(Y \) are \(X, \varnothing, \{a\}, \{a, b\}, f \) is pgrw-continuous but not \#rg -continuous.

Theorem 3.14: If a map \(f : (X, T_1) \to (Y, T_2) \) is \#rgw-continuous, then \(f \) is pgrw-continuous.

The converse is not true.

Example 3.15: \(X = \{a, b, c, d\}, T_1 = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \)
\(Y = \{a, b, c\}, T_2 = \{Y, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \)
Closed sets in \((Y, T_2) \) are \(Y, \varnothing, \{a\}, \{b\}, \{a, b\} \).

Pgrw-closed sets in \(T_1 \) are \(\{X, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\} \).

\#rgw-closed sets in \(Y \) are \(\{a\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \).

Define \(f(a) = d, f(b) = c, f(c) = a, f(d) = a \).

Inverse images of closed sets in \(Y \) are \(X, \varnothing, \{b\}, f \) is pgrw-continuous but not \#rgw-continuous.

Theorem 16: If a map \(f : (X, T_1) \to (Y, T_2) \) is \(\alpha \)-irresolute, then it is pgrw-continuous.

Proof: Suppose that a map \(f : (X, T_1) \to (Y, T_2) \) is \(\alpha \)-irresolute. Let \(V \) be an open set in \(Y \). Then \(V \) is \(\alpha \)-open in \(Y \). Since \(f \) is \(\alpha \)-irresolute, \(f^{-1}(V) \) is \(\alpha \)-open and hence pgrw-open in \(X \). Thus \(f \) is pgrw-continuous.

Theorem 3.17: If a map \(f : (X, T_1) \to (Y, T_2) \) is pgrw-continuous, then \(f \) is gsp-continuous.

Proof: \(f : X \to Y \) is pgrw-continuous. Let \(F \) be a closed set in \(Y \). Then \(f^{-1}(F) \) is pgrw-closed.

\(\Rightarrow f^{-1}(F) \) is gsp-closed. ‘.’ Every pgrw-closed set is gsp-closed. \(\Rightarrow f \) is gsp-continuous.

Converse is not true.

Example 3.18: \(X = \{a, b, c\}, T_1 = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}\} \)
\(Y = \{a, b, c\}, T_2 = \{Y, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, c\}\} \)
Closed sets in \(T_2 \) are \(Y, \varnothing, \{a\}, \{b\}, \{a, c\} \).

Pgrw-closed sets in \(T_1 \) are \(X, \varnothing, \{a\}, \{b\}, \{a, c\} \).

Define \(f(a) = b, f(b) = c, f(c) = a \). Inverse images of closed sets in \(Y \) are \(X, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, c\} \).

\(f^{-1}(\{a, b\}) = \{a\} \) which is not pgrw-closed. So \(f \) is not pgrw-continuous. gsp-closed sets are \(X, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, c\} \).

\(f \) is gsp-continuous.

Theorem 3.19: If a map \(f : (X, T_1) \to (Y, T_2) \) is pgrw-continuous, then \(f \) is gsp-continuous.

Proof: We can prove it using the fact that every pgrw-closed set is gsp closed.

Converse is not true. For example,
\(X = \{a, b, c, d\}, T_1 = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \)
\(Y = \{a, b, c\}, T_2 = \{Y, \varnothing, \{a\}\} \)
Closed sets in \(T_2 \) are \(Y, \varnothing, \{a\} \).

Pgrw-closed sets in \(T_1 \) are \(\{a\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, d\}, \{b, d\}, \{a, d\}, \{a, b, d\} \).

Define \(f(a) = b, f(b) = c, f(c) = a, f(d) = a \). Inverse images of closed sets are \(X, \varnothing, \{a\} \).

\(f^{-1}(\{a, b\}) = \{a, b\} \) which is not pgrw-closed. So \(f \) is not pgrw-continuous. All subsets of \(X \) are gsp-closed.

\(f \) is gsp-continuous.
Theorem 3.20: If a map f: (X, T₁)→(Y, T₂) is pgrw-continuous, then f is gpr-continuous.
We can prove it using the fact that every pgrw-closed set is gpr-closed.
Converse is not true.

Example 3.21: Consider example 3.18, f is not pgrw-continuous. gpr-closed sets are X, φ, {c}, {d}, {a,b}, {b,c}, {c,d}, {a,a}, {a,d}, {b,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}. f is gpr-continuous.

Theorem 3.22: If a map f: (X, T₁)→(Y, T₂) is pgrw-continuous, then f is gp-continuous.
We can prove it using the fact that every pgrw-closed set is gp-closed.
The converse is not true.

Example 3.23: X={a,b,c}, T₁ = {X, φ, {a}}. Y={a,b,c}, T₂ = {Y, φ, {a}, {b}, {a,b}}.
Closed sets in T₂ are Y, φ, {b,c}, {a,c}. Pgrw-closed sets in T₁ are X, φ, {b}, {c}, {b,c}.
Define f: X→Y as f(a)=c, f(b)=a, f(c)=b. f is gprw-continuous but f is not pgrw-continuous.
Inverse images are X, φ, {a,b}, {b,c}. Then f is gp-continuous but not pgrw-continuous.

Remark: The following examples show that pgrw-continuous map is independent of gprw-continuous, omega-continuous, beta-continuous, wgrw-continuous, sg-continuous, rw-continuous, wa-continuous, gwα-continuous, rwg-continuous.

Example 3.24: Let X={a,b,c,d}, T₁ = {X, φ, {a}, {b}, {a,b,c}}
Y={a,b,c}, T₂ = {Y, φ, {a}, {b}, {a,b}}.
Define f: X→Y as f(a)=c, f(b)=a, f(c)=b, f(d)=c.
Closed sets in T₂ are Y, φ, {b,c}, {a,c}, {c}.
Pgrw-closed sets in T₁ are X, φ, {c}, {d}, {b,c}, {a,d}, {b,d}, {b,c,d}, {a,c,d}, {a,b,d}.
Inverse images are X, φ, {a,c}, {a,d}, {a,b}. Here f is pgrw-continuous but not gprw-continuous, beta-continuous, gwα-continuous, sg-continuous, rw-continuous, wa-continuous, gwα-continuous.

Example 3.25: Let X={a,b,c,d}, T₁ = {X, φ, {a}, {b}, {a,b,c}}
Y={a,b,c}, T₂ = {Y, φ, {a}}.
Define f(a)=b, f(b)=a, f(c)=a, f(d)=c.
Closed sets in T₂ are Y, φ, {b,c}.
Pgrw-closed sets in T₁ are X, φ, {c}, {d}, {b,c}, {a,d}, {b,d}, {b,c,d}, {a,c,d}, {a,b,d}.
Define f(a)=c, f(b)=a, f(c)=b. Inverse images are X, φ, {a,c}. f is pgrw-continuous but not sgw-continuous.

Example 3.27: Let X={a,b,c,d}, T₁ = {X, φ, {a}, {b}, {a,b,c}}
Y={a,b,c}, T₂ = {Y, φ, {a}}.
Closed sets in T₂ are Y, φ, {b,c}.
Pgrw-closed sets in T₁ are X, φ, {c}, {d}, {b,c}, {a,d}, {b,d}, {b,c,d}, {a,c,d}, {a,b,d}.
Define f(a)=b, f(b)=a, f(c)=c, f(d)=b. Inverse images are X, φ, {a,c,d}. f is pgrw-continuous but not rwg-continuous.

Example 3.28: X={a,b,c}, T₁ = {X, φ, {a}, {b}, {a,b}}. Y={a,b,c}, T₂ = {Y, φ, {a}}. Closed sets in T₂ are Y, φ, {b,c}.
Pgrw-closed sets in T₁ are X, φ, {c}, {a,c}, {b,c}. Define f(a)=b, f(b)=c, f(c)=a.
Inverse images are X, φ, {a,b}. f is not pgrw-continuous but f is beta-continuous, gwα-continuous, sg-continuous, rw-continuous, gwα-continuous, rwg-continuous.

Example 3.29: X={a,b,c}, T₁ = {X, φ, {a}}. Y={a,b,c}, T₂ = {Y, φ, {a}, {b,c}}.
Closed sets in T₂ are Y, φ, {b,c}, {a}. Pgrw-closed sets in T₁ are X, φ, {c}, {b}, {b,c}. Define f(a)=b, f(b)=c, f(c)=a.
Inverse images are X, φ, {b,c}. f is not pgrw-continuous but f is gprw-continuous.

Example 3.30: Let X={a,b,c,d}, T₁ = {X, φ, {a}, {b}, {a,b,c}}
Y={a,b,c}, T₂ = {Y, φ, {a}}.
Closed sets in T₂ are Y, φ, {b,c}.
Pgrw-closed sets in T₁ are X, φ, {c}, {d}, {b,c}, {c,d}, {a,d}, {b,d}, {b,c,d}, {a,c,d}, {a,b,d}.
Define f(a)=b, f(b)=c, f(c)=a, f(d)=a. Inverse images are X, φ, {a,b}. f is not pgrw-continuous but f is wa-continuous.
Remark 3.31: From the above discussion and known results we have the following implications.

\[\begin{align*}
\text{regular continuous} & \quad \text{continuous} \quad \text{completely continuous} \quad \text{gp- continuous} \\
\alpha\text{-continuous} & \quad \alpha r w\text{-continuous} \quad \text{pre-continuous} \\
\#\text{rg –continuous} & \quad \text{wgr}\alpha\text{-continuous} \\
\beta\text{-continuous} & \quad \text{rg}\alpha\text{-continuous} \\
\text{w}\alpha\text{-continuous} & \quad \text{sg-continuous} \\
\pw\text{-continuous} &
\end{align*} \]

A → B means A implies B, but converse is not true.

A ↔ B means A and B are independent of each other.

Theorem 3.32: If \(f: (X, T_1) \rightarrow (Y, T_2) \) is a map. Then the following statements hold.

1. If \(f \) is \(gprw \)-continuous and contra continuous map, then \(f \) is \(pgrw \)-continuous.
2. If \(f \) is a \(\alpha \)-continuous and contra- \(\alpha \)- irresolute map, then \(f \) is \(pgrw \)-continuous.
3. If \(f \) is a \(\alpha \)-continuous and contra- \(\alpha \)- irresolute map, then \(f \) is \(pgrw \)-continuous.
4. If \(f \) is a \(\alpha \)-continuous and contra- \(\alpha \)- irresolute map, then \(f \) is \(pgrw \)-continuous.
5. If \(f \) is a \(\omega \)-continuous and contra- \(\omega \)- irresolute map, then \(f \) is \(pgrw \)-continuous.
6. If \(f \) is a \(\alpha \)-continuous and contra- \(\alpha \)- irresolute map, then \(f \) is \(pgrw \)-continuous.
7. If \(f \) is a \(\alpha \)-continuous and contra- \(\alpha \)- irresolute map, then \(f \) is \(pgrw \)-continuous.
8. If \(f \) is a \(pgrw \)-continuous and contra- \(\alpha \)- irresolute map, then \(f \) is \(pgrw \)-continuous.

Proof:

1. Let \(V \) be a closed set of \(Y \). Then \(f^{-1}(V) \) is open and \(gp \)-closed in \(X \). (\(f \) is \(gp \)-continuous and contra continuous map).
2. Then \(f^{-1}(V) \) is \(pgrw \)-closed in \(X \). (\(f \) is \(pgrw \)-continuous).
3. Thus \(f \) is \(pgrw \)-continuous.
4. Similarly, we can prove (2), (3), (4), (5), (6), (7), (8).

Theorem 3.33: If a map \(f: (X, T_1) \rightarrow (Y, T_2) \) is \(pgrw \)-continuous, then \(f(pgrwcl(A)) \subseteq \text{cl}(f(A)) \) for every subset \(A \) of \(X \).

Proof:

If \(f(A) \subseteq \text{cl}(f(A)) \) implies that \(A \subseteq f^{-1}(\text{cl}(f(A))) \). Since \(\text{cl}(f(A)) \) is a closed set in \(Y \) and \(f \) is \(pgrw \)-continuous, \(f^{-1}(\text{cl}(f(A))) \) is a \(pgrw \)-closed set in \(X \) containing \(A \). Hence \(pgrwcl(A) \subseteq f^{-1}(\text{cl}(f(A))) \). Therefore \(f(pgrwcl(A)) \subseteq \text{cl}(f(A)) \).
IV. Perfectly Pgrω–Continuous Map:

Definition 4.1: A function \(f: (X, T_1) \rightarrow (Y, T_2) \) is called a perfectly pre generalized regular \(ωeakly-continuous \) function (briefly perfectly pgrω–continuous) function, if \(f^{-1}(V) \) is a clopen (closed and open) set in \(X \) for every pgrω–open set \(V \) in \(Y \).

Theorem 4.2: If a map \(f: (X, T_1) \rightarrow (Y, T_2) \) is perfectly pgrω–continuous, then
(i) \(f \) is pgrω–continuous.
(ii) \(f \) is gsp–continuous.
(iii) \(f \) is gp–continuous.
(iv) \(f \) is gpω–continuous.
(v) \(f \) is g–continuous.

Proof: (i) Let \(F \) be an open set in \(Y \). Then \(F \) is pgrω–open in \(Y \). Since \(F \) is perfectly pgrω–continuous, \(f^{-1}(F) \) is closed and open in \(X \). Hence \(f \) is pgrω–continuous.
(ii) Let \(F \) be an open set in \(Y \). As every open set is pgrω–open in \(Y \) and if is perfectly pgrω–continuous and so \(f^{-1}(F) \) is both closed and open in \(X \), as every open set is pgrω-open that implies gsp–open. Then \(f^{-1}(F) \) is gsp–open in \(X \). Hence \(f \) is gpω–continuous.

Similarly, we can prove (iii), (iv) and (v).

Theorem 4.3: \((X, τ)\) is a discrete topological space and \((Y, σ)\) is any topological space. Then every function \(f: (X, τ) \rightarrow (Y, σ) \) is perfectly pgrω–continuous.

Proof: Let \(U \) be a pgrω–open set in \(Y \). Since \((X, τ)\) is a discrete space \(f^{-1}(U) \) is both open and closed in \((X, τ)\). Hence \(f \) is perfectly pgrω–continuous.

Theorem 4.4: If \(f: (X, T_1) \rightarrow (Y, T_2) \) is a strongly continuous map, then it is perfectly pgrw–continuous.

Proof: Let \(V \) be a pgrw–open set in \(Y \). As \(f \) is strongly continuous and \(V \) is a subset of \(Y \), \(f^{-1}(V) \) is clopen in \(X \). So \(f \) is perfectly pgrw–continuous.

V. Pgrω*–Continuos Map

Definition 5.1: A function \(f: (X, T_1) \rightarrow (Y, T_2) \) is called a pre generalized regular \(ωeakly*-continuous \) function (pgrω*–continuous function) if \(f^{-1}(F) \) is a pgrω–closed set in \(X \) for every pre closed set \(V \) in \(Y \).

Theorem 5.2: If a map \(f: (X, T_1) \rightarrow (Y, T_2) \) is pgrω*–continuous, then it is pgrω–continuous.

Proof: \(f: (X, T_1) \rightarrow (Y, T_2) \) is pgrω*–continuous. Let \(F \) be any closed set in \(Y \). Then \(F \) is pre closed in \(Y \). Since \(f \) is pgrω*–continuous, the inverse image \(f^{-1}(F) \) is pgrω–closed in \(X \). Therefore \(f \) is pgrω–continuous.

VI. Pgrω–Irresolute map

Definition 6.1: A map \(f: (X, T_1) \rightarrow (Y, T_2) \) is called a pre generalized regular \(ωeakly-irresolute \) (pgrω–irresolute) map if \(f^{-1}(F) \) is a pgrω–closed set in \(X \) for every pgrω–closed set \(V \) in \(Y \).

Theorem 6.2: A map \(f: (X, T_1) \rightarrow (Y, T_2) \) is pgrω–irresolute if and only if the inverse image \(f^{-1}(V) \) is pgrω–open in \(X \) for every pgrω–open set \(V \) in \(Y \).

Proof: Assume \(f: (X, T_1) \rightarrow (Y, T_2) \) is pgrω–irresolute. Let \(G \) be a pgrω–open set in \(Y \). Then \(G^c \) is pgrω–closed in \(Y \). Since \(f \) is pgrω–irresolute, \(f^{-1}(G^c) = f^{-1}(G^c) \cap X = f^{-1}(G) \) is pgrω–closed in \(X \). But \(f^{-1}(G) = X \)–\(f^{-1}(G) \). Therefore \(f \) is pgrω–irresolute.

Theorem 6.3: Every perfectly pgrw–continuous map is pgrw–irresolute.

Proof: Let \(f: (X, T_1) \rightarrow (Y, T_2) \) be a perfectly pgrw–continuous map. Let \(V \) be a pgrw–open set in \(Y \). Then \(f^{-1}(V) \) is clopen in \(X \) and so \(f^{-1}(V) \) is open. As every open set is pgrw–open, \(f^{-1}(V) \) is pgrw–open. Therefore \(f \) is pgrw–irresolute.

Theorem 6.4: If a map \(f: (X, T_1) \rightarrow (Y, T_2) \) is pgrω–irresolute, then it is pgrω*–continuous.

Proof: \(f: (X, T_1) \rightarrow (Y, T_2) \) is pgrω–irresolute. Let \(F \) be any pre closed set in \(Y \). Then \(F \) is pgrω–closed in \(Y \). Since \(f \) is pgrω–irresolute, \(f^{-1}(F) \) is pgrω–closed in \(X \). Therefore \(f \) is pgrω*–continuous.

Theorem 6.5: If a map \(f: (X, T_1) \rightarrow (Y, T_2) \) is pgrω–irresolute, then it is pgrω–continuous.
Proof: $f: (X, T_1) \rightarrow (Y, T_2)$ is a pgr–irresolute map. Let F be any closed set in Y. Then F is pgr–closed in Y. Since f is pgr–irresolute, the inverse image $f^{-1}(F)$ is pgr–closed in X. Therefore f is pgr–continuous.

Theorem 6.6: If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is pgr–irresolute, then for every subset A of X, \(f(pgrocl(A)) \subseteq pcl(f(A)) \).

Proof: \(A \subseteq X \). Then $pcl(f(A))$ is pgr–closed in Y. Since f is pgr–irresolute, $f^{-1}(pcl(f(A)))$ is pgr–closed in X. Further $A \subseteq f^{-1}(F(\alpha) \subseteq f^{-1}(pcl(f(A)))$. Therefore by definition of pgr–closure $pgrocl(A) \subseteq f^{-1}(pcl(f(A)))$, consequently $f(pgrocl(A)) \subseteq pcl(f(A))$.

Theorem 7.6: If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is pgr–irresolute, then for every subset A of X, \(f(pgrocl(A)) \subseteq pcl(f(A)) \).

Proof: \(A \subseteq X \). Then $pcl(f(A))$ is pgr–closed in Y. Since f is pgr–irresolute, $f^{-1}(pcl(f(A)))$ is pgr–closed in X. Further $A \subseteq f^{-1}(F(\alpha) \subseteq f^{-1}(pcl(f(A)))$. Therefore by definition of pgr–closure $pgrocl(A) \subseteq f^{-1}(pcl(f(A)))$, consequently $f(pgrocl(A)) \subseteq pcl(f(A))$.

Theorem 6.7: If $f: (X, T_1) \rightarrow (Y, T_2)$ and $g: (Y, T_1) \rightarrow (Z, T_2)$ are maps, then $g \circ f: (X, T_1) \rightarrow (Z, T_2)$ is a strongly pgr–omega–continuous function.

Proof: (i) Let U be an open set in (Z, T_2). Since g is r–continuous, $g^{-1}(U)$ is r–open in (Y, T_1). Therefore $g^{-1}(U)$ is an open set in (Y, T_1). Since f is pgr–irresolute, $f^{-1}(g^{-1}(U))$ is an open set in (X, T_1). Hence $(g \circ f)^{-1}(U)$ is r–open in (X, T_1).

VII. Strongly Pgr–Continuous Map:

Definition 7.1: A map $f: (X, T_1) \rightarrow (Y, T_2)$ is called a strongly pre generalized regular weakly–continuous (strongly pgr–continuous) map if $f^{-1}(V)$ is a pgr–closed set in X for every pgr–closed set V in Y.

Theorem 7.2: A map $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly pgr–continuous if and only if $f^{-1}(G)$ is an open set in X for every pgr–open set G in Y.

Proof: $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly pgr–continuous. Let G be pgr–open in Y. The G^c is pgr–closed in Y. Since f is strongly pgr–continuous, $f^{-1}(G^c)$ is closed in X. But $f^{-1}(G) = X - f^{-1}(G^c)$. Therefore $f^{-1}(G)$ is open in X.

Assume that the inverse image of every pgr–open set in Y is open in X. Let F be any pgr–closed set in Y. Then F^c is pgr–open in Y. Therefore $f^{-1}(F^c)$ is open in X. But $f^{-1}(F) = X - f^{-1}(F^c)$. Therefore $f^{-1}(F)$ is open in X and so $f^{-1}(F)$ is closed in X. Therefore f is strongly pgr–continuous.

Theorem 7.3: If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly pgr–continuous and A is an open subset of X, then the restriction $f|_A: (A, T_2) \rightarrow (Y, T_2)$ is strongly pgr–continuous.

Proof: Let V be any pgr–open set of Y. Since f is strongly pgr–continuous, $f^{-1}(V)$ is open in X. Since A is open in X, $(f|_A)^{-1}(V) = A \cap f^{-1}(V)$ is open in A. Hence $f|_A$ is strongly pgr–continuous.

Theorem 7.4: If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly pgr–continuous, then it is continuous.

Proof: Assume that $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly pgr–continuous. Let F be a closed set in Y. As every closed set is pgr–closed, F is pgr–closed in Y. Since f is strongly pgr–continuous, $f^{-1}(F)$ is closed in X. Therefore f is continuous.

Theorem 7.5: If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly pgr–continuous, then it is pgr–irresolute.

Proof: If f is strongly pgr–continuous map. Then F is a pgr–closed set in Y. Then $f^{-1}(F)$ is closed in X. Therefore f is continuous.

Theorem 7.6: Every perfectly pgr–continuous map is strongly pgr–continuous.
Proof: Let \(f: (X, T_1) \rightarrow (Y, T_2) \) be a perfectly pgr-continuous map. Let \(U \) be a pgro-open set in \(Y \). As \(f \) is perfectly pgr-continuous \(f^{-1}(U) \) is both open and closed in \((X, \tau) \). \(f^{-1}(U) \) is open in \((X, \tau) \). Hence \(f \) is strongly pgro-continuous.

Theorem 7.7: If a map \(f: (X, T_1) \rightarrow (Y, T_2) \) is strongly continuous, then it is strongly pgro-continuous.

Proof: Let \(f: (X, T_1) \rightarrow (Y, T_2) \) be strongly continuous. Let \(G \) be pgro-open in \(Y \). As \(f \) is strongly continuous and \(G \) is a subset of \(Y \), \(f^{-1}(G) \) is clopen in \(X \) and so open in \(X \). Therefore \(f \) is strongly pgro-continuous.

Theorem 7.8: For all discrete spaces \(X \) and \(Y \), if a map \(f: (X, T_1) \rightarrow (Y, T_2) \) is strongly pgro-continuous, then it is strongly continuous.

Proof: Let \(F \) be a subset of \(Y \). As \(Y \) is a discrete space, \(F \) is clopen.

\[
\Rightarrow \{ \begin{array}{l}
F \text{ is open} \Rightarrow f^{-1}(F) \text{ is open.} \\
F \text{ is closed} \Rightarrow f^{-1}(F) \text{ is closed.}
\end{array} \}
\]

\(\Rightarrow f^{-1}(F) \) is clopen. Hence \(f \) is strongly continuous.

Theorem 7.9: If a map \(f: (X, T_1) \rightarrow (Y, T_2) \) is strongly pgro-continuous, then it is pgro-continuous.

Proof: Let \(G \) be an open set in \(Y \). As every open set is pgro-open, \(G \) is pgro-open in \(Y \). Since \(f \) is strongly pgro-continuous, \(f^{-1}(G) \) is open in \(X \). As every open set is pgro-open, \(f^{-1}(G) \) is pgro-open in \(X \). Hence \(f \) is pgro-continuous.

Theorem 7.10: \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \eta) \) are two functions.

(i) If \(f \) and \(g \) are strongly pgro-continuous, then \(g \circ f: (X, \tau) \rightarrow (Z, \eta) \) is strongly pgro-continuous.

(ii) If \(f \) is continuous and \(g \) is strongly pgro-continuous, then \(g \circ f: (X, \tau) \rightarrow (Z, \eta) \) is strongly pgro-continuous.

(iii) If \(f \) is pgro-continuous and \(g \) is strongly pgro-continuous, then \(g \circ f: (X, \tau) \rightarrow (Z, \eta) \) is pgro-irresolute.

(iv) If \(f \) is strongly pgro-continuous and \(g \) is pgro-continuous, then \(g \circ f: (X, \tau) \rightarrow (Z, \eta) \) is pgro-irresolute.

Proof: (i) Let \(U \) be a pgro-open set in \((Z, \eta) \). Since \(g \) is strongly pgro-continuous, \(g^{-1}(U) \) is open in \((Y, \sigma) \). As every open set is pgro-open, \(g^{-1}(U) \) is pgro-open in \((Y, \sigma) \). Hence \(f \) is strongly pgro-continuous.

(ii) Let \(U \) be a pgro-open set in \((Z, \eta) \). Since \(g \) is strongly pgro-continuous, \(g^{-1}(U) \) is open in \((Y, \sigma) \). Since \(f \) is continuous, \(f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \). Thus \((gof)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \) and hence \(gof \) is strongly pgro-continuous.

(iii) Let \(U \) be a pgro-open set in \((Z, \eta) \). Since \(g \) is pgro-continuous, \(g^{-1}(U) \) is a pgro-open set in \((Y, \sigma) \). Thus \((gof)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is a pgro-open set in \((X, \tau) \) and hence \(gof \) is pgro-irresolute.

(iv) Let \(U \) be an open set in \((Z, \eta) \). Since \(g \) is pgro-continuous, \(g^{-1}(U) \) is a pgro-open set in \((Y, \sigma) \). Since \(f \) is strongly pgro-continuous, \(f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \). Thus \((gof)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \) and hence \(gof \) is continuous.

Theorem 7.11: \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \eta) \) are two functions.

1. If \(f \) is continuous and \(g \) is perfectly pgro-continuous, then \(gof: (X, \tau) \rightarrow (Z, \eta) \) is strongly pgro-continuous.
2. If \(f \) is perfectly pgro-continuous and \(g \) is strongly pgro-continuous, then \(gof: (X, \tau) \rightarrow (Z, \eta) \) is perfectly pgro-continuous.

Proof: (1) Let \(U \) be a pgro-open set in \((Z, \eta) \). Since \(g \) is perfectly pgro-continuous, \(g^{-1}(U) \) is clopen in \((Y, \sigma) \). Since \(f \) is continuous, \(f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \). Thus \((gof)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \) and hence \(gof \) is pgro-irresolute.

2. Let \(U \) be a pgro-open set in \((Z, \eta) \). Since \(g \) is strongly pgro-continuous, \(g^{-1}(U) \) is an open set in \((Y, \sigma) \) and so pgro-open. Since \(f \) is perfectly pgro-continuous, \(f^{-1}(g^{-1}(U)) \) is a clopen set in \((X, \tau) \). Thus \((gof)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \) and hence \(gof \) is perfectly pgro-continuous.

3. Let \(U \) be a pgro-open set in \(Z \). As \(g \) is perfectly pgro-continuous, \(g^{-1}(U) \) is clopen in \(Y \) and so open. As every open set is pgro-open, \(g^{-1}(U) \) is pgro-open in \(Y \). As \(f \) is perfectly pgro-continuous, \(f^{-1}(g^{-1}(U)) \) is clopen in \(X \). Hence \((gof)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is clopen in \(X \). Hence \(gof \) is perfectly pgro-continuous.
The following diagram shows the relation between above discussed maps.

![Diagram](image-url)

References

K. Kannanand K. Chandrasekhara Rao Pasting Lemmas for Some Continuous Functions ThaiJournal

S. S. Benchalli and R.S Wali on rω- Closed sets is Topological Spaces, Bull, Malays, Math, sci, soc30 (2007), 99-110
