Homomorphism and Anti-homomorphism of Multi-Fuzzy Ideal and Multi-Anti Fuzzy Ideal of a Ring

R.Muthuraj¹*, C. Malarselvi²,

^{1*} PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai – 622 001, Tamil Nadu, India

² Department of Mathematics, K.L.N. College of Information Technology, Pottapalayam – 630 611. Sivagangai District, Tamil Nadu, India.

Abstract: In this paper, we discuss the properties of image of multi-fuzzy ideal of a ring under homomorphism and anti homomorphism and the properties of image of multi-anti fuzzy ideal of a ring under homomorphism and anti homomorphism

Keywords: multi-anti fuzzy ideals, homomorphism and anti homomorphism of multi-fuzzy ideal and multi-anti fuzzy ideal of a ring.

I. Introduction

The innovative works of Zadeh [16] and Rosenfeld [12] led to the fuzzification of algebraic structures. The idea of anti fuzzy subgroup was introduced by Biswas [3] which was extended by many researchers. F.A.Azam, A.A. Mamum, and F.Nasrin [2] apply the idea of Biswas to the theory of ring. They introduced a notion of anti fuzzy ideal A of a ring X.

Sabu Sebastian and T.V. Ramakrishnan [13] introduced the theory of multi-fuzzy sets in terms of multi-dimensional membership functions and investigated some properties of multi level fuzziness. After introducing multi-fuzzy subsets of a crisp set, they have also introduced and studied some elementary properties of multi-fuzzy subgroups. R. Muthuraj and S. Balamurugan [9] introduced the concept of multi-anti fuzzy subgroup and discussed some of its properties.

In [11], we extended the concept of multi-anti fuzzy subgroup to multi-anti fuzzy ideal of a ring. and introduced a notion of multi-anti fuzzy ideal A of a ring X and some of its properties are discussed.

In this paper, we discuss the properties of image of multi-fuzzy ideal of a ring under homomorphism and anti homomorphism and the properties of image of multi-anti fuzzy ideal of a ring under homomorphism and anti homomorphism.

1.1 Basic Concepts

The theory of multi-fuzzy set is an extension of theories of fuzzy sets. The membership function of a multi-fuzzy set is an ordered sequence of membership functions of a fuzzy set. The notion of multi-fuzzy sets provides a new method to represent some problems which are difficult to explain in other extensions of fuzzy set theory.

Throughout this paper, we will use the following notations (i) R and S for ring . (ii) J for index set, (iii) X for the Universal set, (iv) I for the unit interval [0, 1] and (v) I^X for the set of all functions from X to I respectively

1.2 Definition [13]

Let X is a non-empty set. A multi-fuzzy set A in X is a set of ordered sequences $A = \{(x, \mu_1(x), \mu_2(x), \dots, \mu_k(x), \dots): x \in X\}$ where $\mu_i(x) \in I, \forall j = 1, 2, \dots, k, \dots$

Remarks [13]

- i. If the sequences of the membership functions have only k-terms, then k is called the dimension of A.
- ii. The set of all multi-fuzzy sets in X of dimension k is denoted by $M^{K}FS(X)$.
- iii. The multi-membership function A(x) of dimension k is denoted by

A(x)= $(\mu_1(x), \mu_2(x), \dots, \mu_k(x))$, for all $x \in X$.

1.3 Definition [13]

Let k be a positive integer and A and B be a multi-fuzzy set of dimension k on X.

That is, $A = \{(x, \mu_1(x), \mu_2(x)..., \mu_k(x)), x \in X\}$ and $B = \{(x, \gamma_1(x), \gamma_2(x)..., \gamma_k(x)), x \in X\}$ where $\mu_j(x), \gamma_j(x) \in I$, $\forall j = 1, 2, ..., k$

Then we have the following relations and operations for all $x \in X$

- $i. \quad A=B \ iff \ \mu_i(x)=\gamma_j(x) \ \forall \ j=1,2,\ldots,k$
- ii. $A \leq B$ iff $\mu_i(x) \leq \gamma_j(x) \forall j = 1, 2, ..., k$
- iii. $A \cup B = \{(x, \max\{\mu_1(x), \gamma_1(x)\}, ..., \max\{\mu_k(x), \gamma_k(x)\}): x \in X\}$
- iv. $A \cap B = \{(x, \min\{\mu_1(x), \gamma_1(x)\}, \dots, \min\{\mu_k(x), \gamma_k(x)\}): x \in X \}$

1.4 Definition [6]

A mapping f from a ring R to a ring S (both R and S not necessarily commutative) is called an anti-homomorphism if for all $x, y \in R$

i. f(x + y) = f(y) + f(x) and ii. f(xy) = f(y)f(x).

A surjective anti-homomorphism is called an anti-epimorphism.

1.5 Definition

Let f be a mapping from a set R to a set S and let A be a multi-fuzzy subset in R. Then A is called f-invariant if f(x) = f(y) implies A(x) = A(y) for all x, $y \in R$. Clearly, if A is f-invariant, then $f^{-1}(f(A)) = A$.

II. Properties Multi-Fuzzy Ideal Of A Ring

In this section, we discuss some results on multi-fuzzy ideal of a ring under homomorphism and anti-homomorphism

2.1 Definition [10]

A multi-fuzzy set A on a ring R is said to be a multi-fuzzy ring on R if for every x, $y \in R$,

i. $A(x - y) \ge \min \{A(x), A(y)\}$ and

ii. $A(xy) \ge \min \{A(x), A(y)\}.$

2.2 Definition [10]

A multi-fuzzy ring A on R is said to be

- i. a multi-fuzzy left ideal if $A(x y) \ge A(y)$, for all $x, y \in R$ and
- ii. a multi-fuzzy right ideal if $A(x y) \ge A(x)$, for all $x, y \in R$.

2.3 Definition [10]

A multi-fuzzy ring A on a ring R is called a multi-fuzzy ideal if it is both a multi-fuzzy left ideal and a multi-fuzzy right ideal.

In other words, a multi-fuzzy set A on R is a multi-fuzzy ideal of a ring if i. $A(x - y) \ge \min \{A(x), A(y)\}$ and

ii. $A(x y) \ge \max \{A(x), A(y)\}, \text{ for all } x, y \in \mathbb{R}.$

2.4 Definition

A multi-fuzzy set A in X has the sup property if, for any subset T of X, there exists

 $t_0 \in T$ such that $A(t_0) = \frac{\sup}{t \in T} A(t)$.

2.5 Definition

i.

Let f be a mapping from a set X to a set Y, and let A and B be multi-fuzzy subsets in X and Y respectively.

f(A), the image of A under f, is a multi-fuzzy subset in Y. For all $y \in Y$, we define,

iii.

$$f(A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} A(x) & \text{if } f^{-1}(y) \neq \varphi \\ 0, & \text{Otherwise} \end{cases}$$

ii. $f^{(1)}(B)$, is the pre-image of B under f, is a multi-fuzzy set in X. That is, $f^{(1)}(B)(x) = B(f(x))$ for all $x \in R$.

2.6 Theorem

Let f be a homomorphism from a ring R into a ring S and let B be a multi-fuzzy left ideal of S. Then the pre-image, $f^{1}(B)$ is a multi-fuzzy left ideal left of R.

Proof

Consider a ring homomorphism $f: R \rightarrow S$ Let B be a multi- fuzzy left ideal of S. For all x. $v \in R$

For all x, y∈ R		
i.	$f^{1}(B)(x-y)$	= Bf(x-y)
		= B(f(x) - f(y))
		$\geq \min\{Bf(x), Bf(y)\}$
		$= \min\{f^{1}(B)(x), f^{1}(B)(y)\}$
	$f^{-1}(B)(x-y)$	$\geq \min\{f^1(B)(x), f^1(B)(y)\}$
ii.	$f^{1}(B)(xy)$	= B(f(xy))
		= B(f(xy))
		$\geq \max \{Bf(x), Bf(y)\}$
		$= \max{f^{1}(B)(x), f^{1}(B)(y)}$
	$f^{1}(B)(xy)$	$\geq \max\{f^{1}(B)(x), f^{1}(B)(y)\}$
	. 1	
iii.	$f^{-1}(B)(xy)$	= B f(xy)
		= B(f(x)f(y))
		$\geq B(f(y))$
		$= f^{1}(B)(y)$
	$f^{1}(B)(xy)$	$\geq f^{1}(B)(y)$
Therefore, $f^{1}(B)$ is a multi-fuzzy left ideal of R.		

2.7 Theorem

Let f be a homomorphism from a ring R into a ring S and let B be a multi-fuzzy right ideal of S. Then the pre-image, $f^{1}(B)$ is a multi-fuzzy right ideal of R.

Proof

Consider a ring homomorphism $f: R \rightarrow S$ Let B be a multi-fuzzy right ideal of S. For all $x, y \in R$ i. $f^{1}(B)(x-y)$ = Bf(x-y)= B(f(x) - f(y)) $\geq \min\{Bf(x), Bf(y)\}$ $= \min{\{f^{-1}(B)(x), f^{-1}(B)(y)\}}$ $f^{-1}(B)(x-y)$ $\geq \min\{f^{1}(B)(x), f^{1}(B)(y)\}$ ii. $f^{-1}(B)(xy)$ = B(f(xy))= B(f(xy)) $\geq \max \{Bf(x), Bf(y)\}$ $= \max \{f^{1}(B)(x), f^{1}(B)(y)\} \\ \ge \max \{f^{1}(B)(x), f^{1}(B)(y)\}$ $f^{1}(B)(xy)$ $f^{1}(B)(xy)$ iii. = Bf(xy)= B(f(x)f(y)) $\geq B(f(x))$ $= f^{-1}(B)(x)$ $f^{1}(B)(xy)$ $\geq f^{1}(B)(x)$ Therefore, $f^{1}(B)$ is a multi-fuzzy right ideal of R.

2.8 Theorem

Let f be a homomorphism from a ring R into a ring S, and let B be a multi-fuzzy ideal of S. Then the pre-image, $f^{1}(B)$ is a multi-fuzzy ideal of R.

Proof

DOI: 10.9790/5728-11648394

It is clear.

2.9 Theorem

Let f be a homomorphism from a ring R into a ring S, and let A be a multi-fuzzy left ideal of a ring R with sup property. Then the image, f(A) is a multi-fuzzy left ideal of a ring S.

Proof

Consider a ring homomorphism $f: R \rightarrow S$ Let A be a multi- fuzzy left ideal of R. For all $x, y \in R$ i. f(A)(f(x)-f(y))= f(A) f(x - y)= A(x - y) $\geq \min\{A(x), A(y)\}$ $= \min\{ f(A)(x), f(A)(y) \}$ f(A)(f(x)-f(y)) $\geq \min\{f(A)(x), f(A)(y)\}.$ ii. = f(A)f(x y)f(A) (f(x)f(y))= A(xy) $\geq \max \{A(x), A(y)\}$ $= \max\{ f(A)(x), f(A)(y) \}$ $\geq \max\{ f(A)(x), f(A)(y) \}$ f(A) (f(x)f(y))iii. f(A) (f(x)f(y))= f(A)f(x y)= A(xy) $\geq A(y)$ = f(A) (f(y))f(A) (f(x)f(y)) \geq f(A) (f(y)) Therefore, f(A) is a multi-fuzzy left ideal of S,

2.10 Theorem

Let f be a homomorphism from a ring R into a ring S, and let A be a multi-fuzzy right ideal of a ring R with sup property. Then the image, f(A) is a multi-fuzzy right ideal of a ring S.

Proof

Consider a ring homomorphism $f: R \rightarrow S$ Let A be a multi- fuzzy right ideal of R. For all x, $y \in R$

$(x), f(A)(y) \}$ (x), f(A)(y) \.
) x), A(y)} (x), f(A)(y)} A) (x), f(A)(y)}.
)))))

2.11 Theorem

Let f be a homomorphism from a ring R into a ring S, and let A be a multi-fuzzy ideal of a ring R with sup property. Then the image, f(A) is a multi-fuzzy ideal of a ring S.

Proof

It is clear.

2.12 Theorem

Let f be an anti- homomorphism from a ring R into a ring S, and let B be a multi-fuzzy left ideal of S. Then the pre-image, $f^{-1}(B)$ is a multi-fuzzy right ideal of R.

Proof

Consider a ring anti-homomorphism $f: R \rightarrow S$ Let B be a multi- fuzzy left ideal of S.

For all x, $y \in R$

i.	$f^{1}(B)(x-y)$ $f^{1}(B)(x-y)$	$\begin{split} &= Bf(x-y) \\ &= B(f(y)-f(x)) \\ &\geq \min\{Bf(y),Bf(x)\} \\ &= \min\{f^1(B)(y),f^1(B)(x)\} \\ &= \min\{f^1(B)(x),f^1(B)(y)\} \\ &\geq \min\{f^1(B)(x),f^1(B)(y)\}. \end{split}$
ii.	$f^{1}(B)(xy)$	= B(f(xy))
		= B(f(y)f(x))
		$\geq \max \{Bf(y), Bf(x)\}\$ = max{f ⁻¹ (B)(y), f ⁻¹ (B)(x)}
		$= \max\{f^{1}(B)(y), f^{1}(B)(y)\}$ $= \max\{f^{1}(B)(x), f^{1}(B)(y)\}$
	$f^{1}(B)(xy)$	$\geq \max\{f^{1}(B)(x), f^{1}(B)(y)\}.$
iii.	$f^{1}(B)(xy)$	= B f(xy)
		= B(f(y)f(x))
		$\geq B(f(x))$ = f ¹ (B)(x))
	$f^{1}(B)(xy)$	$= f^{1}(B)(x)$ $\geq f^{1}(B)(x)$.
Therefore, $f^{1}(B)$ is a multi-fuzzy right ideal of R.		

2.13 Theorem

Let f be an anti- homomorphism from a ring R into a ring S, and let B be a multi-fuzzy right ideal of S. Then the pre-image, $f^{-1}(B)$ is a multi-fuzzy left ideal of R.

Proof

Consider a ring anti-homomorphism $f: R \rightarrow S$ Let B be a multi- fuzzy right ideal of S.

For all x, $y \in R$

i.	$f^{-1}(B)(x-y)$ $f^{-1}(B)(x-y)$	$ \begin{array}{l} = Bf(x-y) \\ = B(f(y) - f(x)) \\ \geq \min \left\{ Bf(y), Bf(x) \right\} \\ = \min \{ f^1(B)(y), f^1(B)(x) \} \\ = \min \{ f^1(B)(x), f^1(B)(y) \} \\ \geq \min \{ f^1(B)(x), f^1(B)(y) \}. \end{array} $
ii.	f ¹ (B)(xy)	$= B(f(xy)) = B(f(y)f(x)) \geq max {Bf(y),Bf(x)} = max{f1(B)(y),f1(B)(x)} = max{f1(B)(x),f1(B)(y)} = max{f1(B)(x)$
	$f^{1}(B)(xy)$	$\geq \max{\{f^{1}(B)(x), f^{1}(B)(y)\}}.$
iii	f ¹ (B)(xy)	= B f(xy) = B(f(y)f(x)) $\ge B(f(y))$ = f ¹ (B)(y))
	$f^{-1}(B)(xy)$	$\geq f^{1}(B)(y))$

Therefore, $f^{1}(B)$ is a multi-fuzzy left ideal of R.

2.14 Theorem

Let f be an anti- homomorphism from a ring R into a ring S, and let B be a multi-fuzzy left (right) ideal of S. Then the pre-image, $f^{1}(B)$ is a multi-fuzzy right(left) ideal of R.

Proof

It is clear.

2.15 Theorem

Let f be an anti- homomorphism from a ring R into a ring S, and let A be a multi-fuzzy left ideal of a ring R with sup property. Then the image, f(A) is a multi-fuzzy right ideal of a ring S.

Proof

Consider a ring anti-homomorphism $f: R \rightarrow S$ Let A be a multi- fuzzy left ideal of R. For all x, y $\in R$

i. f(A)(f(x)-f(y))= f(A) f(y-x)= A(y-x) $\geq \min\{A(y), A(x)\}$ $= \min\{ f(A)(y), f(A)(x) \}$ $= \min\{ f(A)(x), f(A)(y) \}$ f(A)(f(x)-f(y)) $\geq \min\{ f(A)(x), f(A)(y) \}.$ ii. f(A) (f(x)f(y))= f(A)f(yx)= A(yx) $\geq \max \{A(y), A(x)\}$ $= \max\{ f(A)(y), f(A)(x) \}$ $= \max\{ f(A)(x), f(A)(y) \}$ $\geq \max\{f(A)(x), f(A)(y)\}.$ f(A) (f(x)f(y))iii. f(A) (f(x)f(y))= f(A)f(yx)= A(yx) $\geq A(x)$ = f(A) (f(x)) $f(A) (f(x)f(y)) \ge f(A) (f(x)).$ Therefore, f(A) is a multi-fuzzy right ideal of S

2.16 Theorem

Let f be an anti-homomorphism from a ring R into a ring S, and let A be a multi-fuzzy right ideal of a ring R with sup property. Then the image, f(A) is a multi-fuzzy left ideal of a ring S.

Proof

Consider a ring anti-homomorphism $f: R \rightarrow S$ Let A be a multi- fuzzy right ideal of R.

For all $x, y \in R$

i.	f(A)(f(x)-f(y)) $f(A)(f(x)-f(y))$	$= f(A) f(y-x) = A(y-x) \geq min \{A(y), A(x)\} = min \{ f(A) (y), f(A)(x) \} = min \{ f(A) (x), f(A)(y) \} \geq min \{ f(A) (x), f(A)(y) \} $
ii.	f(A) (f(x)f(y))	= f(A)f(y x) = A(yx) $\ge max \{A(y), A(x)\}$ = max{ f(A) (y), f(A)(x)} = max{ f(A) (x), f(A)(y)}.

$$\begin{split} f(A) \ (f(x)f(y)) &\geq max \{ \ f(A) \ (x), \ f(A)(y) \} \\ & \text{iii.} \qquad f(A) \ (f(x)f(y)) &= f(A)f(y \ x) \\ &= A(yx) \\ &\geq A(y) \\ &= f(A) \ (f(y)) \\ f(A) \ (f(x)f(y)) &\geq f(A) \ (f(y)) \end{split}$$
 Therefore, f(A) is a multi-fuzzy left ideal of S

2.17 Theorem

Let f be an anti- homomorphism from a ring R into a ring S, and let A be a multi-fuzzy left(right) ideal of a ring R with sup property. Then the image, f(A) is a multi-fuzzy right (left) ideal of a ring S.

Proof

It is clear.

III. Properties Multi-Anti Fuzzy Ideal Of A Ring

In this section, we discuss some results on multi-anti fuzzy ideal of a ring under homomorphism and anti-homomorphism

3.1 Definition [11]

A multi-fuzzy set A of X is called a multi- anti fuzzy left (respectively right) ideal of X if for all x, y

 $\in X,$

i.	$A(x - y) \le \max \{A(x), A(y)\}$
ii.	$A(xy) \leq \max \{A(x), A(y)\}$
iii.	$A(xy) \leq A(y)$ (respectively right $A(xy) \leq A(x)$).

3.2 Definition [11]

i.

A MFS A of X is called a multi-anti fuzzy ideal of X if it is a multi-anti fuzzy left ideal as well as a multi-anti fuzzy right ideal of X.

Remark

	A MFS A of X is a multi-anti fuzzy left (respectively right) ideal of X if and only if A^{C} is multi fuzzy left (respectively right) ideal of X.
:	Even multi anti furgu laft (sight) ideal of V is an additive multi anti furgu

ii. Every multi-anti fuzzy left (right) ideal of X is an additive multi-anti fuzzy subgroup of X.

3.3 Definition [11]

 $\begin{array}{ll} \mbox{If }A \mbox{ is a multi-anti fuzzy ideal of }X, \mbox{ Then for all }x, \mbox{ }y \in X,\\ \mbox{i.} \qquad A(x-y) \ \leq \ max \ \{A(x), \ A(y)\} \end{array}$

ii. $A(xy) \leq \max \{A(x), A(y)\}.$

3.4 Definition

A multi-fuzzy set A in X has the inf property if, for any subset T of X, there exists $t_0 \in T$ such that

$$A(t_0) = \frac{\inf}{t \in T} A(t) .$$

3.5 Definition [11]

Let f be a mapping from a set X to a set Y, and let A and B be multi-fuzzy subsets in X and Y respectively.

i. f(A), the anti image of A under f, is a multi-fuzzy subset in Y. For all $y \in Y$, I. we define, $f(A)(y) = \begin{cases} \inf_{x \in f^{-1}(y)} A(x) & \text{if } f^{-1}(y) \neq \varphi \\ 0 & \text{Otherwise} \end{cases}$

ii. $f^1(B)$, is the anti pre-image of B under f, is a multi-fuzzy set in X. That is, $f^1(B)(x) = B(f(x))$ for all $x \in R$.

3.6 Theorem

Let f be a homomorphism from a ring R onto a ring S, and let B be a multi-anti fuzzy left ideal of S. Then the anti pre-image, $f^{1}(B)$ is a multi-anti fuzzy left ideal of R.

Proof

Consider a ring homomorphism $f: R \rightarrow S$ Let B be a multi-anti fuzzy left ideal of S.

For all x, $y \in R$

i.	$f^{1}(B)(x-y)$ $f^{1}(B)(x-y)$	$\begin{split} &= Bf(x - y) \\ &= B(f(x) - f(y)) \\ &\leq \max\{Bf(x), Bf(y)\} \\ &= \max\{f^{1}(B)(x), f^{1}(B)(y)\} \\ &\leq \max\{f^{1}(B)(x), f^{1}(B)(y)\}. \end{split}$
ii.	f ¹ (B)(xy)	= B(f(xy)) = B(f(xy)) $\leq \max \{Bf(x), Bf(y)\}$
	f ¹ (B)(xy)	$= \max\{f^{1}(B)(x), f^{1}(B)(y)\} \\\leq \max\{f^{1}(B)(x), f^{1}(B)(y)\}.$
iii.	$f^{1}(B)(xy)$	= B f(xy)
		= B(f(x)f(y))
		$\leq B(f(y))$
		$= f^{1}(B)(y))$
	$f^{1}(B)(xy)$	$\leq f^{1}(B)(y))$
ore $f^{1}(\mathbf{R})$	is a multi-anti fuz	zzy left ideal of R

Therefore, f'(B) is a multi-anti fuzzy left ideal of R.

3.7 Theorem

Let f be a homomorphism from a ring R into a ring S, and let B be a multi-anti fuzzy right ideal of S. Then the anti pre-image, $f^{1}(B)$ is a multi-anti fuzzy right ideal of R.

Proof

Consider a ring homomorphism $f: R \rightarrow S$ Let B be a multi-anti fuzzy right ideal of S.

For all $x, y \in R$

i. $f^{-1}(B)(x-y)$ $f^{-1}(B)(x-y)$	$\begin{split} &= Bf(x-y) \\ &= B(f(x)-f(y)) \\ &\leq \max \left\{ Bf(x), Bf(y) \right\} \\ &= \max\{f^1(B)(x), f^1(B)(y)\} \\ &\leq \max\{f^1(B)(x), f^1(B)(y)\}. \end{split}$
ii. $f^{1}(B)(xy)$ $f^{1}(B)(xy)$	$= B(f(xy)) = B(f(xy)) \leq \max \{Bf(x), Bf(y)\} = \max\{f^{1}(B)(x), f^{1}(B)(y)\} \leq \max\{f^{1}(B)(x), f^{1}(B)(y)\}.$
iii. $f^{1}(B)(xy)$ $f^{1}(B)(xy)$	= B f(xy) = B(f(x)f(y)) $\leq B(f(x))$ = f ¹ (B)(x)) $\leq f1(B)(x))$
refore $f^{-1}(B)$ is a multi-anti fu	

Therefore, $f^{(1)}(B)$ is a multi-anti fuzzy right ideal of R.

3.8 Theorem

Let f be a homomorphism from a ring R into a ring S, and let B be a multi-anti fuzzy left (right) ideal of S. Then the anti pre-image, $f^{1}(B)$ is a multi-anti fuzzy left (right) ideal of R.

Proof

It is clear.

3.9Theorem

Let f be a homomorphism from a ring R into a ring S, and let A be a multi-anti fuzzy left ideal of a ring R with inf property. Then the anti- image, f(A) is a multi-anti fuzzy right ideal of a ring S.

Proof

Consider a ring homomorphism $f: R \rightarrow S$ Let A be a multi-anti fuzzy left ideal of R.

For all x, $y \in \mathbb{R}$

all x, $y \in R$		
i.	f(A)(f(x) - f(y))	= f(A) f(x-y)
		= A(x-y)
		$\leq \max{A(x), A(y)}$
		$= \max\{ f(A)(x), f(A)(y) \}$
	f(A)(f(x) - f(y))	$\leq \max\{ f(A)(x), f(A)(y) \}.$
ii.	f(A) (f(x)f(y))	= f(A)f(xy)
	· / · · · · · · · · · · · · · · · · · ·	= A(xy)
		$\leq \max \{A(x), A(y)\}$
		$= \max \{ f(A)(x), f(A)(y) \}$
	f(A) (f(x)f(y))	$\leq \max\{f(A)(x), f(A)(y)\}.$
iii.	f(A) (f(x)f(y))	= f(A)f(xy)
		= A(xy)
		$\leq A(y)$
		= f(A) (f(y))
	f(A) (f(x)f(y))	$\leq f(A)(f(y))$
refore f(A)	is a multi-fuzzy left ide	alofS

Therefore, f(A) is a multi-fuzzy left ideal of S

3.10 Theorem

Let f be a homomorphism from a ring R onto a ring S, and let A be a multi-anti fuzzy right ideal of a ring R with inf property. Then the anti- image, f(A) is a multi-anti fuzzy right ideal of a ring S.

Proof

P rooi		
Consider a ring	homomorphism $f: R \rightarrow S$	5
Let A be a multi	-anti fuzzy right ideal of	f R.
For all x, $y \in R$		
i.	f(A)(f(x) - f(y))	= f(A) f(x - y) $= A(x - y)$
		$\leq \max{A(x), A(y)}$ = max{ f(A) (x), f(A)(y)}
	f(A)(f(x) - f(y))	$\leq \max\{ f(A)(x), f(A)(y) \}.$
ii.	f(A) (f(x)f(y))	= f(A)f(xy) $= A(xy)$
		$ \leq \max \{A(x), A(y)\} = \max \{ f(A) (x), f(A)(y) \} $
	f(A) (f(x)f(y))	$\leq \max\{ f(A)(x), f(A)(y) \}.$
iii.	f(A) (f(x)f(y))	= f(A)f(xy)
		= A(xy)
		$\leq A(x)$
		= f(A) (f(x))
	f(A) (f(x)f(y))	$\leq f(A)(f(x))$
Therefore, f(A)	is a multi-fuzzy right ide	

3.11 Theorem

Let f be a homomorphism from a ring R into a ring S, and let A be a multi-anti fuzzy ideal of a ring R with inf property. Then the anti- image, f(A) is a multi-anti fuzzy ideal of a ring S.

Proof

It is clear.

3.12Theorem

Let f be an anti- homomorphism from a ring R into a ring S, and let B be a multi-anti fuzzy left ideal of S. Then the anti pre-image, $f^{1}(B)$ is a multi-fuzzy right ideal of R.

Proof

Consider a ring anti-homomorphism $f: R \rightarrow S$ Let B be a multi-anti fuzzy left ideal of S.

For all x, $y \in R$

i.	$f^{1}(B)(x-y)$ $f^{1}(B)(x-y)$	$= Bf(x - y) = B(f(y) - f(x)) \leq max {Bf(y),Bf(x)} = max {f1(B)(y),f1(B)(x)} = max {f1(B)(x),f1(B)(y)} \leq max {f1(B)(x),f1(B)(y)}.$
	$\Gamma(\mathbf{D})(\mathbf{x} \cdot \mathbf{y})$	
ii.	$f^{1}(B)(xy)$	= B(f(xy)) = B(f(y)f(x)) $\leq \max \{Bf(y), Bf(x)\}$
		$= \max\{f^{1}(B)(y), f^{1}(B)(x)\}\$
	el (D) (
	$f^{1}(B)(xy)$	$\leq \max{f^{1}(B)(y), f^{1}(B)(x)}.$
	1	
iii.	$f^{1}(B)(xy)$	$= \mathbf{B} \mathbf{f}(\mathbf{x}\mathbf{y})$
		= B(f(y)f(x))
		$\leq B(f(x))$
		$= f^{1}(B)(x)$
	$f^{1}(B)(xy)$	$\leq f^{1}(B)(x)$
Therefore, $f^{-1}(B)$ is a multi-fuzzy right ideal of R.		

3.13 Theorem

Let f be an anti- homomorphism from a ring R into a ring S, and let B be a multi-anti fuzzy right ideal of S. Then the anti pre-image, $f^{1}(B)$ is a multi-fuzzy left ideal of R.

Proof

Consider a ring anti-homomorphism $f: R \rightarrow S$ Let B be a multi-anti fuzzy right ideal of S. For all x, $y \in R$

i.	$f^{1}(B)(x - y)$ $f^{1}(B)(x - y)$	$\begin{split} &= Bf(x-y) \\ &= B(f(y)-f(x)) \\ &\leq \max \left\{ Bf(y), Bf(x) \right\} \\ &= \max \{ f^1(B)(y), f^1(B)(x) \} \\ &= \max \{ f^1(B)(x), f^1(B)(y) \} \\ &\leq \max \{ f^1(B)(x), f^1(B)(y) \}. \end{split}$	
ii.	f ⁻¹ (B)(xy)	= B(f(xy))	
		= B(f(y)f(x))	
		$\leq \max \{Bf(y), Bf(x)\}$	
		$= \max\{f^{1}(B)(y), f^{1}(B)(x)\}\$ = max{f^{1}(B)(x), f^{1}(B)(y)}	
	$f^{1}(B)(xy)$	$\leq \max\{f^{1}(B)(x), f^{1}(B)(y)\}.$	
iii.	f ⁻¹ (B)(xy)	$-\mathbf{D} \mathbf{f}(\mathbf{w}\mathbf{v})$	
111.	1 (b)(xy)	= B f(xy) = B(f(y)f(x))	
		$\leq B(f(y))$	
	1	$= f^{1}(B)(y)$	
1	$f^{-1}(B)(xy)$	$\leq f^{1}(B)(y))$	
Therefore, $f^{1}(B)$ is a multi-fuzzy left ideal of R.			

3.14 Theorem

Let f be an anti- homomorphism from a ring R into a ring S, and let B be a multi-anti fuzzy left (right) ideal of S. Then the anti pre-image, $f^{1}(B)$ is a multi-fuzzy right (left) ideal of a ring R. **Proof**

It is clear.

3.15Theorem

Let f be an anti-homomorphism from a ring R onto a ring S, and let A be a multi-anti fuzzy left ideal of a ring R with inf property. Then the anti- image, f(A) is a multi- anti fuzzy right ideal of a ring S. **Proof**

Consider a ring anti-homomorphism $f: R \rightarrow S$

Let A be a multi- anti fuzzy left ideal of R.

For all x, $y \in R$

1 01 un m, y C It			
i.	f(A)(f(x)-f(y))	= f(A) f(y-x)	
		= A(y-x)	
		$\leq \max{A(y), A(x)}$	
		$= \max\{ f(A)(y), f(A)(x) \}$	
		$= \max\{ f(A)(x), f(A)(y) \}$	
	$\mathcal{C}(\mathbf{A}) \langle \mathcal{C}(\mathbf{A}) \rangle = \mathcal{C}(\mathbf{A})$		
	f(A)(f(x)-f(y))	$\leq \max\{ f(A)(x), f(A)(y) \}.$	
ii.	f(A) (f(x)f(y))	= f(A)f(y x)	
		= A(yx)	
		$\leq \max \{A(y), A(x)\}$	
	a	$= \max\{ f(A)(y), f(A)(x) \}$	
	f(A) (f(x)f(y))	$\leq \max\{ f(A)(y), f(A)(x) \}.$	
iii.	f(A) (f(x)f(y))	= f(A)f(y x)	
		= A(yx)	
		$\leq A(x)$	
		- ()	
	C()) (C() C())	= f(A) (f(x))	
	f(A) (f(x)f(y))	$\leq f(A)(f(x))$	
Therefore, f(A) is a multi-anti fuzzy right ideal of S.			

3.16 Theorem

Let f be an anti-homomorphism from a ring R into a ring S, and let A be a multi-anti fuzzy right ideal of a ring R with inf property. Then the anti- image, f(A) is a multi- anti fuzzy left ideal of a ring S. **Proof**

Consider a ring anti-homomorphism f: $R \rightarrow S$

Let A be a multi- anti fuzzy right ideal of R.

For all $x, y \in R$

$101 \text{ an } x, y \in \mathbf{R}$			
i.	f(A)(f(x)-f(y))	$= f(A) f(y-x) = A(y-x) \leq max \{A(y), A(x)\} = max \{ f(A) (y), f(A)(x) \}$	
	f(A)(f(x)-f(y))	$\leq \max\{ f(A)(x), f(A)(y) \}.$	
ii.	f(A) (f(x)f(y))	= $f(A)f(yx)$ = $A(yx)$ $\leq max \{A(y), A(x)\}$ = $max \{ f(A) (y), f(A)(x) \}$	
	f(A) (f(x)f(y))	$\leq \max\{ f(A)(x), f(A)(y) \}.$	
iii.	f(A) (f(x)f(y))	= f(A)f(yx) = A(yx) \leq A(y) = f(A) (f(y))	
	f(A) (f(x)f(y))	$\leq f(A) (f(y))$	
Therefore, f(A) is a multi-fuzzy left ideal of S			

3.17 Theorem

Let f be an anti-homomorphism from a ring R into a ring S, and let A be a multi-anti fuzzy left(right) ideal of a ring R with inf property. Then the anti- image, f(A) is a multi- anti fuzzy right (left) ideal of a ring S.

Proof

It is clear.

IV. Conclusion

In this paper, we discussed the properties of image of a multi- fuzzy ideal of a ring under homomorphism and anti homomorphism and the properties of image of multi-anti fuzzy ideal of a ring under homomorphism and anti homomorphism

References

- [1] Attanassov, Intutionistic Fuzzy Sets, Fuzzy Sets And Systems, 20,87-89,1986.
- [2] Azam.F.A, A.A.Mamun, and F. Nasrin, Anti fuzzy ideals of a ring, Annals of Fuzzy Mathematics and Informatics, Volume 5, No.2, pp 349 – 360, March 2013.
- [3] Biswas.R., fuzzy subgroups and Anti-fuzzy subgoups, Fuzzy sets and Systems, 5, 121 124, 1990.
- [4] Bingxue. Y, Fuzzy semi-ideal and generalized fuzzy quotient ring, Iranian Journal of Fuzzy Systems, Vol. 5, pp 87 92, 2008.
- [5] Gouguen J.A., L- fuzzy sets, Journal of Mathematics Analysis and Applications, 18, 145 174, 1967.
- [6] Kumbhojkar.H.V. and Bapat.M.S, Correspondence theorem for fuzzy ideals, Fuzzy Sets and System, 41, 213-219, 1991.
- [7] Malik.D.S and John N. Moderson, Fuzzy Prime Ideals of a Ring, Fuzzy Sets and System 37, 93-98, 1990.
- [8] Moderson L.N and D.S. Malik, Fuzzy Commutative Algebra, World Scientific, Singapore, 1998.
- [9] Muthuraj. R and Balamurugan. S, Multi-fuzzy group and its level subgroups, Gen.Math.Notes, Vol. 17, No. 1, July 2013, pp 74 81.
- [10] Muthuraj. R and Malarselvi. C, Multi-Fuzzy Prime Ideal of a Ring, Discovery, Volume 21, No. 65, July 1, 2014.
- [11] Muthuraj. R and Malarselvi. C, Multi-anti Fuzzy Ideal of a Ring, Proceedings of the National Converence on Mathematical Modellig, 114 – 120, 2014. ISBN 938065744-7
- [12] Rosenfeld, A, Fuzzy groups, Journal of Mathematical Analysis and applications, 35, 512 517, 1971.
- [13] Sabu Sebastian and T.V. Ramakrishnan, Multi-Fuzzy Sets, International Mathematical Forum, 5, no. 50, 2471-2476, 2010.
- [14] Sabu Sebastian and T.V. Ramakrishnan, Multi-Fuzzy Topology, International Journal of Applied Mathematics Volume 24,No.1, 117-129, 2011.
- [15] Souriar Sebastian, Mercy K.Jacob and V.M Mary and Divya Mary Daise, On Fuzzy Ideals and Rings, J. Comp. & Math. Sci Vol.3(1), 115-120, 2012
- [16] Zadeh.L.A, Fuzzy sets, Information and Control 8, 338-353, 1965.