Sums of Squares of Jacobsthal Numbers

A.Gnanam¹, B.Anitha²

¹(Assistant Professor, Department of Mathematics, Government Arts College-Trichy-22, India) ²(Research Scholar, Department of Mathematics, Government Arts College-Trichy-22, India)

Abstract: There are many identities on Jacobsthal sequence of numbers. Here we try tofind some more identities on Sums of Squares of Consecutive Jacobsthal numbers using Binet forms. **Keywords:** Jacobsthal numbers, sums of squares.

I. Introduction

The Jacobsthal and Jacobsthal –Lucas sequences J_n and j_n are defined by the recurrence relations

$$J_0 = 0, J_1 = 1, J_n = J_{n-1} + 2J_{n-2}$$
 for $n \ge 2$. -----(1)

$$j_0 = 2, j_1 = 1, \ j_n = j_{n-1} + 2j_{n-2} \text{ for } n \ge 2.$$
 (2)

Applications of these two sequences to curves are given in [1]. Sequence (1) appears in [2] but (2) does not. From (1) and (2) we thus have the following tabulation for the Jacobsthal numbers J_n and the Jacobsthal –Lucas sequences j_n .

n	0	1	2	3	4	5	6	7	8	9	10	
J_n	0	1	1	3	5	11	21	43	85	171	341	
İn	2	1	5	7	17	31	65	127	257	511	1025	
	XX /1 / 1		. 1.1					c 1		0.1		

When required we can extend these sequences through negative values of n by means of the recurrence (1) and (2). Observe that all the J_n and j_n except j_0 are odd by virtue of the definitions.

In [3], the Binet forms of Jacobsthal form are given as

$$J_n = \frac{\alpha^n - \beta^n}{3} = \frac{1}{3} [(2)^n - (-1)^n]$$

$$J_n = \alpha^n + \beta^n = [(2)^n + (-1)^n]$$

Considering Binet forms, Jacobsthal sequences can also be represented as

$$J_n = \frac{1}{3} \left[\left(2(\alpha + \beta) \right)^n - (\alpha \beta)^n \right] = \frac{1}{3} \left[(2)^n - (-1)^n \right]$$

$$j_n = \left[\left(2(\alpha + \beta) \right)^n + (\alpha \beta)^n \right] = \left[(2)^n + (-1)^n \right]$$

Based on this construction, we obtain some identities.

Proposition 1.

For every $n \ge 0$ the following equality holds $J_n^2 + J_{n+1}^2 = \frac{1}{9} \left[(\alpha - \beta)^2 2^{2n} + 2^{n+1} (\alpha \beta)^n + 2(\alpha + \beta) \right]$

Proof.

$$J_{n}^{2} = \frac{1}{9} \left[\left(2(\alpha + \beta) \right)^{n} - (\alpha \beta)^{n} \right]^{2}$$
$$J_{n+1}^{2} = \frac{1}{9} \left[\left(2(\alpha + \beta) \right)^{n+1} - (\alpha \beta)^{n+1} \right]^{2}$$

$$J_n^2 + J_{n+1}^2 = \frac{1}{9} \begin{cases} 2^{2n} (\alpha + \beta)^{2n} \left[1 + \left(2(\alpha + \beta) \right)^2 \right] + (\alpha \beta)^{2n} [1 + (\alpha \beta)^2] - \\ 2(2(\alpha + \beta))^n (\alpha \beta)^n [1 + (2(\alpha + \beta))(\alpha \beta)] \end{cases}$$

$$J_n^2 + J_{n+1}^2 = \frac{1}{9} [(\alpha - \beta)^2 2^{2n} + 2^{n+1} (\alpha \beta)^n + 2(\alpha + \beta)].$$

Remark:

For every $n \ge 0$ the following equality holds

DOI: 10.9790/5728-11646264

$$j_n^2 + j_{n+1}^2 = \left[(\alpha - \beta)^2 2^{2n} - 2^{n+1} (\alpha \beta)^n + 2(\alpha + \beta) \right].$$

Proposition 2.

For every
$$n \ge 0$$

 $J_n^2 + J_{n+1}^2 + j_n^2 + j_{n+1}^2 = \frac{1}{9} [5 \cdot 2^{2n+1} (\alpha - \beta)^2 - 2^{n+4} (\alpha \beta)^n + 5 \cdot 2^2 (\alpha + \beta)]$

Proof.

$$\begin{aligned} J_n^2 + J_{n+1}^2 + j_n^2 + j_{n+1}^2 \\ &= \frac{1}{9} [(\alpha - \beta)^2 2^{2n} + 2^{n+1} (\alpha \beta)^n + 2(\alpha + \beta)] + [(\alpha - \beta)^2 2^{2n} - 2^{n+1} (\alpha \beta)^n + 2(\alpha + \beta)] \\ &= \frac{1}{9} [5 \cdot 2^{2n+1} (\alpha - \beta)^2 - 2^{n+4} (\alpha \beta)^n + 5 \cdot 2^2 (\alpha + \beta)] \end{aligned}$$

Proposition 3:

For every $n \ge 0$

$$\sum_{n=1}^{n} (J_{n+1}^2 - J_n^2) = J_{n+1}^2 - 1.$$

Proof.

$$\begin{split} \Sigma_{n=1}^{n}(J_{n+1}^{2}-J_{n}^{2}) &= \frac{1}{9} \Big[\Big(2(\alpha+\beta) \Big)^{2n+2} + (\alpha\beta)^{2n+2} - 2 \Big(2(\alpha+\beta) \Big)^{n+1} (\alpha\beta)^{n+1} \Big] \\ &\quad -\frac{1}{9} \Big[\Big(2(\alpha+\beta) \Big)^{2} + (\alpha\beta)^{2} - 2 \Big(2(\alpha+\beta) \Big)^{1} (\alpha\beta)^{1} \Big] \\ &= \frac{1}{9} \Big[\Big(2(\alpha+\beta) \Big)^{n+1} - (\alpha\beta)^{n+1} \Big]^{2} - \frac{1}{9} \Big[\Big(2(1) \Big)^{1} - (-1)^{1} \Big]^{2} \\ &\sum_{n=1}^{n} (J_{n+1}^{2} - J_{n}^{2}) = J_{n+1}^{2} - 1. \end{split}$$

Proposition 4.

For every $n \ge 0$

$$\sum_{n=1}^{n} J_n^2 = \frac{1}{9} \left[\frac{4}{3} (2^{2n} - 1)n + 2 \sum_{n=1}^{n} (-2)^n \right]$$

Proof.

By the formula
$$J_k = \frac{2^k - (-1)^k}{3}$$
 we have

$$\sum_{n=1}^n J_n^2 = \frac{1}{9} \{ [(2^2)^1 + (2^2)^2 + (2^2)^3 + \dots + (2^2)^n] + n - 2[2(-1) + 2^2(-1)^2 + 2^3(-1)^3 + \dots + 2^n(-1)^n] \}$$

$$= \frac{1}{9} \left[\frac{(2^2)^1((2^2)^n - 1)}{2^2 - 1} + n + 2\sum_{n=1}^n (-2)^n \right]$$

$$\sum_{n=1}^n J_n^2 = \frac{1}{9} \left[\frac{4}{3} (2^{2n} - 1) + n + 2\sum_{n=1}^n (-2)^n \right]$$

Proposition 5.

For every
$$n \ge 0$$
, $i \ge 0$ the following equality holds
$$J_{2n+2i} = 2^{2i+2}J_{2n-2} + \frac{2^{2i+2}-1}{3}.$$

Proof.

By the formula
$$J_k = \frac{2^k - (-1)^k}{3}$$
 we have
 $RHS = 2^{2i+2} \left(\frac{(2)^{2n-2} - (-1)^{2n-2}}{3} \right) + \frac{2^{2i+1} - 1}{3}$

DOI: 10.9790/5728-11646264

$$= \frac{2^{2n+2i} - 2^{2i+2}(-1)^{2n-2}}{3} + \frac{2^{2i+2} - 1}{3}$$
$$= \frac{2^{2n+2i} - (-1)^{2n+2i}}{3}$$
$$J_{2n+2i} = 2^{2i+1}J_{2n-2} + \frac{2^{2i+1} - 1}{3}.$$

Proposition 6.

ь

ь

For every $n \ge 0$, $i \ge 0$ the following equality holds

$$J_{2n+2i+1} = 2^{2i+3}J_{2n-2} + \frac{2^{2i+3}+1}{3}.$$

Proof.

By the formula
$$J_k = \frac{2^{2n-(-1)^n}}{3}$$
 we have

$$LHS = \frac{2^{2n+2i+1} - (-1)^{2n+2i+1}}{3}$$

$$= \frac{2^{2i+3} \cdot 2^{2n-2} - (-1)^{2i+3} (-1)^{2n-2}}{3}$$

$$= \frac{2^{2i+3}}{3} [2^{2n-2} - (-1)^{2n-2}] + \frac{2^{2i+3}}{3} (-1)^{2n-2} - \frac{(-1)^{2i+3} (-1)^{2n-2}}{3}$$

$$J_{2n+2i+1} = 2^{2i+3} J_{2n-2} + \frac{2^{2i+3}+1}{3}.$$

Proposition 7.

For every
$$n \ge 0$$
, $i \ge 0$ the following equality holds
$$J_{2n+2i} + J_{2n+2i+1} = 2^{2i+2} [3J_{2n-2} + 1].$$

$$\begin{split} J_{2n+2i} + J_{2n+2i+1} &= 2^{2i+2} J_{2n-2} + \frac{2^{2i+2} - 1}{3} + 2^{2i+3} J_{2n-2} + \frac{2^{2i+3} + 1}{3} \\ &= 2^{2i+2} J_{2n-2} [1+2] + \frac{2^{2i+2}}{3} [1+2] \\ &= 3.2^{2i+2} J_{2n-2} + 2^{2i+2} \\ J_{2n+2i} + J_{2n+2i+1} &= 2^{2i+2} [3J_{2n-2} + 1] \,. \end{split}$$

Proposition 8.

For every
$$n \ge 0, k \ge 0$$
 the following equality holds
 $j_{n+k+2} j_{n+k+3} - j_{n+k} j_{n+k+1} = 3.2^{n+k} [2^{n+k+3} + 3 J_{n+k+1}]$

$$\begin{split} j_{n+k} j_{n+k+1} &= 2^{2n+2k+1} + 2^{n+k} (-1)^{n+k} + (-1)^{2n+2k+1} \\ j_{n+k+2} j_{n+k+3} &= 2^{2n+2k+5} + 2^{n+k+2} (-1)^{n+k+2} + (-1)^{2n+2k+5} \\ j_{n+k+2} j_{n+k+3} - j_{n+k} j_{n+k+1} &= 2^{2n+2k+1} (2^4 - 1) + 2^{n+k} (-1)^{n+k} (2^2 (-1)^2 - 1) + (-1)^{2n+2k+1} ((-1)^4 - 1) \\ &= 15.2^{2n+2k+1} + 3.2^{n+k} (-1)^{n+k} \\ &= 12.2^{2n+2k+1} + 3.2^{n+k} [2^{n+k+1} - (-1)^{n+k+1}] \\ &= 12.2^{2n+2k+1} + 9.2^{n+k} J_{n+k+1} \\ j_{n+k+2} j_{n+k+3} - j_{n+k} j_{n+k+1} &= 3.2^{n+k} [2^{n+k+3} + 3 J_{n+k+1}] \end{split}$$

References

[1] [2]

- A.F.Horadam, "Jacobsthal and pell curves" The Quartely 26.I(1988):79-83. N.J.A.Sloane, A Handbook of integer Sequences.NewYork:Academic Press,1973.
- A.F.Horadam, Jacobsthal Representation Numbers, Unversity of New England, Armidale, 2351, Australia. [3]
- [4] Zvonko Cerin, Sums of Squares and Products of Jacobsthal Numbers, Journal of integer Sequences, Vol. 10 (2007)