Sums of Squares of Jacobsthal Numbers

A.Gnanam ${ }^{1}$, B.Anitha ${ }^{2}$
${ }^{1}$ (Assistant Professor,Department of Mathematics,Government Arts College-Trichy-22,India)
${ }^{2}$ (Research Scholar,Department of Mathematics,Government Arts College-Trichy-22,India)

Abstract: There are many identities on Jacobsthal sequence of numbers. Here we try tofind some more identities on Sums of Squares of Consecutive Jacobsthal numbers using Binet forms.

Keywords: Jacobsthal numbers, sums of squares.

I. Introduction

The Jacobsthal and Jacobsthal -Lucas sequences I_{n} and j_{n} are defined by the recurrence relations

$$
\begin{align*}
& J_{0}=0, J_{1}=1, J_{n}=J_{n-1}+2 J_{n-2} \text { for } n \geq 2 \text {. } \tag{1}\\
& j_{0}=2, j_{1}=1, j_{n}=j_{n-1}+2 j_{n-2} \text { for } n \geq 2 \text {. } \tag{2}
\end{align*}
$$

Applications of these two sequences to curves are given in [1]. Sequence (1) appears in [2] but (2) does not. From (1) and (2) we thus have the following tabulation for the Jacobsthal numbers I_{n} and the Jacobsthal-Lucas sequences i_{n}.

n	0	1	2	3	4	5	6	7	8	9	10	\ldots
η_{n}	0	1	1	3	5	11	21	43	85	171	341	\ldots
i_{n}	2	1	5	7	17	31	65	127	257	511	1025	\ldots

When required we can extend these sequences through negative values of n by means of the recurrence (1) and (2). Observe that all the J_{n} and j_{n} except j_{0} are odd by virtue of the definitions.

In [3], the Binet forms of Jacobsthal form are given as

$$
\begin{gathered}
l_{n}=\frac{a^{n i n}-\beta^{n}}{3}=\frac{1}{3}\left[(2)^{n}-(-1)^{n}\right] \\
i_{n}=\alpha^{n}+\beta^{n}=\left[(2)^{n}+(-1)^{n}\right]
\end{gathered}
$$

Considering Binet forms, Jacobsthal sequences can also be represented as

$$
\begin{gathered}
l_{n}=\frac{1}{a}\left[(2(\alpha+\beta))^{n}-(\alpha \beta)^{n}\right]=\frac{1}{a}\left[(2)^{n}-(-1)^{n}\right] \\
i_{n}=\left[(2(\alpha+\beta))^{n}+(\alpha \beta)^{n}\right]=\left[(2)^{n}+(-1)^{n}\right]
\end{gathered}
$$

Based on this construction, we obtain some identities.

Proposition 1.

$$
\text { For every } n \geq 0 \text { the following equality holds }
$$

$$
I_{n}^{2}+J_{n+1}^{2}=\frac{1}{9}\left[(\alpha-\beta)^{2} 2^{2 n}+2^{n+1}(\alpha \beta)^{n}+2(\alpha+\beta)\right]
$$

Proof.

$$
\begin{aligned}
& I_{n}^{2}=\frac{1}{9}\left[(2(\alpha+\beta))^{n}-(\alpha \beta)^{n}\right]^{2} \\
& I_{n+1}^{2}=\frac{1}{9}\left[(2(\alpha+\beta))^{n+1}-(\alpha \beta)^{n+1}\right]^{2} \\
& I_{n}^{2}+J_{n+1}^{2}=\frac{1}{9}\left\{\begin{array}{c}
\left.2^{2 n}(\alpha+\beta)^{2 n}\left[1+(2(\alpha+\beta))^{2}\right]+(\alpha \beta)^{2 n}\left[1+(\alpha \beta)^{2}\right]-\right) \\
2(2(\alpha+\beta))^{n}(\alpha \beta)^{n}[1+(2(\alpha+\beta))(\alpha \beta)]
\end{array}\right\} \\
& \quad I_{n}^{2}+J_{n+1}^{2}=\frac{1}{9}\left[(\alpha-\beta)^{2} 2^{2 n}+2^{n+1}(\alpha \beta)^{n}+2(\alpha+\beta)\right] .
\end{aligned}
$$

Remark:

For every $n \geq 0$ the following equality holds

$$
i_{n}^{2}+j_{n+1}^{2}=\left[(\alpha-\beta)^{2} 2^{2 n}-2^{n+1}(\alpha \beta)^{n}+2(\alpha+\beta)\right]
$$

Proposition 2.

$$
\begin{aligned}
& \text { For every } n \geq 0 \\
& I_{n}^{2}+J_{n+1}^{2}+j_{n}^{2}+j_{n+1}^{2}=\frac{1}{9}\left[5.2^{2 n+1}(\alpha-\beta)^{2}-2^{n+4}(\alpha \beta)^{n}+5.2^{2}(\alpha+\beta)\right]
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& l_{n}^{2}+J_{n+1}^{2}+j_{n}^{2}+j_{n+1}^{2} \\
& =\frac{1}{9}\left[(\alpha-\beta)^{2} 2^{2 n}+2^{n+1}(\alpha \beta)^{n}+2(\alpha+\beta)\right]+\left[(\alpha-\beta)^{2} 2^{2 n}-2^{n+1}(\alpha \beta)^{n}+2(\alpha+\beta)\right] \\
& \quad=\frac{1}{9}\left[5.2^{2 n+1}(\alpha-\beta)^{2}-2^{n+4}(\alpha \beta)^{n}+5.2^{2}(\alpha+\beta)\right]
\end{aligned}
$$

Proposition 3:

For every $n \geq 0$

$$
\sum_{n=1}^{n}\left(J_{n+1}^{2}-J_{n}^{2}\right)=J_{n+1}^{2}-1
$$

Proof.

$$
\begin{aligned}
\sum_{n=1}^{n}\left(I_{n+1}^{2}-J_{n}^{2}\right)= & \frac{1}{9}\left[(2(\alpha+\beta))^{2 n+2}+(\alpha \beta)^{2 n+2}-2(2(\alpha+\beta))^{n+1}(\alpha \beta)^{n+1}\right] \\
& \quad-\frac{1}{9}\left[(2(\alpha+\beta))^{2}+(\alpha \beta)^{2}-2(2(\alpha+\beta))^{1}(\alpha \beta)^{1}\right] \\
= & \frac{1}{9}\left[(2(\alpha+\beta))^{n+1}-(\alpha \beta)^{n+1}\right]^{2}-\frac{1}{9}\left[(2(1))^{1}-(-1)^{1}\right]^{2} \\
\sum_{n=1}^{n}\left(J_{n+1}^{2}-J_{n}^{2}\right)= & J_{n+1}^{2}-1 .
\end{aligned}
$$

Proposition 4.
For every $n \geq 0$

$$
\sum_{n=1}^{n} J_{n}^{2}=\frac{1}{9}\left[\frac{4}{3}\left(2^{2 n}-1\right) n+2 \sum_{n=1}^{n}(-2)^{n}\right]
$$

Proof.

By the formula $l_{k}=\frac{2^{k}-(-1)^{k}}{a}$ we have
$\sum_{n=1}^{n} J_{n}^{2}=\frac{1}{9}\left\{\left[\left(2^{2}\right)^{1}+\left(2^{2}\right)^{2}+\left(2^{2}\right)^{a}+\cdots+\left(2^{2}\right)^{n}\right]+n-2\left[2(-1)+2^{2}(-1)^{2}+2^{3}(-1)^{a}+\cdots+2^{n}(-1)^{n}\right]\right\}$ $=\frac{1}{9}\left[\frac{\left(2^{2}\right)^{1}\left(\left(2^{2}\right)^{n}-1\right)}{2^{2}-1}+n+2 \sum_{n=1}^{n}(-2)^{n}\right]$
$\sum_{n=1}^{n} J_{n}^{2}=\frac{1}{9}\left[\frac{4}{3}\left(2^{2 n}-1\right)+n+2 \sum_{n=1}^{n}(-2)^{n}\right]$

Proposition 5.

$$
\text { For every } n \geq 0, i \geq 0 \text { the following equality holds }
$$

$$
I_{2 n+2 i}=2^{2 i+2} J_{2 n-2}+\frac{2^{2 i+2}-1}{a}
$$

Proof.

$$
\text { By the formula } l_{k}=\frac{2^{k}-(-1)^{k}}{a} \text { we have }
$$

$$
R H S=2^{2 i+2}\left(\frac{(2)^{2 n-2}-(-1)^{2 n-2}}{3}\right)+\frac{2^{2 i+1}-1}{3}
$$

$$
\begin{aligned}
& =\frac{2^{2 n+2 n}-2^{2 n+2}(-1)^{2 n-2}}{3}+\frac{2^{2 n+2}-1}{3} \\
& =\frac{2^{2 n+2 n}-(-1)^{2 n+2 n}}{3} \\
J_{2 n+2 i} & =2^{2 i+1} J_{2 n-2}+\frac{2^{2 i+1}-1}{a}
\end{aligned}
$$

Proposition 6.

For every $n \geq 0, i \geq 0$ the following equality holds

$$
I_{2 n+2 i+1}=2^{2 i+3} J_{2 n-2}+\frac{2^{2 i+3}+1}{a}
$$

Proof.

By the formula $l_{k}=\frac{2^{k}-(-1)^{k}}{a}$ we have

$$
\begin{aligned}
\text { LHS } & =\frac{2^{2 n+2 i+1}-(-1)^{2 n+2 n+1}}{3} \\
& =\frac{2^{2 i+a} \cdot 2^{2 n-2}-(-1)^{2 i+a}(-1)^{2 n-2}}{3} \\
& =\frac{2^{2 i+3}}{a}\left[2^{2 n-2}-(-1)^{2 n-2}\right]+\frac{2^{2 i+3}}{a}(-1)^{2 n-2}-\frac{(-1)^{2 i+3}(-1)^{2 n-2}}{a} \\
J_{2 n+2 i+1} & =2^{2 i+3} J_{2 n-2}+\frac{2^{2 i+3}+1}{a} .
\end{aligned}
$$

Proposition 7.

For every $n \geq 0, i \geq 0$ the following equality holds

Proof.

$$
J_{2 n+2 i}+J_{2 n+2 i+1}=2^{2 i+2}\left[3 J_{2 n-2}+1\right]
$$

$$
\begin{aligned}
I_{2 n+2 i}+J_{2 n+2 i+1}= & 2^{2 i+2} J_{2 n-2}+\frac{2^{2 n+2}-1}{3}+2^{2 i+2} J_{2 n-2}+\frac{2^{2 i+a}+1}{3} \\
& =2^{2 i+2} J_{2 n-2}[1+2]+\frac{2^{2 i+2}}{3}[1+2] \\
& =3.2^{2 i+2} J_{2 n-2}+2^{2 i+2} \\
I_{2 n+2 i}+J_{2 n+2 i+1} & =2^{2 i+2}\left[3 J_{2 n-2}+1\right] .
\end{aligned}
$$

Proposition 8.

$$
\text { For every } n \geq 0, k \geq 0 \text { the following equality holds }
$$

$$
i_{n+k+2} j_{n+k+1}-j_{n+k} j_{n+k+1}=3.2^{n+k}\left[2^{n+k+a}+3 j_{n+k+1}\right]
$$

Proof .

$$
i_{n+k} j_{n+k+1}=2^{2 n+2 k+1}+2^{n+k}(-1)^{n+k}+(-1)^{2 n+2 k+1}
$$

$$
j_{n+k+2} j_{n+k+3}=2^{2 n+2 k+5}+2^{n+k+2}(-1)^{n+k+2}+(-1)^{2 n+2 k+5}
$$

$$
j_{n+k+2} j_{n+k+1}-j_{n+k} j_{n+k+1}=2^{2 n+2 k+1}\left(2^{4}-1\right)+2^{n+k}(-1)^{n+k}\left(2^{2}(-1)^{2}-1\right)+(-1)^{2 n+2 k+1}\left((-1)^{4}-1\right)
$$

$$
=15 \cdot 2^{2 n+2 k+1}+3 \cdot 2^{n+k}(-1)^{n+k}
$$

$$
=12 \cdot 2^{2 n+2 k+1}+3.2^{n+k}\left[2^{n+k+1}-(-1)^{n+k+1}\right]
$$

$$
=12 \cdot 2^{2 n+2 k+1}+9.2^{n+k} J_{n+k+1}
$$

$$
j_{n+k+2} j_{n+k+1}-j_{n+k} j_{n+k+1}=3.2^{n+k}\left[2^{n+k+1}+3 j_{n+k+1}\right]
$$

References

[1] A.F.Horadam, "Jacobsthal and pell curves" The Quartely 26.I(1988):79-83.
[2] N.J.A.Sloane, A Handbook of integer Sequences.NewYork:Academic Press,1973.
[3] A.F.Horadam, Jacobsthal Representation Numbers,Unversity of New England,Armidale, 2351,Australia.
[4] Zvonko Cerin, Sums of Squares and Products of Jacobsthal Numbers,Journal of integer Sequences,Vol. 10 (2007)

