Stochastic Analysis and Simulation Studies of Time to Hospitalization and Hospitalization Time with Prophylactic Treatment for Diabetic Patient with Two Failing Organs

Rajkumar A1, Gajivaradhan P2, Ramanarayanan R3
1Assistant Professor of Mathematics, Srimang Engineering College, Vepampattu, Thiruvarur, 602024, India.
2Principal & Head Department of Mathematics, Pachaiyappas College, Chennai, 600030, India.
3Professor of Mathematics Retired, Vellore Institute of Technology, Chennai, India.

Abstract: Diabetic mellitus is a chronic disease of pancreatic origin which is not fully curable once a person becomes diabetic. This paper assumes that one organ A of a diabetic person is exposed to organ failure due to a two phase risk process and another organ B has a random failure time. Two models are treated. In model I, his hospitalization for diabetes starts when any one of the organs A or B fails or when prophylactic treatment starts after an exponential time. In model II, his hospitalization for diabetes starts when the two organs A and B are in failed state or when prophylactic treatment starts after an exponential time. The expected time to hospitalization for treatment and expected treatment time are obtained for numerical studies. Simulation studies are under taken using linear congruential generator and minimum value methods. EC distribution is considered for the general distribution of life time of organ B since it is the best approximation for a general distribution and Erlang distributions are considered for hospital stage treatment times. Random values of all the variables are generated to present simulated values of time to hospitalization and hospitalization times for various parameter values of time to prophylactic treatment.

Keywords: Diabetic mellitus, Prophylactic treatment, PH phase 2 distribution, Erlang-Coxian 2 distribution, Simulation study, Linear congruential generator.

I. Introduction

In Medical Science studies and real life situations, prevention of the disease is given very much importance as that would prevent loss of life. Several issues on risk factors of diabetes mellitus have been analyzed by Bhattacharya S.K., Biswas R., Ghosh M.M., and Banerjee in [1]. Foster D.W., Fauci A.S., Braunwald E., Isselbacher K.J., Wilson J.S., and Martin J.B and Kasper D.L have studied diabetes mellitus in [2]. Kannell W.B and McGee D.L [3] have analyzed Diabetes and Cardiovascular Risk Factors. King H, Aubert R.E and Herman W.H in [4] have concentrated on the global burden of diabetes during the period 1995-2025. King H and Rewers M [5] have presented global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. Mathematical studies have been presented by Usha and Eswariprem [6] where they have focused their discussions on the models with metabolic disorder. Eswariprem, Ramanarayanan and Usha [7] have analyzed such models with prophylactic treatment for the disease. Mathematical models play a great and distinctive role in this area. Any study with prophylactic treatment will be very beneficial to the society. Moreover cure from the disease after treatment is time consuming and above all seldom achieved in many cases. This paper concentrates on situations of prophylactic treatment for the disease when one organ A of a person is exposed to failure due to a two phase failure process and another organ B fails after a random time. Recent advancements in Probability, Operations Research and Simulation methods are utilized for the presentation of the results. Analyzing real life stochastic models researchers do collect data directly from the source/hospitals (primary data) or use secondary data from research organizations or use simulated data for studies. Simulation studies are more suitable in this area since in most of the cases in general, hospitable real life data may not be sufficiently available and at times they may heavily depend on the biased nature of the data collectors. They may vary hospital to hospital and they may not be genuine enough for the study since many other factors such as the quality of nursing and medical treatments provided to the patients by hospitals are involved. The alertness of the patients in expressing the symptoms and timely assistance of insurance and finance agencies involved may play always the leading role in providing proper treatment. These are necessary to generate perfect and genuine data. Since the reputation of many connected organizations are involved, there may not be anybody to take the responsibility of the perfectness of the data provided. In this area not much of significant simulation studies are available or taken up so far at any depth. For simulation analysis models with general random variables present real life-like situations and results. It is well known that any general distribution may be well approximated by Erlang-Coxian 2 (EC) Phase type distribution and the details of the same are presented by T. Osogami and M.H. Balter [8]. For the simulation analysis here, Martin Haugh [9] results
on minimum value methods and Law and Kelton methods using Hull and Dobell results [10] are utilized to generate uniform and all other random values required.

In this paper two models are treated. In model I, the person is provided treatment when any one of the organs A or B fails or when he is admitted for prophylactic treatment. In model II, he is provided treatment when the two organs A and B are in failed state or when he is admitted for prophylactic treatment. In real life situations, it is often seen that the failure of organ A producing insulin (pancreatic failure) may not be noticed by the patients until organ B fails (kidney failure) or organ B failure (kidney failure) may not be noticed until organ A fails (pancreatic failure) and the treatment begins when two organs A and B are in failed state. This situation arises when the patient is unable to identify and reveal the symptoms on time for treatment. This case is treated in the model II. The joint Laplace-Stieltjes transform of time to hospitalization for treatment and hospital treatment time, the expected time to hospitalization for treatment and expected treatment time for the models are derived. Numerical examples are studied assuming exponential life time for organ B. Simulation studies are provided considering Erlang-Coxian 2 life time for organ B and Erlang treatment times for the two models. Varying the parameter values of time to prophylactic treatment several simulated values are generated for time to hospitalization and hospitalization times.

II. Model I: One Organ Failure And Prophylactic Treatment

The general assumptions of the model I studied are given below.

2.1. Assumptions

(i) Affected organ A segregating insulin of a patient functions in two phases of damaged levels namely damaged level 1 (phase 1) and damaged level 2 (phase 2) where level 1 is considered to be a better level of the two with lesser transition rates to level 2 and lesser failure rate. Due to pre-hospital medication the organ A may move to level 1 from level 2 and due to negligence it may move to level 2 from level 1. The failed level of the organ A is level 3. The transition rates of the organ A to the failed level 3 from level 1 and from level 2 are respectively \(\lambda_1 \) and \(\lambda_2 \) with \(\lambda_2 > \lambda_1 \). The transition rates from level 1 to level 2 is \(\mu_1 \) and from level 2 to level 1 is \(\mu_2 \). At time 0 the organ level is 1 and let the organ A life time also be denoted by \(\alpha \).

(ii) Another organ B of the person has general life time with cumulative distribution function (Cdf) \(F_B(x) \).

(iii) Independent of the status of the organs the person may be admitted for prophylactic treatment in a random time with exponential distribution with parameter \(\alpha \).

(iv) The hospitalization begins when any one of the two organs fails or the prophylactic treatment starts.

(v) The hospital treatment time of organ A and treatment time of the organ B are random variables \(H_A \) and \(H_B \) with Cdfs \(H_A(x) \) and \(H_B(x) \) respectively and the prophylactic treatment time in the hospital is a random variable \(H_3 \) with Cdf \(H_3(x) \).

2.2. Analysis

To study the above model the probability distribution of time to failure of the organ A from the level 1 at time 0 is to be obtained. Levels 1 and 2 of the organ A may be considered as phases 1 and 2 respectively of PH phase 2 distribution. Considering the hospitalization as absorbing state 3, the infinitesimal generator describing the transitions is given by

\[
Q = \begin{bmatrix}
-\left(\lambda_1 + \mu_1\right) & \mu_1 & \lambda_1 \\
\mu_2 & -\left(\lambda_2 + \mu_2\right) & \lambda_2 \\
0 & 0 & 0
\end{bmatrix}
\]

(1)

Various transition probabilities may be derived as follows. Before absorption, the organ A may be in state 1 or 2. Let \(P_{ij}(t) = P \) (At time t the organ A is in level j and it has not failed during \((0, t) / at time 0 it is in level i)\).

(2)

(ii) The probability \(P_{1,1}(t) \) may be written considering the two possibilities that (i) the organ A may remain in level 1 during \((0, t)\) without a failure or (ii) it moves to level 2 at time u for \(u \in (0, t)\) and it is in level 1 at time t without a failure. It may be seen that

\[
P_{1,1}(t) = e^{-\left(\lambda_1 + \mu_1\right)t} + \int_0^t \mu_1 e^{-\left(\lambda_1 + \mu_1\right)u} P_{2,1}(t-u) \, du.
\]

(3)

Using similar arguments it may be seen that

\[
P_{2,1}(t) = \int_0^t \mu_2 e^{-\left(\lambda_2 + \mu_2\right)u} P_{1,1}(t-u) \, du
\]

(4)

\[
P_{1,2}(t) = \int_0^t \mu_1 e^{-\left(\lambda_1 + \mu_1\right)u} P_{2,2}(t-u) \, du
\]

(5)

\[
andP_{2,2}(t) = e^{-\left(\lambda_2 + \mu_2\right)t} + \int_0^t \mu_2 e^{-\left(\lambda_2 + \mu_2\right)u} P_{1,2}(t-u) \, du.
\]

(6)

The above four equations (3) to (6) may be solved using Laplace transform to obtain results as follows.

\[
P_{1,1}(t) = \left(2 \right) e^{-\lambda_1 t} \left(e^{\mu_1 t} + e^{-\mu_1 t}\right) + \left(\frac{\lambda_1}{\mu_2} \right) \left(2 \right) e^{-\lambda_1 t} \left(e^{\mu_1 t} + e^{-\mu_1 t}\right).
\]

(7)

(8)

DOI: 10.9790/5728-11630112 www.iosrjournals.org 2 | Page
Using equation (17) the Laplace transform of the pdf of the hospitalization time \(H \) may be obtained by taking \(E(T) = 0 \) in equation (17).

\[
P_{1,2}(t) = \left(\frac{1}{2} \right) e^{-\alpha t} (e^{bt} + e^{-bt}) + \left(\frac{1}{4b} \right) (\lambda_1 - \lambda_2 + \mu_1 - \mu_2) e^{-\alpha t} (e^{bt} - e^{-bt}),
\]

\[
P_{2,1}(t) = \left(\frac{1}{2b} \right) e^{-\alpha t} (e^{bt} - e^{-bt}).
\]

Here \(a = \left(\frac{1}{2} \right) (\lambda_1 + \lambda_2 + \mu_1 + \mu_2); b = \left(\frac{1}{2} \right) \sqrt{(\lambda_1 - \lambda_2 + \mu_1 - \mu_2)^2 + 4\mu_1\mu_2} \) and \(a^2 - b^2 = \lambda_1\lambda_2 + \lambda_1\mu_2 + \lambda_2\mu_1. \)

The absorption rates from levels 1 and 2 as follows.

The probability density function (pdf) \(p_{1,3}(t) \) of time to failure of organ A, starting from level 1 at time 0 is written using the absorption rates from levels 1 and 2 as follows. For convenience let \(p_{1,3}(t) = f_{a}(t) \). After simplification

\[
p_{1,3}(t) = \lambda_1 p_{1,1}(t) + \lambda_2 p_{1,2}(t) = \left(\frac{a+b-\lambda_1}{2b} \right) (a-b)e^{-(a-b)t} - \left(\frac{a-b-\lambda_1}{2b} \right) (a+b)e^{-(a+b)t} = f_{a}(t).
\]

Its Cdf is \(F_{A}(t) = \int_{0}^{t} f_{a}(u) du = 1 - \left(\frac{a-b-\lambda_1}{2b} \right) e^{-(a-b)t} + \left(\frac{a-b-\lambda_1}{2b} \right) e^{-(a+b)t}. \)

To study the model I, the joint pdf of two variables (T, H) where variable T is the time to hospitalization which is the minimum of \(\{T, H\} \), the failure time of organ A. The time to prophylactic treatment and variable H is the hospitalization time where H=H1 or H2 or H3 according to treatment begins when Organ A or organ B fails or the patient is admitted for prophylactic treatment respectively. The joint pdf of (T, H) is \(f(x, y) = f_{a}(x)e^{-ax}g(x)h_{1}(y) + f_{b}(x)e^{-ax}g(x)h_{2}(y) + F_{B}(x)g(x) \).

(14)

Here \(\tilde{V}(x) = 1 - V(x) \) for any function \(V(x) \). The first term of the RHS of (14) is the pdf-part that the organ A fails before the failure of the organ B and before the completion of the time to prophylactic treatment and the hospitalization is provided for the failure of the organ A. The second term is the pdf-part that the organ B fails before the failure of organ A and before the completion of the time to prophylactic treatment and the hospitalization is provided for the failure of the organ B. The third term is the pdf-part that the patient is admitted for prophylactic treatment before the failures of organ A and organ B and the prophylactic treatment is provided. The double Laplace transform of the pdf of (T, H) is given by \(\mathcal{F}^{*}(\xi, \eta) = \int_{0}^{\infty} e^{-(x-\eta y)} f(x, y) dx dy. \)

(15)

Here \(* \) indicates Laplace transform. The equation (15) using the structure of equation (14) becomes a single integral.

\[
f^{*}(\xi, \eta) = \int_{0}^{\infty} e^{-\alpha x} f_{a}(x) e^{-\alpha x} \mathcal{F}_{B}(x) h_{1}^{*}(\eta) + \mathcal{F}_{A}(x) e^{-\alpha x} \mathcal{F}_{B}(x) h_{2}^{*}(\eta)
\]

Using the equations (12) and (13) the above integral (16) may be simplified as follows.

\[
f^{*}(\xi, \eta) = \left(\frac{a+b-\lambda_1}{2b} \right) e^{-\alpha x} \mathcal{F}_{B}(x) \left[\frac{\eta}{\alpha} + \frac{a}{\alpha} \right] \left(h_{1}^{*}(\eta) + \alpha h_{2}^{*}(\eta) \right)
\]

(17)

The Laplace transform of the pdf of the time to hospitalization T may be obtained after simplification by taking \(\eta = 0 \) in equation (17). \(f^{*}(\xi, 0) = 1 - \left(\frac{a+b-\lambda_1}{2b} \right) \mathcal{F}_{B}^{*}(\xi + \alpha + a - b) + \left(\frac{a+b-\lambda_1}{2b} \right) \mathcal{F}_{B}^{*}(\xi + \alpha + a - b). \)(18)

\[E(T) = \frac{d}{d \eta} f^{*}(0, \eta) \] gives \(E(T) = \left(\frac{1}{2b} \right) \left(a+b-\lambda_1 \right) \mathcal{F}_{B}^{*}(\alpha + a - b) - \frac{1}{2b} \left(a+b-\lambda_1 \right) \mathcal{F}_{B}^{*}(\alpha + a + b). \)

(19)

Using equation (17) the Laplace transform of the pdf of the hospitalization time H may be obtained by taking \(\xi = 0 \).

\[
f^{*}(0, \eta) = \left(\frac{a+b-\lambda_1}{2b} \right) \mathcal{F}_{B}^{*}((a + a - b)(a-b) h_{1}^{*}(\eta) + ah_{2}^{*}(\eta) - (a + a + b) h_{2}^{*}(\eta))
\]

(20)

\[E(H) = \frac{d}{d \eta} f^{*}(0, \eta) \] gives \(E(H) = \left(\frac{a+b-\lambda_1}{2b} \right) \mathcal{F}_{B}^{*}((a + a - b)(a-b) E(H_{1}) + aE(H_{2}) -(a + a - b)E(H_{2})]
\]

(21)

Inversion of Laplace transform of (18) and (20) are straightforward. The Cdf of time to hospitalization T is \(P(T \leq t) = F_{T}(t) = 1 - \left(\frac{a+b-\lambda_1}{2b} \right) e^{-(a+b)t} + \left(\frac{1}{2b} \right) (a+b-\lambda_1) \mathcal{F}_{B}(t) e^{-(a+b)t}. \)

(22)

The Cdf of hospitalization time H is given below.

\[
P(H \leq t) = \left(\frac{a+b-\lambda_1}{2b} \right) \mathcal{F}_{B}^{*}((a + a - b)(a-b) H_{1}(t) + ah_{2}(t) - (a + a - b) H_{2}(t))
\]

(23)

2.3. Special cases:
(i) When the life time of the organ B has exponential distribution with parameter \(\theta \) then
\[
E(T) = \frac{1}{2b} (a + b - \lambda_1) \left(\frac{1}{\theta + a + a - b'} \right) + \frac{1}{2b} (a - b - \lambda_1) \left(\frac{1}{\theta + a + a + b} \right).
\] (24)

To write down \(E(H) \), \(\tilde{F}_B(s) \) may be replaced by \(\frac{1}{s} \) for (i) \(s = a + a - b \) and (ii) \(s = a + a + b \) as the case may be.

(ii) Let the life of the organ \(B \) have EC distribution with parameter \(\alpha, \theta_1, \theta_2, p \) which is the Cdf of the sum of Erlang \(k \), \(\theta \) and Coxian-2 \((\theta_1, \theta_2, p) \) random variables where the Erlang has \(k \) phases with parameter \(\theta \) and the Coxian 2 has the infinitesimal generator describing the transition as
\[
Q^* = \begin{bmatrix}
-\theta_1 & p\theta_1 & q\theta_1 \\
0 & -\theta_2 & \theta_2 \\
0 & 0 & 0
\end{bmatrix}
\] (25)

for \(p + q = 1 \) with starting phase 1. By comparing \(Q^* \) with \(Q \) in (1) the pdf of Coxian 2 may be written as
\[
g_1(x) = \frac{\theta_1 \theta_2}{\theta_1 - \theta_2} \theta_2 e^{-\theta_2 x} + \frac{p \theta_1}{\theta_1 - \theta_2} \theta_1 e^{-\theta_1 x} \quad \text{and} \quad g_1(x) = 1 - \left(\frac{\theta_1}{\theta_1 - \theta_2} \right) e^{-\theta_1 x} - \left(\frac{\theta_2}{\theta_1 - \theta_2} \right) e^{-\theta_2 x}.
\]

The Laplace transform of the Coxian 2 is
\[
\tilde{g}_1(s) = \left(\frac{\theta_1 - \theta_2}{\theta_1 - \theta_2} \right) + \frac{\theta_1}{\theta_1 - \theta_2} e^{-\theta_1 s} + \frac{\theta_2}{\theta_1 - \theta_2} e^{-\theta_2 s}.
\] (26)

The Cdf \(F_B(x) \) of organ \(B \) is the Cdf of the sum of Erlang and Coxian. So the Laplace transform of its pdf is
\[
\tilde{f}_B(s) = \left(\frac{\theta_1}{\theta_1 + \bar{a} + \bar{b}} \right) g_1(s).
\] (27)

Using the fact \(\tilde{F}_B(x) = 1 - F_B(x) \), the Laplace transform of \(\tilde{F}_B(x) \) is obtained from (26) and (27) as follows.
\[
\tilde{F}_B(s) = \frac{1 - e^{-\alpha s}}{1 + (\frac{\theta_1 - \theta_2}{\theta_1}) e^{-\theta_1 s} + (\frac{\theta_2}{\theta_1 - \theta_2}) e^{-\theta_2 s}}.
\] (28)
The expected time to hospitalization \(E(T) \) may be written considering equation (19) and (28) for \(s = a + a - b \) and \(s = a + a + b \) as per the case. To write down the expected hospitalization (treatment) time \(E(H) \), \(\tilde{F}_B(s) \) of equation (28) may be again used in (21) for \(s = a + a - b \) and \(s = a + a + b \) as per the case.

III. Model II: Both Organs Failure And Prophylactic Treatment

The general assumptions of the model II studied here are given below which is a variation of Model I. In real life situations in many cases it may be seen that due to ignorance and negligence the patient may not be sent for hospitalization unless both organs become failed. It is very common in many cases of patients unless another organ is affected the insulin/pancreas affected patient may not be aware of the lower insulin level/higher sugar level till a second organ gets affected.

3.1. Assumptions

(i) Affected organ \(A \) segregating insulin of a patient functions in two phases of damaged levels namely damaged level 1 (phase 1) and damaged level 2 (phase 2) where level 1 is considered to be a better level of the two with lesser transition rates to level 2 and lesser failure rate. Due to pre-hospital medication the organ \(A \) may moveto level 1 from level 2 and due to negligence it may move to level 2 from level 1. The failed level of the organ \(A \) is level 3. The transition rates of the organ \(A \) to the failed level 3 from level 1 and from level 2 are respectively \(\lambda_1 \) and \(\lambda_2 \) with \(\lambda_2 > \lambda_1 \). The transition rates from level 1 to level 2 is \(\mu_1 \) and from level 2 to level 1 is \(\mu_2 \). At time 0 the organ level is 1 and let the organ \(A \) life time also be denoted by \(A \).

(ii) Another organ \(B \) of the patient has general life time with Cdf \(F_B(x) \).

(iii) Independent of the status of the organs the patient may be admitted for prophylactic treatment in the hospital in a random time with exponential distribution with parameter \(\alpha \).

(iv) The hospitalization begins when the two organs are in failed state or the prophylactic treatment starts.

(v) The combined hospital treatment time of the two organs is a random variable \(H_A \) with Cdf \(H_A(x) \) and the prophylactic treatment time in the hospital is a random variable \(H_B \) with Cdf \(H_B(x) \).

3.2. Analysis

To study the model II, the joint pdf of two variables \((T, H) \) where \(T \) is the time to hospitalization and \(H \) is the hospitalization time is required. Here variable \(T \) is the minimum of \(\{ \text{Maximum of the life times of the two organs (A, B)} \) The time to prophylactic treatment \} and variable \(H \) is the hospitalization time = \(H_A \) or \(H_B \) according as the hospitalization begins when the two organs are in failed state or the patient is admitted for prophylactic treatment respectively. The joint pdf (of the \(T, H \)) is
\[
f(x, y) = e^{-\alpha x} [F_A(x) F_B(x) + f_A(x) F_B(x)] h_A(y) + (1 - F_A(x) F_B(x)) ae^{-\alpha y} h_B(y). \]

The first term (with the square bracket) of the RHS of (29) is the pdf-part that the two organs A and B fail before the completion of the time to prophylactic treatment and the hospitalization is provided for the failure of the organs. The second term is the pdf-part that the patient is admitted for prophylactic treatment before the failures of the two organs A and B and the hospitalization for the prophylactic treatment is provided. The double Laplace transform of \((T, H) \) is given by \(f^*(\xi, \eta) = \int_0^\infty \int_0^\infty e^{-\xi x - \eta y} f(x, y) \, dx \, dy \).

DOI: 10.9790/5728-11630112
The Cdf and the pdf of the organ A life time $F_A(x)$ and $f_A(x)= p_{1.3}(t)$ are derived in (13) and (12). Using them in (29) (30) becomes

\[f^*(\xi, \eta) = h^*_4(\eta)\left[f^*_B(\xi + \alpha) - \left(\frac{a+b-\lambda_1}{2b} \right) f^*_B(\xi + \alpha + a - b) + \left(\frac{a-b-\lambda_1}{2b} \right) f^*_B(\xi + \alpha + a + b) \right] + \frac{\lambda}{a+c} \left[h^*_4(\eta) \right]^{\frac{1}{a+c}} \cdot \left[F^*_B(\xi) - \left(\frac{a+b-\lambda_1}{2b} \right) F^*_B(\xi + \alpha - b) + \left(\frac{a-b-\lambda_1}{2b} \right) F^*_B(\xi + \alpha + b) \right]. \] (31)

The Laplace transform of the pdf of the time to hospitalization T may be obtained after simplification by taking $\eta = 0$ in (31).

\[f^*(\xi, 0) = \frac{\lambda}{a+c} \left[h^*_4(\eta) \right]^{\frac{1}{a+c}} \cdot \left[\left(\frac{a+b-\lambda_1}{2b} \right) F^*_B(\xi + \alpha + a - b) + \left(\frac{a-b-\lambda_1}{2b} \right) F^*_B(\xi + \alpha + a + b) \right] + \frac{\lambda}{a+c} \left(\frac{a+b-\lambda_1}{2b} \right) (a+b) \left[F^*_B(\xi) - \left(\frac{a+b-\lambda_1}{2b} \right) F^*_B(\xi + \alpha - b) + \left(\frac{a-b-\lambda_1}{2b} \right) F^*_B(\xi + \alpha + b) \right]. \] (32)

Using equation (31) the Laplace transform of the pdf of the hospitalization time H may be obtained by taking $\xi = 0$.

\[f^*(0, \eta) = \frac{\lambda}{a+c} \left[h^*_4(\eta) \right]^{\frac{1}{a+c}} \cdot \left[\left(\frac{a+b-\lambda_1}{2b} \right) f^*_B(\alpha + a - b) + \left(\frac{a-b-\lambda_1}{2b} \right) f^*_B(\alpha + a + b) \right] + \frac{\lambda}{a+c} \left(\frac{a+b-\lambda_1}{2b} \right) (a+b) \left[f^*_B(\alpha) - \left(\frac{a+b-\lambda_1}{2b} \right) f^*_B(\alpha + a - b) + \left(\frac{a-b-\lambda_1}{2b} \right) f^*_B(\alpha + a + b) \right]. \] (34)

Since $E(H) = \frac{d}{d\eta} f^*(0, \eta)$ for η_0.

\[E(H) = E(H_4) \left[\left(\frac{a+b-\lambda_1}{2b} \right) f^*_B(\alpha + a - b) + \left(\frac{a-b-\lambda_1}{2b} \right) f^*_B(\alpha + a + b) \right] + \frac{a e^\theta}{a+c} \left[h^*_4(\eta) \right]^{\frac{1}{a+c}} \cdot \left[F^*_B(\alpha) - \left(\frac{a+b-\lambda_1}{2b} \right) F^*_B(\alpha + a - b) + \left(\frac{a-b-\lambda_1}{2b} \right) F^*_B(\alpha + a + b) \right]. \] (35)

Inversion of Laplace transform of (32) and (34) are straightforward. The Cdf of the time to hospitalization is T

\[P(T \leq t) = F_T(t) = 1 - e^{-at} + \exp(-at). \] (36)

The Cdf of the hospitalization time H is given below.

\[P(H \leq t) = H_T(t) = \left(\frac{a+b-\lambda_1}{2b} \right) f^*_B(\alpha + a - b) + \left(\frac{a-b-\lambda_1}{2b} \right) f^*_B(\alpha + a + b) \]

\[+ \frac{a e^\theta}{a+c} \left[h^*_4(\eta) \right]^{\frac{1}{a+c}} \cdot \left[f^*_B(\alpha) - \left(\frac{a+b-\lambda_1}{2b} \right) f^*_B(\alpha + a - b) + \left(\frac{a-b-\lambda_1}{2b} \right) f^*_B(\alpha + a + b) \right]. \] (37)

3.3. Special cases:

(i) When the life time of organ B has exponential distribution with parameter θ then

\[E(T) = \frac{1}{(a + b - \lambda_1) \left(\frac{a}{a+b} \right) \left(\frac{b}{a+b} \right) \left(\frac{1}{a} \right)} + \frac{1}{b} \left(\frac{1}{a+b} \right) \left(\frac{a}{a+b} \right) \left(\frac{b}{a+b} \right). \] (38)

For writing E(H), \(f^*_B(s) \) may be replaced by \(\frac{\theta}{s(\theta + s)} \) and \(F^*_B(s) \) may be replaced by \(\frac{\theta}{s(\theta + s)} \) for (i) $s = \alpha$; (ii) $s = \alpha + a + b$ as the case may be.

(ii) When the life time of the organ B has the ECcdf with parameter set $(k, \theta_1, \theta_2, p)$ as in model I, then noting

\[F^*_B(s) = (f^*_B(s)/s) \left(\frac{\theta}{s(\theta + s)} \right)^k \left(\frac{\theta_1}{\theta_1 + \theta_2} \right) \left(\frac{\theta_2}{\theta_2 + \theta_1} \right) \] (39)

E(T) can be written using (33) and (39) for (i) $s = \alpha$; (ii) $s = \alpha + a - b$ and (iii) $s = \alpha + a + b$ as the case may be.

For writing E(H), equation (35) may be used where \(f^*_B(s) \) may be replaced by \(\frac{\theta e^{\theta + s}}{s(\theta + s)} \left(\frac{\theta_1}{\theta_1 + \theta_2} \right) \) and \(F^*_B(s) \) may be replaced by (39) for (i) $s = \alpha$; (ii) $s = \alpha + a - b$ and (iii) $s = \alpha + a + b$ as the case may be.

IV. Numerical And Simulation Studies:

4.1. Numerical Studies:

As an application of the results obtained numerical study is taken up to present the expected times (T) and E (H) for various parameters introduced for the two models.

Let $\lambda_1 = 1, \lambda_2 = 2, \mu_1 = 3, \mu_2 = 4$. Then from (11), $a=5, b=\sqrt{13}$. Let $\theta = 2b$, $\theta_1 = \frac{a+b-\lambda_1}{2b}$, $\theta_2 = \frac{a-b-\lambda_1}{2b}$, $\theta_3 = \frac{\sqrt{13}}{2b}$, $a^2 - b^2 = 12$.

The organ A has the Cdf of life time, \(F_A(t) = 1 - 1.054700196 e^{-1.4t} + 0.054700196 e^{-0.6t} \) withpdf \(f_A(t) = 1.476580274 t + 0.4704216856 t^2 \) with Median = 0.7470524036.

Let us assumethat the organ B has Cdf of life time

DOI: 10.9790/5728-11630112

www.iosrjournals.org
\(F(t) = 1 - e^{-\theta t} \) with \(\theta = 10 \).

Let the parameter of the (exponential) time to prophylactic treatment be \(\alpha = 0.5, 1, 1.5, 2 \) and 2.5.

Let the expected values of various treatment times be \(E(H_1) = 6 \), \(E(H_2) = 5 \), \(E(H_3) = 4 \), \(E(H_4) = 7 \) and \(E(H_5) = 6 \). E (T) and E (H) values are calculated using (19), (21), (33) and (35) and presented for various values of \(\alpha \) for the two models I and II in tables 1 and 2 respectively. The effect of variation of \(\alpha \) on E(T) and E(H) may be seen clearly.

Table 1. Model I Numerical Case for \(\alpha = 10 \)

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E(T))</td>
<td>0.085808581</td>
<td>0.082304527</td>
<td>0.079074253</td>
<td>0.076086957</td>
<td>0.073316283</td>
</tr>
<tr>
<td>(E(H))</td>
<td>5.056105611</td>
<td>5.012345679</td>
<td>4.972034716</td>
<td>4.934782609</td>
<td>4.900255754</td>
</tr>
</tbody>
</table>

Table 2. Model II Numerical Case for \(\alpha = 10 \)

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E(T))</td>
<td>0.560154152</td>
<td>0.443387173</td>
<td>0.366856628</td>
<td>0.312801932</td>
<td>0.272579671</td>
</tr>
<tr>
<td>(E(H))</td>
<td>6.719922924</td>
<td>6.556128287</td>
<td>6.449715058</td>
<td>6.374961357</td>
<td>6.318550823</td>
</tr>
</tbody>
</table>

4.2. Simulation Studies:

In the numerical study the general life time of the organ B is assumed to follow an exponential distribution. When the general life time of B has unknown distribution, the researcher has to fit the distribution using the data available (primary / secondary). The method is to find the first three moments from the data. When the first three moments are available it has been established that the EC distribution which is the distribution of the sum of Erlang \((k, \theta)\) and Coxian \((\theta_1, p, \theta_2)\) random variables is an excellent and more suitable approximation for any general distribution function using the method of comparison of first three moments by T. Osogamy and M.H.Balter [8] where the details of finding the exact EC distribution with its parameter values are also available. So the assumption and consideration of an EC distribution for the life time of organ B is ideal for simulation studies. Further such a study with EC distribution is almost a study on any general distribution.

The simulation of time to hospitalization is taken up here assuming the organ A has Phase 2 type life distribution, the organ B has EC life distribution with parameter set \(\{k, \theta, \theta_1, p, \theta_2\} \) and time to prophylactic treatment has exponential distribution with parameter \(\alpha \). As in the numerical case study the same values for organ A transition rates are assumed which gives the life time of organ A has Cdf

\[
\frac{\alpha}{\alpha + 1.054700196 e^{-1.4 t}} + 0.054700196 e^{-0.6 t} \quad \text{withpdf} \quad
f_A(t) = 1.4 x 1.054700196 e^{-1.4 t} - 8.6 x.054700196 e^{-0.6 t}.
\]

The method and study taken up here is valid for any set of values of the EC parameter set for the organ B. For the purpose of illustration the EC parameter set is considered as \(\{5, 10, 20, 0.5, 30\} \). Let the parameter of the (exponential) time to prophylactic treatment be \(\alpha = 0.5, 1, 1.5, 2 \) and 2.5. The simulated values of the life times of organ A, organ B and the time to prophylactic treatment are required for the study. They are generated using the methods presented by Martin Haugh [9] by generating uniform random values \(u \) using Linear Congruential Generator (LCG). The random values for the life time of the organ A are generated using \(x_A = \min \{x : F_A(x) \geq u\} \).

The life time of organ B is the sum of Erlang and Coxian times. Its Erlang random time part is generated by considering \(y = -\frac{1}{10} \ln \prod_{i=1}^{5} u_i \) where In is natural logarithm and \(u_i \) are generated by different LCGs for \(i = 1 \) to 5.

The first and second exponential random time values of Coxian 2 random time part are generated by \(z = -\frac{1}{20} \ln u \) and \(w = -\frac{1}{40} \ln u \). Considering if \(u \leq p = 0.5 \) the Coxian time is \(z \) and if \(u > p = 0.5 \) the Coxian time is \(z + w \), the simulated random time values for the life time of organ B is

\[
x' = \begin{cases}
 y + z + w & u \leq q = 0.5 \\
 y + z & u > q = 0.5
\end{cases}
\]

Simulated exponential random values for the time to hospitalization for prophylactic treatment are generated by considering \(x'' = -\frac{1}{\alpha} \ln u \) for \(\alpha = 0.5, 1, 1.5, 2 \) and 2.5. This gives the simulated time to hospitalization for treatment is \(T = \min \{x_A, x', x''\} \) for model I and \(T = \min \{\max \{x_A, x'\}, x''\} \) for model II. It may be noted that 10 random variables are to be considered for the time to hospitalization. For the organ A one random variable is considered with Cdf \(F_A(t) \). For the organ B, 8 random variables are considered of which five are exponential random variables for Erlang part and three random variables for Coxian part of which two are exponentials and one for probability \(q = 0.5 \) (then occurrence of second exponential time in Coxian).One
random variable for the exponential time for the prophylactic treatment is also required. In the parametric model one may assume the expected values of various treatment (hospitalization) times. The exact structures of the distribution functions may not be required and the values of expectations alone are sufficient. Simulation studies are different. One has to study the types and stages of treatments as explained by Mark Fackrell [11] to get simulated hospital treatment times.

Model I considers three types of treatments \(H_1, H_2 \) and \(H_3 \). Let five, three and two stages of treatments one by one respectively for them be assumed as follows.

(i) Treatment \(H_1 \): Emergency Department (ED) \(\rightarrow \) Operation Theatre (OPT) \(\rightarrow \) Intensive Care Unit (ICU) \(\rightarrow \) High Dependency ward (HDW) \(\rightarrow \) Ward (W) \(\rightarrow \) Discharge

(ii) Treatment \(H_2 \): ED \(\rightarrow \) ICU \(\rightarrow \) Ward \(\rightarrow \) Discharge and

(iii) Treatment \(H_3 \): ED \(\rightarrow \) Ward \(\rightarrow \) Discharge.

The random hospitalization times \(H_1, H_2 \) and \(H_3 \) are accordingly assumed to have Erlang distributions with phases and parameter values \((i) \) 5 and 6, \((ii) \) 3 and 6 and \((iii) \) 2 and 6 respectively. Model II considers two types of treatments \((i) \) and \((ii) \) as stated above. The hospitalization times \(H_4 \) and \(H_5 \) have Erlang distributions with phases and parameter values as \((i) \) 5 and 2 and \((ii) \) 3 and 2 respectively.

Accordingly the simulated hospitalization times for the two models are \(H_1 = -\frac{1}{\theta} \ln \prod_{i=1}^{\theta} u_i ; \quad H_2 = -\frac{1}{\theta} \ln \prod_{i=1}^{\theta} u_i ; \quad H_3 = -\frac{1}{\theta} \ln \prod_{i=1}^{\theta} u_i ; \quad H_4 = -\frac{1}{\theta} \ln \prod_{i=1}^{\theta} u_i ; \quad \text{and} \quad H_5 = -\frac{1}{\theta} \ln \prod_{i=1}^{\theta} u_i .

The random values \(u_i \) appearing on the right side of \(H_j \) for \(j = 1, 2, 3, 4, 5 \) are generated by different LCGs for various values of \(i \). It may be noted that for the two models 18 random variables are considered for hospital treatment times, namely, 5 random variables with exponential distribution for \(H_1 \); 3 random variables with exponential distributions for \(H_2 \); 2 random variables with exponential distributions for \(H_3 \); 5 random variables with exponential distribution for \(H_4 \) and 3 random variables with exponential distributions for \(H_5 \). Noting the total number of random variables are 28 for time to hospitalization and hospital treatment times 28 sets of uniform random values are to be generated. These 28 uniform random \(u_i \) for \(i = 1 \) to 28 values are generated by linear congruential generators \(Z_{n+1} = (aZ_n + c) \mod 16 \) with seed value \(Z_0 \) whose short form representation is given by LCG(a, c, 16, Z_0) for different values of a, c and Z_0. This generates all the sixteen reminder values of dimension by 16 in random manner so that sixteen uniform random values \(u = \frac{Z_0}{16} \) given by \{0.0625, 0.375, 0.9375, 0.75, 0.8125, 0.125, 0.6875, 0.5, 0.5625, 0.875, 0.4375, 0.25, 0.3125, 0.625, 0.1875, 0.125\} are obtained in some order. It may be noted that for uniform distribution it is known that \(E(u) = 0.5 \) and Variance \(=1/12=0.08333 \). They are comparable with average simulated value 0.46875 and its variance 0.083 of the data. The value \(u = 0 \) in the above gives extreme value of the simulated random value since natural logarithm of \(u \), namely, \(\ln (u) \) is required for simulation. When \(u = 0 \) is deleted the average becomes 0.5 equal to \(E(u) \). The LCG (5, 1, 16, 1) is used for simulation of the life time of organ A. For the Erlang phase 5 life part of organ B LCG(9, 1, 16, 2), LCG(13, 1, 16, 3), LCG(1, 3, 16, 4), LCG(5, 3, 16, 5) and LCG(9, 3, 16, 6) are used and for Coxian life part of organ B LCG(13, 3, 16, 7), LCG(5, 5, 16, 9) are used for the exponential times and LCG(5, 5, 16, 8) is used for the probability q of the non occurrence of the second exponential treatment time. The LCG (9, 5, 16, 10) is used for Erlang phase 3 hospitalization time of \(H_4 \), LCG(13, 9, 16, 4) and LCG(1, 11, 6, 5) are used. For the Erlang phase 3 hospitalization time of \(H_5 \), LCG(1, 9, 16, 1), LCG(5, 9, 16, 2), and LCG(9, 9, 16, 3) are used. For the Erlang phase 2 hospitalization time of \(H_3 \), LCG(13, 9, 16, 4) and LCG(1, 11, 6, 5) are used. For the Erlang phase 5 hospitalization time of \(H_4 \), LCG(5, 11, 6, 6), LCG(9, 11, 6, 7), LCG(13, 11, 6, 8), LCG(1, 13, 6, 9) and LCG(5, 13, 16, 10) are used. For the Erlang phase 3 hospitalization time of \(H_5 \), LCG(9, 13, 16, 11), LCG(13, 13, 16, 12) and LCG(1, 15, 16, 13) are used. All the LCGs used above namely, the LCG \(a, c, m, Z_0 \) for \(a = 1.5, 9, 13; c = 1, 3, 5, 7, 9, 11, 13, 15; m = 16 : Z_0 = 1 \) to 15 have full period of length 16. The values of \(a, c \) given above with \(Z_0 \) from 1 to 15 and \(m = 16 \) satisfy the Hull and Dobell theorem [10] which guarantees the LCG to have full period. The following table 3 gives the failure times of organ A and B. Organ A \(\text{failure time} \) is simulated using minimum method and presented in red color. Erlang and exponential random times are simulated using inverse method described earlier. The failure time of Organ B is presented in green color. Coxian's second exponential time is considered for addition when \(u > q \) by blue color.

Table 3: Failure Times of Organs A and B

<table>
<thead>
<tr>
<th>Organ A failure time (t = E^{-1}(U))</th>
<th>Organ B Erlang(5, 10) Part</th>
<th>Organ B Cox Phase 1 exp(20)</th>
<th>Transition when (u > 0.5)</th>
<th>Organ B Cox Phase 2 exp(30)</th>
<th>Organ B failure EC time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.059610</td>
<td>0.72836924</td>
<td>0.041333929</td>
<td>0.5</td>
<td>0.019178805</td>
<td>0.769703169</td>
</tr>
</tbody>
</table>

DOI: 10.9790/5728-11630112 www.iosrjournals.org 7 | Page
Stochastic Analysis and Simulation Studies of Time to Hospitalization and Hospitalization Time...

DOI: 10.9790/5728-11630112

Times for Prophylactic treatments are simulated using inverse method to get exponential random time, which are presented in Table 4.

Table 4: Time for Prophylactic Treatment for Various Values of α = 0.5, 1, 1.5, 2 and 2.5

<table>
<thead>
<tr>
<th>Prophylactic Exp(0.5)</th>
<th>Prophylactic Exp(1)</th>
<th>Prophylactic Exp(1.5)</th>
<th>Prophylactic Exp(2)</th>
<th>Prophylactic Exp(2.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.940007258</td>
<td>0.4700036</td>
<td>0.313335753</td>
<td>0.235001815</td>
<td>0.188001452</td>
</tr>
<tr>
<td>0.129077042</td>
<td>0.0645385</td>
<td>0.043025681</td>
<td>0.032269261</td>
<td>0.025815408</td>
</tr>
<tr>
<td>0.575364145</td>
<td>0.2876821</td>
<td>0.191788048</td>
<td>0.143841036</td>
<td>0.115072829</td>
</tr>
<tr>
<td>5.541774444</td>
<td>2.7725887</td>
<td>1.848392481</td>
<td>1.386294361</td>
<td>1.109035489</td>
</tr>
<tr>
<td>0.267062785</td>
<td>0.1335314</td>
<td>0.089020928</td>
<td>0.066765696</td>
<td>0.053412557</td>
</tr>
<tr>
<td>3.347952867</td>
<td>1.6739764</td>
<td>1.115984289</td>
<td>0.83698217</td>
<td>0.66950573</td>
</tr>
<tr>
<td>2.32630162</td>
<td>1.1631508</td>
<td>0.775433873</td>
<td>0.581575405</td>
<td>0.46256324</td>
</tr>
<tr>
<td>4.158883083</td>
<td>2.0794415</td>
<td>1.386294361</td>
<td>1.039720771</td>
<td>0.83177617</td>
</tr>
<tr>
<td>1.653357146</td>
<td>0.8266786</td>
<td>0.55119049</td>
<td>0.41339287</td>
<td>0.330671429</td>
</tr>
<tr>
<td>2.772588722</td>
<td>1.3862944</td>
<td>0.924196241</td>
<td>0.69314718</td>
<td>0.55451774</td>
</tr>
<tr>
<td>1.15072829</td>
<td>0.5753641</td>
<td>0.383576097</td>
<td>0.287682072</td>
<td>0.230145658</td>
</tr>
<tr>
<td>1.961658506</td>
<td>0.9808293</td>
<td>0.653886169</td>
<td>0.490416627</td>
<td>0.392331701</td>
</tr>
<tr>
<td>0.749368699</td>
<td>0.3746934</td>
<td>0.249795633</td>
<td>0.187346725</td>
<td>0.14987738</td>
</tr>
<tr>
<td>1.386294361</td>
<td>0.6931472</td>
<td>0.46209812</td>
<td>0.34657359</td>
<td>0.277258872</td>
</tr>
<tr>
<td>0.41527873</td>
<td>0.2076394</td>
<td>0.138426243</td>
<td>0.103819682</td>
<td>0.083055746</td>
</tr>
</tbody>
</table>

In Model I the patient is sent for hospitalization when organ A or Organ B fails or when Prophylactic treatment is to be started (after exponential random time). This gives T, the time to hospitalization, which is the minimum of three random times as follows given in Table 5 for various values of α.

Table 5: Model I-Time to Hospitalization $T = \text{Min}\{X, X', X''\}$ Varying Values of α

<table>
<thead>
<tr>
<th></th>
<th>T for $\alpha=0.5$</th>
<th>T for $\alpha=1$</th>
<th>T for $\alpha=1.5$</th>
<th>T for $\alpha=2$</th>
<th>T for $\alpha=2.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated T1</td>
<td>0.059610000</td>
<td>0.059610000</td>
<td>0.059610000</td>
<td>0.059610000</td>
<td>0.059610000</td>
</tr>
<tr>
<td>Simulated T2</td>
<td>0.129077042</td>
<td>0.064538521</td>
<td>0.043025681</td>
<td>0.032269261</td>
<td>0.025815408</td>
</tr>
</tbody>
</table>

DOI: 10.9790/5728-11630112 www.irosjournals.org 8 | Page
Stochastic Analysis and Simulation Studies of Time to Hospitalization and Hospitalization Time...

Simulated T3	0.307156480	0.287682072	0.191780848	0.143841036	0.115072829
Simulated T4	0.270289154	0.270289154	0.270289154	0.270289154	0.270289154
Simulated T5	0.267062785	0.133531393	0.089020928	0.066765096	0.053412557
Simulated T6	0.117350000	0.117350000	0.117350000	0.117350000	0.117350000
Simulated T7	0.836834133	0.836834133	0.775433873	0.581575405	0.465260324
Simulated T8	0.424633528	0.424633528	0.424633528	0.424633528	0.424633528
Simulated T9	0.500507776	0.500507776	0.500507776	0.413339287	0.330671429
Simulated T10	0.811865942	0.811865942	0.811865942	0.693147181	0.554517744
Simulated T11	0.447540000	0.447540000	0.383576097	0.287682072	0.230145658
Simulated T12	0.236900000	0.236900000	0.236900000	0.236900000	0.236900000
Simulated T13	0.218964549	0.218964549	0.218964549	0.187346725	0.149877380
Simulated T14	0.324172612	0.324172612	0.324172612	0.324172612	0.277258872
Simulated T15	0.175835000	0.175835000	0.138426243	0.103819682	0.083055746
Average T Model I	0.341853267	0.327350312	0.305704295	0.262849443	0.226258042

Red color- Hospitalization due to Organ A failure; Green color- Hospitalization due to Organ B failure; Black color- Hospitalization for Prophylactic Treatment

In Model II the patient is sent for hospitalization when both organs A and B are in failed state or when Prophylactic treatment is to be started. This gives T as follows in the table 6.

Table 6: Model II time T = Min { Max \{X, X',X''\} Varying Values of α

<table>
<thead>
<tr>
<th>T for α=0.5</th>
<th>T for α=1</th>
<th>T for α=1.5</th>
<th>T for α=2</th>
<th>T for α=2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated T1</td>
<td>0.769703169</td>
<td>0.470003629</td>
<td>0.313335753</td>
<td>0.235001815</td>
</tr>
<tr>
<td>Simulated T2</td>
<td>0.129077042</td>
<td>0.064538521</td>
<td>0.043025681</td>
<td>0.03269261</td>
</tr>
<tr>
<td>Simulated T3</td>
<td>0.575364145</td>
<td>0.287682072</td>
<td>0.191788048</td>
<td>0.143841036</td>
</tr>
<tr>
<td>Simulated T4</td>
<td>1.029000000</td>
<td>1.029000000</td>
<td>1.029000000</td>
<td>1.029000000</td>
</tr>
<tr>
<td>Simulated T5</td>
<td>0.267062785</td>
<td>0.133531393</td>
<td>0.089020928</td>
<td>0.066765096</td>
</tr>
<tr>
<td>Simulated T6</td>
<td>0.719554802</td>
<td>0.719554802</td>
<td>0.719554802</td>
<td>0.69590573</td>
</tr>
<tr>
<td>Simulated T7</td>
<td>0.868800000</td>
<td>0.868800000</td>
<td>0.775433873</td>
<td>0.581575405</td>
</tr>
<tr>
<td>Simulated T8</td>
<td>0.535000000</td>
<td>0.535000000</td>
<td>0.535000000</td>
<td>0.535000000</td>
</tr>
<tr>
<td>Simulated T9</td>
<td>0.628130000</td>
<td>0.628130000</td>
<td>0.551119049</td>
<td>0.413339287</td>
</tr>
<tr>
<td>Simulated T10</td>
<td>1.523500000</td>
<td>1.386294361</td>
<td>0.924196241</td>
<td>0.693147181</td>
</tr>
<tr>
<td>Simulated T11</td>
<td>0.512254421</td>
<td>0.512254421</td>
<td>0.383576097</td>
<td>0.287682072</td>
</tr>
<tr>
<td>Simulated T12</td>
<td>0.573293771</td>
<td>0.573293771</td>
<td>0.573293771</td>
<td>0.490414627</td>
</tr>
<tr>
<td>Simulated T13</td>
<td>0.301440000</td>
<td>0.301440000</td>
<td>0.249795633</td>
<td>0.187346725</td>
</tr>
<tr>
<td>Simulated T14</td>
<td>0.738500000</td>
<td>0.693147181</td>
<td>0.462098120</td>
<td>0.346573590</td>
</tr>
<tr>
<td>Simulated T15</td>
<td>0.415278730</td>
<td>0.207639365</td>
<td>0.138426243</td>
<td>0.103819682</td>
</tr>
<tr>
<td>Average T Model II</td>
<td>0.639063924</td>
<td>0.560687301</td>
<td>0.465244283</td>
<td>0.391022079</td>
</tr>
</tbody>
</table>

Purple color- Hospitalization due to both Organs A and B failure; Black color- Hospitalization for Prophylactic Treatment

The simulated values of T decrease as α increases in the two tables 5 and 6. The black color numbers above indicates the time at which the patient is admitted for Prophylactic treatment in the Models I and II. Various Erlang random times may be similarly simulated for different types of treatments H_i for i=1, 2, 3, 4 and 5 using LCGs stated earlier. The exponential distributions assumed for the time to prophylactic treatment

DOI: 10.9790/5728-11630112 www.iosrjournals.org 9 | Page
have the parameter values $\alpha = 0.5, 1, 1.5, 2,$ and 2.5. Hospitalization times may be different for different simulations and at times different also for α values. These are nicely exhibited in tables 7 and 8.

Table 7: Model I - Hospitalization Times for Various Values of α

<table>
<thead>
<tr>
<th>Simulation</th>
<th>H for $\alpha=0.5$</th>
<th>H for $\alpha=1$</th>
<th>H for $\alpha=1.5$</th>
<th>H for $\alpha=2$</th>
<th>H for $\alpha=2.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation 1</td>
<td>0.120114133</td>
<td>0.13014133</td>
<td>0.150144133</td>
<td>0.16014133</td>
<td>0.17014133</td>
</tr>
<tr>
<td>Simulation 2</td>
<td>0.097055469</td>
<td>0.097055469</td>
<td>0.097055469</td>
<td>0.097055469</td>
<td>0.097055469</td>
</tr>
<tr>
<td>Simulation 3</td>
<td>0.429127163</td>
<td>0.501045132</td>
<td>0.510045132</td>
<td>0.510045132</td>
<td>0.510045132</td>
</tr>
<tr>
<td>Simulation 4</td>
<td>0.532300365</td>
<td>0.532300365</td>
<td>0.532300365</td>
<td>0.532300365</td>
<td>0.532300365</td>
</tr>
<tr>
<td>Simulation 5</td>
<td>0.143841036</td>
<td>0.143841036</td>
<td>0.143841036</td>
<td>0.143841036</td>
<td>0.143841036</td>
</tr>
<tr>
<td>Simulation 6</td>
<td>0.736915253</td>
<td>0.736915253</td>
<td>0.736915253</td>
<td>0.736915253</td>
<td>0.736915253</td>
</tr>
<tr>
<td>Simulation 7</td>
<td>0.830926943</td>
<td>0.830926943</td>
<td>0.35733001</td>
<td>0.35733001</td>
<td>0.35733001</td>
</tr>
<tr>
<td>Simulation 8</td>
<td>0.47704175</td>
<td>0.47704175</td>
<td>0.47704175</td>
<td>0.47704175</td>
<td>0.47704175</td>
</tr>
<tr>
<td>Simulation 9</td>
<td>0.487356437</td>
<td>0.487356437</td>
<td>0.487356437</td>
<td>0.309382998</td>
<td>0.309382998</td>
</tr>
<tr>
<td>Simulation 10</td>
<td>0.17284829</td>
<td>0.17284829</td>
<td>0.17284829</td>
<td>0.35733001</td>
<td>0.35733001</td>
</tr>
<tr>
<td>Simulation 11</td>
<td>1.28152651</td>
<td>1.28152651</td>
<td>0.0870414</td>
<td>0.0870414</td>
<td>0.0870414</td>
</tr>
<tr>
<td>Simulation 12</td>
<td>0.61156967</td>
<td>0.61156967</td>
<td>0.61156967</td>
<td>0.61156967</td>
<td>0.61156967</td>
</tr>
<tr>
<td>Simulation 13</td>
<td>0.312007725</td>
<td>0.312007725</td>
<td>0.312007725</td>
<td>0.693147181</td>
<td>0.693147181</td>
</tr>
<tr>
<td>Simulation 14</td>
<td>0.154597456</td>
<td>0.154597456</td>
<td>0.154597456</td>
<td>0.154597456</td>
<td>0.174227962</td>
</tr>
<tr>
<td>Simulation 15</td>
<td>0.364649083</td>
<td>0.2161137</td>
<td>0.2161137</td>
<td>0.2161137</td>
<td>0.2161137</td>
</tr>
<tr>
<td>Average $H Model I$</td>
<td>0.453986939</td>
<td>0.453986939</td>
<td>0.338117789</td>
<td>0.338117789</td>
<td>0.363961202</td>
</tr>
</tbody>
</table>

Red color- Organ A treatment time; Green color- Organ B treatment time ; Black color- Prophylactic Treatment time

Table 8: Model II - Hospitalization Times for Various Values of α

<table>
<thead>
<tr>
<th>Simulation</th>
<th>H for $\alpha=0.5$</th>
<th>H for $\alpha=1$</th>
<th>H for $\alpha=1.5$</th>
<th>H for $\alpha=2$</th>
<th>H for $\alpha=2.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation 1</td>
<td>1.77301139</td>
<td>0.435007443</td>
<td>0.435007443</td>
<td>0.435007443</td>
<td>0.435007443</td>
</tr>
<tr>
<td>Simulation 2</td>
<td>0.535342791</td>
<td>0.535342791</td>
<td>0.535342791</td>
<td>0.535342791</td>
<td>0.535342791</td>
</tr>
<tr>
<td>Simulation 3</td>
<td>2.266788266</td>
<td>2.266788266</td>
<td>2.266788266</td>
<td>2.266788266</td>
<td>2.266788266</td>
</tr>
<tr>
<td>Simulation 4</td>
<td>2.450532299</td>
<td>2.450532299</td>
<td>2.450532299</td>
<td>2.450532299</td>
<td>2.450532299</td>
</tr>
<tr>
<td>Simulation 5</td>
<td>1.327402843</td>
<td>1.327402843</td>
<td>1.327402843</td>
<td>1.327402843</td>
<td>1.327402843</td>
</tr>
<tr>
<td>Simulation 6</td>
<td>1.608259607</td>
<td>1.608259607</td>
<td>1.608259607</td>
<td>1.608259607</td>
<td>1.608259607</td>
</tr>
<tr>
<td>Simulation 7</td>
<td>3.406443835</td>
<td>3.406443835</td>
<td>0.970519609</td>
<td>0.970519609</td>
<td>0.970519609</td>
</tr>
<tr>
<td>Simulation 8</td>
<td>4.166757262</td>
<td>4.166757262</td>
<td>4.166757262</td>
<td>4.166757262</td>
<td>4.166757262</td>
</tr>
<tr>
<td>Simulation 9</td>
<td>1.39268149</td>
<td>1.39268149</td>
<td>1.621296176</td>
<td>1.621296176</td>
<td>1.621296176</td>
</tr>
<tr>
<td>Simulation 10</td>
<td>3.261702958</td>
<td>2.661016947</td>
<td>2.661016947</td>
<td>2.661016947</td>
<td>2.661016947</td>
</tr>
<tr>
<td>Simulation 11</td>
<td>0.845379362</td>
<td>0.845379362</td>
<td>1.306991846</td>
<td>1.306991846</td>
<td>1.306991846</td>
</tr>
<tr>
<td>Simulation 12</td>
<td>2.568555777</td>
<td>2.568555777</td>
<td>2.568555777</td>
<td>2.568555777</td>
<td>2.568555777</td>
</tr>
<tr>
<td>Simulation 13</td>
<td>2.557319349</td>
<td>2.557319349</td>
<td>1.63395508</td>
<td>1.63395508</td>
<td>1.63395508</td>
</tr>
<tr>
<td>Simulation 14</td>
<td>1.23705246</td>
<td>0.81036596</td>
<td>0.81036596</td>
<td>0.81036596</td>
<td>0.81036596</td>
</tr>
<tr>
<td>Simulation 15</td>
<td>0.320878117</td>
<td>0.320878117</td>
<td>0.320878117</td>
<td>0.320878117</td>
<td>0.320878117</td>
</tr>
<tr>
<td>Average $H Model II$</td>
<td>1.98035652</td>
<td>1.823554571</td>
<td>1.645578002</td>
<td>1.573362904</td>
<td>1.620444821</td>
</tr>
</tbody>
</table>

Purple color- Both Organs A& B treatment time; Black color- Prophylactic Treatment time

It is better for the patient if he is admitted for prophylactic treatment instead of any organ treatment. It may be seen in the two models that when α increases the patient is admitted in many simulations for prophylactic treatment.

Table 9: The Effect of α on Time to Hospitalization and Hospitalization Time

<table>
<thead>
<tr>
<th>α</th>
<th>$\alpha=0.5$</th>
<th>$\alpha=1$</th>
<th>$\alpha=1.5$</th>
<th>$\alpha=2$</th>
<th>$\alpha=2.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average $T Model I$</td>
<td>0.341853267</td>
<td>0.327350312</td>
<td>0.305704295</td>
<td>0.262849443</td>
<td>0.226258042</td>
</tr>
</tbody>
</table>

DOI: 10.9790/5728-11630112 www.i josjournals.org 10 | Page
Average of T Model II | 0.639063924 | 0.560687301 | 0.465244283 | 0.391022079 | 0.339934112
Average H Model I | 0.453986939 | 0.45938147 | 0.338117789 | 0.363961202 | 0.365269902
Average H Model II | 1.98035652 | 1.823554571 | 1.645578002 | 1.573362904 | 1.620441821

From the values obtained and presented in table 9 and the figures 1, 2 and 3 for them, it may be seen that the average of T and average of H for model I are less than those average values of T and H for model II.

V. Conclusion

Two diabetic models are studied with prophylactic treatment where two organs are exposed to failures. In model I the patient is sent for hospitalization when an organ fails or when prophylactic treatment is provided. In model II he is sent for hospitalization when the two organs are in failed state or when he is provided prophylactic treatment. His organ A has two phase PH life time distribution and his organ B has general life time. The time to prophylactic treatment has exponential distribution. In model I the hospitalization times for organ A, organ B and prophylactic treatments have distinct distributions \(H_i \) for \(i = 1, 2 \) and 3 respectively and in model II the hospitalization times for both organ A and organ B (combined failures treatment) and prophylactic treatment have distinct distributions \(H_i \) for \(i = 4 \) and 5 respectively. The joint Laplace Stieltjes transform of the joint distribution of time to hospitalization and hospitalization time are obtained. The expected time to hospitalization and the expected hospitalization times are derived. Numerical studies are presented for the two models by fixing and varying parameter values. Simulation study has been presented in this area considering a set of parameter values of two phase life distribution of organ A, considering EC distribution for the life time of organ B, considering different parameter values of exponential time to prophylactic treatment and considering various Erlang distributions for hospitalization times for the two models. The averages for the two models for various parameter values are tabulated with graphical presentation. Since not much of simulation analysis are available in literature for diabetic models, this study opens up a real life like study in this area. Various other distributions if used for simulation studies also may produce more interesting results.

References

