Regular Convolutions on $\left(\mathbf{z}^{+}, \leq_{c}\right)$

K.Ramanuja Rao,

Abstract: Regular Convolutions Care progressions in one - to - one correspondence with sequences $\left\{\Pi_{p}\right\}_{p \in P}$ of decompositions of \mathbf{N} into arithmetical progressions (finite or infinite)and this is represented by writing $C \square\left\{\Pi_{p}\right\}_{p \in P}$. In this paper we proved that any regular convolution C gives rise to a structure of meet semilattice on $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ and the convolution C is completely characterized by certain lattice theoretic properties of $\left(\mathbf{Z}^{+}, \leq_{c}\right)$. In particular we prove that the only regular convolution including a lattice structure on $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ is the Dirichlit's convolution.
Key words: convolution, Dirichlit's convolution, arithmetical progressions, relation isomorphism

I. Introduction

G.Birkhoff [1] Introduced the notation of Lattice Theory 1967.Since then a host of researcher'shave studied and contributed a lot to the theoretical aspects of this topic. Among them,[2],[3],[4]and[5] are mentionable. A mapping $C: \mathbf{Z}^{+} \rightarrow P\left(\mathbf{Z}^{+}\right)$is called a convolution if $\mathrm{C}(\mathrm{n})$ is a nonempty set of positive divisors of n for each $n \in \mathbf{Z}^{+}$. In general convolutions may not induce a lattice structure on \mathbf{Z}

II. Preliminaries

in this paper $\mathbf{N}=\{0,1, \ldots\}$ and a covered by b denoted by a $-<\mathrm{b}$.
2.1Theorem: For any convolution C, the relation \leq_{C} is a partial order on \mathbf{Z}^{+}If and only if $n \in C(n)$ and

$$
\bigcup_{m \in C(n)} C(m) \subseteq C(n) \text { for all } \mathrm{n} \in \mathbf{Z}^{+} .[6]
$$

2.2Theorem:Let C be a convolution and define $\theta:\left(\mathbf{Z}^{+}, \leq_{C}\right) \rightarrow \sum_{P} N$ by $\theta(\mathrm{n})(\mathrm{p})=$ The largest a in \mathbf{N} such that $p^{\text {a }}$ divides n , for all $\mathrm{n} \in \mathbf{Z}^{+}$and $\mathrm{p} \in$ P. Then C is a multiplicative if and only if θ is a relation isomorphism of $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ onto $\left(\sum_{P} N, \leq_{c}\right)$.[7]
2.3Theorem: Let \leq_{C} be the partial on \mathbf{Z}^{+}induced by aconvolutionC, and for any prime p , let $\leq_{\mathrm{C}}^{\mathrm{p}}$ be the partial order on \mathbf{N} induced by \mathbf{C}.

1. If $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ is a meet (join) semilattice, then so is ($\left.\mathbf{N}, \leq_{C}^{p}\right)$ for any prime p .
2. If $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ is a lattice, then so is $\left(\mathbf{N}, \leq_{c}^{p}\right)$ for any prime p.[8]
2.4Theorem: Let C be a multiplicative convolution such that $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ is a meet (join) semilattice and let F be a filter of $\left(\mathbf{Z}^{+}, \leq_{C}\right)$. Then F is a prime filter if and only if there exists unique prime number p such that $\theta(\mathrm{F})(\mathrm{p})$ is a prime filter of $\left(\mathbf{N}, \leq_{c}^{p}\right)$ and $\theta(\mathrm{F})(\mathrm{p})=\mathbf{N}$ for all $\mathrm{q} \neq \mathrm{p}$ in Pand, in this case $\mathrm{F}=\left\{\mathrm{n} \in \mathbf{Z}^{+}: \theta(\mathrm{n})(\mathrm{p}) \in \theta(\mathrm{F})(\mathrm{p})\right\}$.
2.5Theorem: Let (S, \wedge) be a meet semi lattice with smallest element 0 and satisfying the descending chain condition. Also suppose that every proper filter of S is prime then the following are equivalent to each other.
3. Any two incomparable filters of S are comaximal.
4. For any x and y in $\mathrm{S}, \mathrm{x}\| \| \mathrm{y}$ implies $x \wedge y=0$
5. $\mathrm{S}-\{0\}$ is a disjoint union of maximal chains.
2.6 Theorem: Let C be a multiplicative convolution such that $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ is a meet (join) meet semilattice. Then any two incomparable prime filters of $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ are comaximal if and only if any two incomparable prime filters of (\mathbf{N}, \leq_{c}^{p}) are comaximal for each prime number p.
2.7 Theorem: Let p be a prime number.Then every proper filter (\mathbf{N}, \leq_{c}^{p}) is prime if and only if [p^{a}) is aprime filter in $\left(\mathbf{Z}^{+}, \leq_{c}\right)$ for all a >0.
2.8 Theorem:Let C be any convolution. Then C is regular if and only if the following conditions are satisfied for any positive integers m, nand d :
(1) C is a multiplicative convolution; that is $C(m n)=C(m) C(n)$ whenever $(m, n)=1$.
(2) $d \in C(n) \Rightarrow \frac{n}{d} \in C(n)$
(3) $1, n \in C(n)$
(4) $d \in C(m)$ andd $\in C(n) \Rightarrow d \in C(n)$ and $\frac{m}{d} \in C\left(\frac{n}{d}\right)$
(5) For any prime number p and positive integera, there exist positive integers r and t such that $r t=a$ and

$$
\mathrm{C}\left(\mathrm{p}^{\mathrm{a}}\right)=\left\{1, \mathrm{p}^{\mathrm{t}}, \mathrm{p}^{2 \mathrm{t}}, \ldots, \mathrm{p}^{\mathrm{rt}}\right\}
$$

$p^{t} \in C\left(p^{2 t}\right), p^{2 t} \in C\left(p^{3 t}\right), \ldots, p^{(r-1) t} \in C\left(p^{r t}\right)$.
2.9Theorem:Let \mathbf{D} be the set of all decompositions of the set \mathbf{N} of non-negative integers into arithmetic progression (finite and infinite) each containing 0 and no two progressions belonging to same decomposition have a positive integer in common. Let usassociate with each prime number, a member \prod_{p} ofD. For any
$\mathrm{n}=\mathrm{p}_{1}{ }^{\mathrm{a}_{1}} \mathrm{p}_{2}{ }^{\mathrm{a}_{2}} \ldots . . \mathrm{p}_{\mathrm{r}}{ }^{\mathrm{a}_{\mathrm{r}}}$ wherep $\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{r}}$ are distinct primes and $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{r}} \in \mathbf{N}$, define
$C(n)=\left\{p_{1}{ }^{b_{1}} p_{2}{ }^{b_{2}} \ldots \ldots p_{r}{ }^{b_{r}}\right.$: $b_{i} \leq a_{i} a n d b_{i}$ and a_{i} belong to the same progression in $\left.\Pi_{p_{i}}\right\}$.
Then C is a regular convolution and, conversely every regular convolution can be obtained as above. In this case, we write $\mathrm{C} \square\left\{\Pi_{p}\right\}_{p \in P}$.

III. Regular Convolutions

3.1 Definition: $\operatorname{Let}(\mathrm{X}, \leq)$ be a partially ordered set and a and b are elements of X. Then a is said to be covered by b (or b is a cover of a) if $a<b$ and there is no element c in X such that $a<\mathrm{c}<\mathrm{b}$. In this case, we express it symbolically bya $-<\mathrm{b}$.
3.2 Theorem:Let (X, \leq) be a poset satisfying the descending chain condition. Then any element of X is either maximal element or covered by another element of X.

Proof: Let $a \in X$. suppose a is not maximal. Then there exists $x \in X$ such that $a<x$. Now consider the set

$$
A=\{x \in X: a<x\} .
$$

Then A is nonempty subset of X. Since X satisfies descending chain condition, A has a minimal element, say b. Then, since $b \in A$, we have $a<b$. Also since b is minimal in A, there cannot be any element c such that $a<c<b$. Thus a is covered by b; That isa $-<\mathrm{b}$.
3.3 Corollary:For any convolution C, any positive integer is either maximal in $\left(\mathbf{Z}^{+}, \leq_{c}\right)$ or covered by some integer in $\left(\mathbf{Z}^{+}, \leq_{c}\right)$.

Proof: This is immediate consequence of the theorem 5.4.2, since $\left(\mathbf{Z}^{+}, \leq_{c}\right)$ satisfies the descending chain conditionfor any convolution C .
We observe that there is a bijection $\theta: \mathbf{Z}^{+} \rightarrow \sum_{p} \mathbf{N}$ defined by

$$
\theta(n)(p)=\text { largest } a \text { in } \mathbf{N} \text { such that } p^{a} \text { devides } n \text {, for any } n \in \mathbf{Z}^{+} \text {and any prime number } p . s
$$

3.4 Theorem: Let C be a convolution and \leq_{c} be the binary relation on \mathbf{Z}^{+}induced by C . Then C is a regular convolution if and only if the following properties are satisfied:
(1) $\theta:\left(\mathbf{Z}^{+}, \leq_{C}\right) \rightarrow\left(\sum_{p \in P} N, \leq_{c}^{p}\right)$ is a relation isomorphism.
(2) $\left(\mathbf{Z}^{+}, \leq_{c}\right)$ is a meet semilattice.
(3) Any two incomparable prime filters of $\left(\mathbf{Z}^{+}, \leq_{c}\right)$ are comaximal.
(4) F is a prime filter of $\left(\mathbf{Z}^{+}, \leq_{c}\right)$ if and only if $F=\left[p^{a}\right)$ for some prime number p and $a \in \mathbf{Z}^{+}$.
(5) $m, n \in \mathbf{Z}^{+}, m-<_{C} n \Rightarrow 1-<_{C} \frac{n}{m} \leq_{C} n$

Proof: Suppose that the properties (1) through (5) are satisfied. Then by (4), $F=\left[p^{a}\right.$) is a prime filter of $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ for all $p \in P$ and $a \in \mathbf{Z}^{+}$. Hence by theorem2.6, every proper filter $\left(\mathbf{N}, \leq_{c}^{p}\right)$ is prime for each $p \in P$.

By (3), any two incomparable prime filter of $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ are comaximal, Hence by theorems 2.5 and 2.6 , it follows that $\left(\mathbf{N}-\{0\}, \leq_{C}^{P}\right.$) is a disjoint union ofmaximal chains. Let prime number p be fixed, then

$$
\mathbf{N}-\{0\}=\bigcup_{i \in I} Y_{i} \text { (disjoint union); where } \mathrm{I} \text { is an index set }
$$

here Y_{i} is a maximal chain in $\left(\mathbf{N}-\{0\}, \leq_{c}^{P}\right)$ such that, for any $i \neq j \in I, Y_{i}-Y_{j}=\phi$ and each element of Y_{i} isincomparable with each element of Y_{j} for $i \neq j$.

Now, we shall prove that Y_{i} is an arithmetical progression(finite or infinite).
Fix $i \in j$. Since \mathbf{N} is countable, Y_{i} must be countable. Also, since (\mathbf{N}, \leq_{c}^{p}) satisfies descending chain condition, we can express

$$
Y_{i}=\left\{a_{1}-<_{C}^{p} a_{2}-<_{C}^{p} a_{3}-<_{C}^{p} \ldots .\right\}
$$

We shall use induction on r to prove that $a_{r}=r a_{1}$, for all r. clearly this is true for $r=1$. Assume that $r>1$ and $a_{s}=s a_{1}$ for all $1 \leq s<r$. since

$$
(r-1) a_{1}=a_{r-1}-<a_{r} \text { in }\left(\mathbf{N}, \leq_{c}^{p}\right),
$$

we have in $p^{a_{r-1}}-<_{C} p^{a_{r}}$ in $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ and hence, by (5),

$$
1-<_{C} p^{a_{r}-a_{r-1}} \leq_{C} p^{a_{r}}
$$

Therefore $0 \neq a_{r}-a_{r-1} \leq_{c}^{p} a_{r}$ and hence $a_{r}-a_{r-1} \in Y_{i}\left(\right.$ since $\left.a_{r} \in Y_{i}\right)$. Also since
$0-<a_{r}-a_{r-1}$ in $\left(\mathbf{N}, \leq_{c}^{p}\right)$, we get that

$$
a_{r}-a_{r-1}=a_{1}
$$

and hence $a_{r}=a_{r-1}+a_{1}=(r-1) a_{1}+a_{1}=r a_{1}$.
Therefore, for any prime p and $a \in \mathbf{Z}^{+}$,

$$
C\left(p^{a}\right)=\left\{1, p^{t}, p^{2 t}, p^{3 t}, \ldots, p^{s t}\right\}, \quad s t=a
$$

for some positive integer t and s and

$$
p^{t} \in C\left(p^{2 t}\right), p^{2 t} \in C\left(p^{3 t}\right), \ldots, p^{(s-1) t} \in C\left(p^{a}\right)
$$

The other conditions in theorem 2.8 are clearly satisfied.Thus by theorem 2.8 , we see that C is a regular convolution.
Conversely, suppose that C is a regular convolution. Then by theorem $2.9, C \sim\left\{\Pi_{p}\right\}_{p \in P}$, where each Π_{p} is a decomposition of \mathbf{N} into arithmetical progressions(finite or infinite) in which each progression contains 0 and no positive integer belongs to two distinct progressions. For any $a, b \in \mathbf{N}$ and $p \in P$, let us write, for convenience,

$$
(a, b) \in \Pi_{P} \Leftrightarrow \mathrm{a} \text { and } \mathrm{b} \text { belong to the same progression in } \Pi_{P} .
$$

Since C is a regular convolution, C satisfies all the properties (1) through (5) of theorem 5.3.4. From (3) and (4) of theorem 5.3.4 and corollary $2.1[1]$, it follows that \leq_{c} is a partial order relation on \mathbf{Z}^{+}. Since \mathbf{C} is multiplicative, it follows from theorem 2.2[1]that

$$
\theta:\left(\mathbf{Z}^{+}, \leq_{c}\right) \rightarrow\left(\sum_{p \in P} \mathbf{N}, \leq_{c}^{p}\right)
$$

In an order isomorphism. Therefore the property (1) is satisfied.
For simplicity and convenience, let us write $\underline{\text { nfor }} \theta(n)$. Recall that, for any $n \in \mathbf{Z}^{+}$and $p \in P$,

$$
\underline{\mathrm{n}}(\mathrm{p})=\theta(n)(p)=\text { the largest } a \text { in } \mathbf{N} \text { such that } p^{a} \text { divides } n .
$$

The partial order relations \leq_{C} on \mathbf{Z}^{+}and \leq_{c}^{p} on \mathbf{N} are defined by

$$
m \leq_{c} n \Leftrightarrow m \in \mathrm{C}(n), \text { for any } m, n \in \mathbf{Z}^{+}
$$

and

$$
\mathrm{a} \leq{ }_{c}^{p} \mathrm{~b}, \text { for any } a, b \in \mathbf{N} .
$$

Now for any $m, n \in \mathbf{Z}^{+}$, the element $m \wedge n$ of \mathbf{Z}^{+}be defined by for all $p \in P$.

$$
(m \wedge n)(p)=\left\{\begin{array}{l}
0 \quad, \text { if }(m(p), n(p)) \notin \Pi_{p} \\
\text { minimum of }\{m(p), n(p)\}, \text { otherwise } .
\end{array}\right.
$$

Again for all $p \in P$, if $(\underline{m}(p), \underline{n}(p)) \in \Pi_{p}$, then

$$
\underline{\mathrm{m}}(\mathrm{p}) \leq_{C}^{p} \underline{\mathrm{n}}(\mathrm{p}) \text { or } \quad \underline{\mathrm{n}}(\mathrm{p}) \leq_{c}^{p} \underline{\mathrm{~m}}(\mathrm{p}) .
$$

Thus for all $p \in P$,

$$
(\underline{m \wedge n})(\mathrm{p}) \leq \underline{\mathrm{m}}(\mathrm{p}) \text { and }(\underline{m \wedge n})(\mathrm{p}) \leq \underline{\mathrm{n}}(\mathrm{p}) .
$$

Therefore $m \wedge n$ is a lower bound of m and n in $\left(\mathbf{Z}^{+}, \leq_{c}\right)$.
Let k be any other lower bound of m and n . For any $p \in P$, if $(\underline{m}(p), \underline{n}(p)) \in \Pi_{p}$, then

$$
\underline{k}(p) \leq_{c}^{p} \operatorname{Min}\{\underline{m}(p), \underline{n}(p)\}=(\underline{m} \wedge n)(\mathrm{p})
$$

and if $(\underline{m}(p), \underline{n}(p)) \notin \Pi_{p}$, then

$$
\underline{k}(p)=0=(\underline{m \wedge n})(\mathrm{p}) .
$$

Therefore $\underline{k}(p) \leq(\underline{m \wedge n})(\mathrm{p})$, for all $p \in P$ and hence $k \leq_{c} m \wedge n$.
Thus $m \wedge n$ is the greatest lower bound of m and n in $\left(\mathbf{Z}^{+}, \leq_{c}\right)$.
So (\mathbf{Z}^{+}, \leq_{c}) is a meet semilattice and hence the property (2) is satified.

To prove (3), it is enough, to show that any two incomparable prime filters of (\mathbf{N}, \leq_{c}^{p}) are comaximal for all $p \in P$.

By theorem 2.6, wesee that for any positive integer a and b , if a and b are incomparable in (\mathbf{N}, \leq_{c}^{p}), then $(a, b) \notin \Pi_{p}$, and hence a and b have no upper bound in (\mathbf{N}, \leq_{c}^{p}) and therefore $a \vee b$ does not exist in (\mathbf{N}, \leq_{c}^{p}). Also each progression in Π_{p} is a maximal chain in (\mathbf{N}, \leq_{c}^{p}) and for any a and b in \mathbf{N} are comparable if and only if $(a, b) \in \Pi_{p}$. Therefore $\left(\mathbf{N}-\{0\}, \leq_{c}^{p}\right)$ is a disjoint union of maximal chains. Thus by theorem 2.5 , any two incomparable prime filters of (\mathbf{N}, \leq_{c}^{p}) are comaximal. Therefore by theorem 2.6 , any two incomparable prime filters of (\mathbf{Z}^{+}, \leq_{c}) are comaximal, which proves (3).

The property (4) is a consequence of the theorems 2.4 and 2.6.
Finally we prove(5): Let $m, n \in \mathbf{Z}^{+}$such that $\mathrm{m}-<_{C} \mathrm{n}$. By theorem 2.8(2), we get $\frac{m}{n} \leq_{C} n$.
Let us write

$$
m=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots \ldots \ldots p_{r}^{a_{r}} \text { and } n=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots \ldots \ldots p_{r}^{b_{r}}
$$

where $p_{1} p_{2} \ldots \ldots . p_{r}$ are distinct prime numbers and $a_{i}, b_{i}>0$ such that

$$
0 \leq{ }_{c}^{p} a_{i} \leq{ }_{c}^{p} b_{i} \text { for } 1 \leq i \leq r .
$$

Since $\mathrm{m} \neq \mathrm{n}$, so there exists i such that $a_{i} \leq_{c}^{p} b_{i}$. Now if $a_{j} \leq_{c}^{p_{j}} b_{j}$ for $j \neq i$, then the element

$$
k=p_{1}^{c_{1}} p_{2}^{c_{2}} \ldots \ldots p_{r}^{c_{r}} \text {, where } c_{s}= \begin{cases}a_{s} & \text { if } s \neq i \\ b_{s} & \text { if } s=i\end{cases}
$$

Will be in between m and n (that is $m \leq_{c} k \leq_{C} n$), which is contradiction to the supposition that $\mathrm{m}-$
$<_{\mathrm{C}}$ n.Therefore $a_{j}=b_{j}$ for all $j \neq i$ and hence $\frac{n}{m}=p_{i}^{b_{i}-a_{i}}$.
Since $\left(a_{i}, b_{i}\right) \in \Pi_{p_{i}}$, there exists $\mathrm{t}>0$ such that

$$
b_{t}=u t \quad \text { and } \quad a_{t}=v t
$$

for some u and v with $v<u$. Also $v t,(v+1) t, \ldots \ldots ., u t$ are all in the same progression.
Since $\mathrm{m}-<_{\mathrm{C}} \mathrm{n}$ we get that $u=v+1$ and hence $\frac{n}{m}=p_{i}^{t}$. Again since $0-<_{c} t$ in $\left(\mathbf{N}-, \leq_{c}^{p_{i}}\right)$, it follows that

$$
1-<_{C} p_{i}^{t}=\frac{n}{m} \leq_{C} n .
$$

Thus the property (5) is satisfied. This completes the proof of the theorem.

We observe that $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ is a meet semilattice for any convolution \mathbf{C}. Note that $\left(\mathbf{Z}^{+}, \leq_{c}\right)$ need not be lattice. For example, consider the unitary convolution U defined by

$$
U(n)=\left\{d \in \mathbf{Z}^{+}: d \text { divides } n \text { and }\left(d, \frac{n}{d}\right)=1\right\} .
$$

Then U is a regular convolution and $\left(\mathbf{Z}^{+}, \leq_{C}\right)$ is not a lattice. In this context we have the following:
3.5 Theorem :The following are equivalent to each other for any regular convolution
(i) $\quad\left(\mathbf{Z}^{+}, \leq_{C}\right)$ Is a lattice.
(ii) $\quad\left(\mathbf{N}, \leq_{c}^{p}\right)$ Is a lattice for each $p \in P$.
(iii) $\quad\left(\mathbf{N}, \leq_{c}^{p}\right)$ Is a totally ordered set for each $p \in P$.
(iv) $\quad C(n)$ is the set of positive divisors of $n \in \mathbf{Z}^{+}$.

Proof:Let C be a regular convolution and $C \sim\left\{\Pi_{p}\right\}_{p \in P}$ as in theorem 2.9.[5].
(i) \Rightarrow (ii): follows from theorem 2.3(2).[6]
(ii) \Rightarrow (iii): Suppose that $\left(\mathbf{N}, \leq_{c}^{p}\right)$ is a lattice for each $p \in P$. Fix $p \in P$ and $a, b \in \mathbf{N}$. Then we can choose $c \in \mathbf{N}$ such that

$$
a \leq_{c}^{p} c \quad \text { and } \quad b \leq_{c}^{p} c .
$$

Then $(a, c) \in \Pi_{P}$ and $(a, c) \in \Pi_{P}$, which means that a and c belong to the same progression in Π_{P} .Therefore a, b and c should all be in the same progression and hence $a \leq{ }_{c}^{p} b$.

$$
\text { Thus (} \mathbf{N}, \leq_{c}^{p} \text {) is a totally ordered set. }
$$

(iii) \Rightarrow (iv): Suppose that $\left(\mathbf{N}, \leq_{c}^{p}\right)$ is a totally ordered set for each $p \in P$. Then any two elements of \mathbf{N} must be in same progression in Π_{P} for each $p \in P$. This amounts to saying that Π_{P} has only one progression; that is

$$
\Pi_{P}=\{\{0,1,2,3, \ldots . \quad \ldots .\}\} .
$$

Therefore for any $a, b \in \mathbf{N}$;

$$
a \leq_{c}^{p} b \text { If and only if } a \leq b .
$$

This means that \leq_{c}^{p} coincides with the usual order in \mathbf{N}, for each $p \in P$.
Thus for any $m, n \in \mathbf{Z}^{+}$,

$$
m \in C(n) \Leftrightarrow m \leq_{c} n \Leftrightarrow m \text { divides } n .
$$

Therefore $C(n)=$ the set of all positive divisors of n , for any $n \in \mathbf{Z}^{+}$.
(iv) \Rightarrow (i): From (iv) we get that C is precisely the Dirichlit's convolution D and for any $m, n \in\left(\mathbf{Z}^{+}, \leq_{D}\right)$

$$
n \wedge m=g . c . d\{n, m\} \quad \text { and } \quad n \vee m=l . c . m\{n, m\} .
$$

Hence $\left(\mathbf{Z}^{+}, \leq_{c}\right)$ is a lattice.

IV. Conclusion

The Dirichlit's convolution is the only regular convolution which induces a lattice structure on \mathbf{Z}^{+}.

References

G.Birkhoff. Lattice Theory, American Mathematical Society, 1967.
[2]: E.Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math.Z.,74,66-80.1960
[3]. B.A.Davey and H.A.Priestly, Introduction to lattices and order, Cambridge University Press,2002.
[4]. G.A.Gratzer. General Lattice Theory,Birkhauser, 1971
[5]. W.Narkiewicz, On a class of arithmetical convolutions,Colloq.Math., 10,81-94,1963.
[6]. U.M. Swamy andSagiSanker, Partial orders induced by convolutions, international Journal of mathematics and soft computing, 2(1), 2011.
[7]. U.M. Swamy and SagiSanker ,lattice structures on \mathbf{Z}^{+}, induced by convolutions,Eur.j.Pure Appl.Math.,4(4),424-434.2011.
[8]. SankarSagi Characterization of Prime Ideals in $\left(\mathbf{Z}^{+}, \leq_{D}\right)$,EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS., Vol. 8, No. 1, 2015, 15-25.

