Regular Convolutions on (\mathbf{z}^+, \leq_c)

K.Ramanuja Rao,

Abstract: Regular Convolutions Care progressions in one – to – one correspondence with sequences $\{\Pi_p\}_{p \in P}$ of decompositions of **N** into arithmetical progressions (finite or infinite) and this is represented by writing $C \square \{\Pi_p\}_{p \in P}$. In this paper we proved that any regular convolution *C* gives rise to a structure of meet semilattice on (\mathbf{Z}^+, \leq_c) and the convolution *C* is completely characterized by certain lattice theoretic properties of (\mathbf{Z}^+, \leq_c) . In particular we prove that the only regular convolution including a lattice structure on (\mathbf{Z}^+, \leq_c) is the Dirichlit's convolution.

Key words: convolution, Dirichlit's convolution, arithmetical progressions, relation isomorphism

I. Introduction

G.Birkhoff [1] Introduced the notation of Lattice Theory 1967.Since then a host of researcher's have studied and contributed a lot to the theoretical aspects of this topic. Among them,[2],[3],[4]and[5] are mentionable. A mapping $C : \mathbb{Z}^+ \to P(\mathbb{Z}^+)$ is called a convolution if C(n) is a nonempty set of positive divisors of n for each $n \in \mathbb{Z}^+$. In general convolutions may not induce a lattice structure on \mathbb{Z}^+

II. Preliminaries

in this paper N ={0,1,....} and a covered by b denoted by a -< b.

2.1Theorem: For any convolution C, the relation \leq_{C} is a partial order on \mathbb{Z}^{+} If and only if $n \in C(n)$ and $\bigcup_{m \in C(n)} C(m) \subseteq C(n)$ for all $n \in \mathbb{Z}^{+}$.[6]

2.2Theorem:Let C be a convolution and define $\theta : (\mathbf{Z}^+, \leq_c) \to \sum_p N \text{ by}\theta(n)(p) = \text{ The largest a in } \mathbf{N} \text{ such}$

that p^adivides n, for all $n \in \mathbb{Z}^+$ and $p \in P$. Then C is a multiplicative if and only if θ is a relation isomorphism of (\mathbb{Z}^+, \leq_c) onto $(\sum N, \leq_c)$. [7]

2.3Theorem: Let \leq_C be the partial on \mathbb{Z}^+ induced by aconvolution C, and for any prime p,let \leq_C^p be the partial order on \mathbb{N} induced by C.

- 1. If (\mathbf{Z}^+, \leq_c) is a meet (join) semilattice, then so is (\mathbf{N}, \leq_c^p) for any prime p.
- 2. If (\mathbf{Z}^+, \leq_c) is a lattice, then so is (\mathbf{N}, \leq_c^p) for any prime p.[8]

2.4Theorem: Let C be a multiplicative convolution such that (\mathbf{Z}^+, \leq_c) is a meet (join) semilattice and let F be a filter of (\mathbf{Z}^+, \leq_c) . Then F is a prime filter if and only if there exists unique prime number p such that $\theta(F)(p)$ is a prime filter of (\mathbf{N}, \leq_c^p) and $\theta(F)(p) = \mathbf{N}$ for all $q \neq p$ in Pand, in this case $F = \{n \in \mathbf{Z}^+ : \theta(n)(p) \in \theta(F)(p)\}.$

2.5Theorem: Let (S, \land) be a meet semi lattice with smallest element 0 and satisfying the descending chain condition. Also suppose that every proper filter of S is prime then the following are equivalent to each other.

- 1. Any two incomparable filters of S are comaximal.
 - 2. For any x and y in S, x y implies $x \land y = 0$
 - 3. S -{0} is a disjoint union of maximal chains.
 - **2.6 Theorem:** Let C be a multiplicative convolution such that (\mathbf{Z}^+, \leq_c) is a meet (join) meet semilattice.

Then any two incomparable prime filters of (\mathbf{Z}^+, \leq_c) are comaximal if and only if any two incomparable

prime filters of (N , \leq_{C}^{p}) are comaximal for each prime number p.

2.7 Theorem: Let p be a prime number. Then every proper filter (N, \leq_{c}^{p}) is prime if and only if [p^a) is aprime filter in (\mathbf{Z}^{+}, \leq_{c}) for all a > 0.

2.8 Theorem:Let C be any convolution. Then C is regular if and only if the following conditions are satisfied for any positive integers m, nand d:

(1) C is a multiplicative convolution; that is C(mn) = C(m)C(n) whenever (m, n)=1.

- (2) $d \in C(n) \Rightarrow \frac{n}{d} \in C(n)$
- (3) $1,n \in C(n)$

(4)
$$d \in C(m)$$
 and $d \in C(n) \Rightarrow d \in C(n)$ and $\frac{m}{d} \in C(\frac{n}{d})$

(5) For any prime number p and positive integera, there exist positive integers r and t such that rt = a and $C(p^{a}) = \{1, p^{t}, p^{2t}, ..., p^{rt}\}$

 $p^{t} \in C(p^{2t}), p^{2t} \in C(p^{3t}), \dots, p^{(r-1)t} \in C(p^{rt}).$

2.9Theorem:Let **D**be the set of all decompositions of the set **N** of non-negative integers into arithmetic progression (finite and infinite) each containing 0 and no two progressions belonging to same decomposition have a positive integer in common. Let us associate with each prime number, a member $\prod_{i=1}^{n}$ of **D**. For any

$$\begin{split} n &= p_1{}^{a_1} p_2{}^{a_2} \dots p_r{}^{a_r} \text{ where} p_1 p_2 \dots p_r \text{ are distinct primes and } a_1, a_2, \dots, a_r \in \mathbf{N} \text{ , define} \\ C(n) &= \{ p_1{}^{b_1} p_2{}^{b_2} \dots p_r{}^{b_r} \text{ : } b_i \leq a_i \text{ and } b_i \text{ and } a_i \text{ belong to the same progression in } \prod_{p_i} \}. \end{split}$$

Then C is a regular convolution and, conversely every regular convolution can be obtained as above. In this case, we write $C \square \{\Pi_p\}$.

III. Regular Convolutions

3.1 Definition: Let (X, \leq) be a partially ordered set and *a* and *b* are elements of *X*. Then *a* is said to be covered by *b* (or *b* is a cover of *a*) if *a* < *b* and there is no element *c* in *X* such that *a* < c < b. In this case, we express it symbolically by a - < b.

3.2 Theorem:Let (X, \leq) be a poset satisfying the descending chain condition. Then any element of X is either maximal element or covered by another element of X.

Proof: Let $a \in X$. suppose a is not maximal. Then there exists $x \in X$ such that a < x. Now consider the set

$$\mathbf{A} = \left\{ x \in X : a < x \right\}.$$

Then A is nonempty subset of X. Since X satisfies descending chain condition, A has a minimal element, say b. Then, since $b \in A$, we have a < b. Also since b is minimal in A, there cannot be any element c such that a < c < b. Thus a is covered by b; That is a - < b.

3.3 Corollary:For any convolution C, any positive integer is either maximal in (\mathbf{Z}^+, \leq_c) or covered by some integer in (\mathbf{Z}^+, \leq_c) .

Proof: This is immediate consequence of the theorem 5.4.2, since (\mathbf{Z}^+, \leq_c) satisfies the descending chain condition for any convolution C.

We observe that there is a bijection $\theta : \mathbf{Z}^+ \to \sum_{n} \mathbf{N}$ defined by

 $\theta(n)(p) = \text{largest } a \text{ in } \mathbf{N} \text{ such that } p^a \text{ devides } n, \text{ for any } n \in \mathbf{Z}^+ \text{ and any prime number } p.s$

3.4 Theorem: Let C be a convolution and \leq_c be the binary relation on \mathbf{Z}^+ induced by C. Then C is a regular convolution if and only if the following properties are satisfied:

- (1) $\theta: (\mathbf{Z}^+, \leq_c) \to \left(\sum_{p \in P} N, \leq_c^p\right)$ is a relation isomorphism.
- (2) (\mathbf{Z}^+, \leq_c) is a meet semilattice.
- (3) Any two incomparable prime filters of (\mathbf{Z}^+, \leq_c) are comaximal.
- (4) *F* is a prime filter of (\mathbf{Z}^+, \leq_c) if and only if $F = [p^a]$ for some prime number *p* and $a \in \mathbf{Z}^+$.

(5)
$$m,n \in \mathbb{Z}^+, m - <_{\mathcal{C}} n \Rightarrow 1 - <_{\mathcal{C}} \frac{n}{m} \leq_{\mathcal{C}} n$$

Proof: Suppose that the properties (1) through (5) are satisfied. Then by (4), $F = \begin{bmatrix} p^a \end{bmatrix}$ is a prime filter of (\mathbf{Z}^+, \leq_c) for all $p \in P$ and $a \in \mathbf{Z}^+$. Hence by theorem2.6, every proper filter (\mathbf{N}, \leq_c^p) is prime for each $p \in P$.

By (3), any two incomparable prime filter of (\mathbf{Z}^+, \leq_c) are comaximal, Hence by theorems 2.5and 2.6, it follows that $(\mathbf{N} - \{0\}, \leq_c^p)$ is a disjoint union of maximal chains. Let prime number p be fixed, then

N - $\{0\} = \bigcup_{i \in I} Y_i$ (disjoint union); where I is an index set

here Y_i is a maximal chain in $(\mathbf{N} - \{0\}, \leq_c^p)$ such that, for any $i \neq j \in I$, $Y_i - Y_j = \phi$ and each element of Y_i is incomparable with each element of Y_j for $i \neq j$.

Now, we shall prove that Y_i is an arithmetical progression(finite or infinite).

Fix $i \in j$. Since **N** is countable, Y_i must be countable. Also, since (\mathbf{N}, \leq_c^p) satisfies descending chain condition, we can express

$$Y_i = \{a_1 - <_C^p a_2 - <_C^p a_3 - <_C^p \dots\}$$

We shall use induction on r to prove that $a_r = ra_1$, for all r clearly this is true for r = 1. Assume that r > 1and $a_s = sa_1$ for all $1 \le s < r$. since

$$(r-1)a_1 = a_{r-1} - \langle a_r in(\mathbf{N}, \leq_c^p) \rangle$$

we have in $p^{a_{r-1}} - <_C p^{a_r}$ in (\mathbf{Z}^+, \leq_C) and hence, by (5),

$$1 - <_{\mathcal{C}} p^{a_r - a_{r-1}} \leq_{\mathcal{C}} p^{a_r}$$

Therefore $0 \neq a_r - a_{r-1} \leq_c^p a_r$ and hence $a_r - a_{r-1} \in Y_i$ (since $a_r \in Y_i$). Also since

 $0 - \langle a_r - a_{r-1}$ in (\mathbf{N}_r, \leq_C^p) , we get that

$$a_r - a_{r-1} = a_1$$

and hence $a_r = a_{r-1} + a_1 = (r-1)a_1 + a_1 = ra_1$. Therefore, for any prime p and $a \in \mathbb{Z}^+$,

p

$$C(p^{a}) = \{1, p^{t}, p^{2t}, p^{3t}, \dots, p^{st}\}, st = a$$

for some positive integer t and s and

$$\boldsymbol{p}^{t} \in C\left(\boldsymbol{p}^{2t}\right), \ \boldsymbol{p}^{2t} \in C\left(\boldsymbol{p}^{3t}\right), \ \ldots, \ \boldsymbol{p}^{(s-1)t} \in C\left(\boldsymbol{p}^{a}\right).$$

The other conditions in theorem 2.8 are clearly satisfied. Thus by theorem 2.8, we see that C is a regular convolution.

Conversely, suppose that C is a regular convolution. Then by theorem 2.9, $C \sim \{\Pi_p\}_{p \in P}$, where each Π_p is a decomposition of **N** into arithmetical progressions(finite or infinite) in which each progression contains 0 and no positive integer belongs to two distinct progressions. For any $a, b \in \mathbf{N}$ and $p \in P$, let us write, for convenience,

 $(a, b) \in \Pi_p \Leftrightarrow$ a and b belong to the same progression in Π_p .

Since C is a regular convolution, C satisfies all the properties (1) through (5) of theorem 5.3.4. From (3) and (4) of theorem 5.3.4 and corollary 2.1[1], it follows that \leq_c is a partial order relation on \mathbf{Z}^+ . Since C is multiplicative, it follows from theorem 2.2[1]that

$$\theta: \left(\mathbf{Z}^{+}, \leq_{C}\right) \to \left(\sum_{p \in P} \mathbf{N}, \leq_{C}^{P}\right)$$

In an order isomorphism. Therefore the property (1) is satisfied.

For simplicity and convenience, let us write <u>n</u> for $\theta(n)$. Recall that, for any $n \in \mathbb{Z}^+$ and $p \in P$,

 $\underline{\mathbf{n}}(\mathbf{p}) = \theta(n)(p)$ = the largest *a* in **N** such that p^{a} divides *n*.

The partial order relations \leq_c on \mathbf{Z}^+ and \leq_c^p on \mathbf{N} are defined by

$$m \leq_{C} n \Leftrightarrow m \in C(n)$$
, for any $m, n \in \mathbb{Z}^{+}$

and

$$a \leq_{C}^{p} b$$
, for any $a, b \in \mathbf{N}$

Now for any $m, n \in \mathbb{Z}^+$, the element $m \wedge n$ of \mathbb{Z}^+ be defined by for all $p \in P$.

$$(m \wedge n)(p) = \begin{cases} 0 & , \text{ if } (m(p), n(p)) \notin \Pi \\ m \text{ inimum of } \{m(p), n(p)\}, \text{ otherwise.} \end{cases}$$

Again for all $p \in P$, if $(\underline{m}(p), \underline{n}(p)) \in \Pi_{p}$, then

$$\underline{\mathbf{m}}(\mathbf{p}) \leq_{C}^{p} \underline{\mathbf{n}}(\mathbf{p}) \text{ or } \underline{\mathbf{n}}(\mathbf{p}) \leq_{C}^{p} \underline{\mathbf{m}}(\mathbf{p}).$$

Thus for all $p \in P$,

$$(\underline{m \land n})(p) \le \underline{m}(p) \text{ and } (\underline{m \land n})(p) \le \underline{n}(p).$$

Therefore $m \wedge n$ is a lower bound of m and n in (\mathbf{Z}^+, \leq_c) .

Let k be any other lower bound of m and n. For any $p \in P$, if $(\underline{m}(p), \underline{n}(p)) \in \Pi_p$, then

$$\underline{k}(p) \leq_{C}^{p} \operatorname{Min}\{\underline{m}(p), \underline{n}(p)\} = (\underline{m \wedge n})(p)$$

and if $(\underline{m}(p), \underline{n}(p)) \notin \Pi_{n}$, then

$$\underline{k}(p) = 0 = (\underline{m \land n})(p).$$

Therefore $\underline{k}(p) \leq (\underline{m \wedge n})(p)$, for all $p \in P$ and hence $k \leq_{c} m \wedge n$.

Thus $m \wedge n$ is the greatest lower bound of m and n in (\mathbf{Z}^+, \leq_c) .

So (\mathbf{Z}^+, \leq_c) is a meet semilattice and hence the property (2) is satisfied.

To prove (3), it is enough, to show that any two incomparable prime filters of (\mathbf{N}, \leq_C^p) are comaximal for all $p \in P$.

By theorem 2.6, we see that for any positive integer a and b, if a and b are incomparable in (\mathbf{N}, \leq_c^p) , then $(a,b) \notin \Pi_p$, and hence a and b have no upper bound in (\mathbf{N}, \leq_c^p) and therefore $a \lor b$ does not exist in (\mathbf{N}, \leq_c^p) . Also each progression in Π_p is a maximal chain in (\mathbf{N}, \leq_c^p) and for any a and b in \mathbf{N} are comparable if and only if $(a,b) \in \Pi_p$. Therefore $(\mathbf{N} - \{0\}, \leq_c^p)$ is a disjoint union of maximal chains. Thus by theorem 2.5, any two incomparable prime filters of (\mathbf{N}, \leq_c^p) are comaximal. Therefore by theorem 2.6, any two incomparable prime filters of (\mathbf{Z}^+, \leq_c) are comaximal, which proves (3).

The property (4) is a consequence of the theorems 2.4 and 2.6.

Finally we prove(5): Let $m, n \in \mathbb{Z}^+$ such that $m - <_{\mathbb{C}} n$. By theorem 2.8(2), we get $\frac{m}{n} \le_{C} n$.

Let us write

$$m = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$$
 and $n = p_1^{b_1} p_2^{b_2} \dots p_r^{b_r}$

where $p_1 p_2 \dots p_r$ are distinct prime numbers and $a_i, b_i > 0$ such that

$$0 \leq_{C}^{p} a_{i} \leq_{C}^{p} b_{i}$$
 for $1 \leq i \leq r$

Since $m \neq n$, so there exists i such that $a_i \leq {c \atop c} b_i$. Now if $a_j \leq {c \atop c} b_j$ for $j \neq i$, then the element

$$k = p_1^{c_1} p_2^{c_2} \dots p_r^{c_r}, \text{ where } c_s = \begin{cases} a_s & \text{if } s \neq i \\ b_s & \text{if } s = i \end{cases}$$

Will be in between m and n (that is $m \leq_c k \leq_c n$), which is contradiction to the supposition that m -

<_C n. Therefore
$$a_j = b_j$$
 for all $j \neq i$ and hence $\frac{n}{m} = p_i^{b_i - a_i}$

Since $(a_i, b_i) \in \prod_{p_i}$, there exists t>0 such that

$$b_t = ut$$
 and $a_t = vt$

for some u and v with v < u. Also vt, (v + 1)t,, ut are all in the same progression.

Since m $-<_{C}$ n we get that u = v + 1 and hence $\frac{n}{m} = p_{i}^{t}$. Again since $0 - <_{C} t$ in $(\mathbf{N}, \leq_{C}^{p_{i}})$, it follows that

$$1 - <_C p_i^t = \frac{n}{m} \leq_C n.$$

Thus the property (5) is satisfied. This completes the proof of the theorem.

We observe that (\mathbf{Z}^+, \leq_c) is a meet semilattice for any convolution C. Note that (\mathbf{Z}^+, \leq_c) need not be lattice. For example, consider the unitary convolution U defined by

$$U(n) = \{ d \in \mathbb{Z}^+ : d \text{ divides } n \text{ and } (d, \frac{n}{d}) = 1 \}.$$

Then U is a regular convolution and (\mathbf{Z}^+, \leq_c) is not a lattice. In this context we have the following: **3.5 Theorem :**The following are equivalent to each other for any regular convolution

- (i) (\mathbf{Z}^+, \leq_c) Is a lattice.
- (ii) $(\mathbf{N}, \leq_{C}^{p})$ Is a lattice for each $p \in P$.
- (iii) $(\mathbf{N}, \leq_{C}^{p})$ Is a totally ordered set for each $p \in P$.

(iv) C(n) is the set of positive divisors of $n \in \mathbb{Z}^+$.

Proof:Let *C* be a regular convolution and $C \sim \{\Pi_p\}_{p \in P}$ as in theorem 2.9.[5].

(i) \Rightarrow (ii): follows from theorem 2.3(2).[6]

(ii) \Rightarrow (iii): Suppose that (\mathbf{N}, \leq_c^p) is a lattice for each $p \in P$. Fix $p \in P$ and $a, b \in \mathbf{N}$. Then we can choose $c \in \mathbf{N}$ such that

 $a \leq_{c}^{p} c$ and $b \leq_{c}^{p} c$.

Then $(a, c) \in \Pi_p$ and $(a, c) \in \Pi_p$, which means that a and c belong to the same progression in Π_p . Therefore a, b and c should all be in the same progression and hence $a \leq_c^p b$.

Thus $(\mathbf{N}, \leq_{C}^{p})$ is a totally ordered set.

(iii) \Rightarrow (iv): Suppose that $(\mathbf{N}, \leq_{C}^{p})$ is a totally ordered set for each $p \in P$. Then any two elements of \mathbf{N} must be in same progression in \prod_{p} for each $p \in P$. This amounts to saying that \prod_{p} has only one progression; that is

$$\Pi_{P} = \{\{0, 1, 2, 3, \dots, \}\}.$$

Therefore for any $a, b \in \mathbf{N}$;

 $a \leq_{c}^{p} b$ If and only if $a \leq b$.

This means that \leq_{C}^{p} coincides with the usual order in **N**, for each $p \in P$.

Thus for any $m, n \in \mathbb{Z}^+$,

 $m \in C(n) \Leftrightarrow m \leq_{C} n \Leftrightarrow m$ divides n.

Therefore C(n) = the set of all positive divisors of n, for any $n \in \mathbb{Z}^+$.

(iv) \Rightarrow (i): From (iv) we get that C is precisely the Dirichlit's convolution D and for any $m, n \in (\mathbf{Z}^+, \leq_p)$

 $n \wedge m = g.c.d\{n,m\}$ and $n \vee m = l.c.m\{n,m\}$.

Hence (\mathbf{Z}^+, \leq_C) is a lattice.

IV. Conclusion

The Dirichlit's convolution is the only regular convolution which induces a lattice structure on \mathbf{Z}^+ .

References

- G.Birkhoff. Lattice Theory, American Mathematical Society, 1967.
- [2]: E.Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math.Z.,74,66-80.1960.
- [3]. B.A.Davey and H.A.Priestly, Introduction to lattices and order, Cambridge University Press,2002.
- [4]. G.A.Gratzer. General Lattice Theory, Birkhauser, 1971.
- [5]. W.Narkiewicz, On a class of arithmetical convolutions, Colloq. Math., 10,81-94, 1963.
- [6]. U.M. Swamy and SagiSanker, Partial orders induced by convolutions, international Journal of mathematics and soft computing, 2(1), 2011.
- [7]. U.M. Swamy and SagiSanker , lattice structures on \mathbf{Z}^+ , induced by convolutions, Eur. j. Pure Appl. Math., 4(4), 424-434.2011.
- [8]. SankarSagi Characterization of Prime Ideals in (\mathbf{Z}^+, \leq_D), EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS., Vol. 8, No. 1, 2015, 15-25.