Symmetric Left Bi-Derivations in Semiprime Rings

Dr.C.JayaSubba Reddy ${ }^{1}$, G. VenkataBhaskara Rao ${ }^{2}$,Dr.K.Madhusudhan Reddy ${ }^{3}$
${ }^{1,2}$ Department of Mathematics, S. V. University, Tirupati - 517502, Andhra Pradesh, India.
${ }^{3}$ Department of Mathematics, VITUniversity,Vellore,TamilNadu,India.

Abstract

Let R be a 2-torsion free semiprime ring. Let $D(.,):. R \times R \rightarrow R$ be a symmetric left bi-derivation such that if (i) $x y \pm d(x y)=y x \pm d(y x)$, for all $x, y \in R$ and (ii) $[x, y]-d(x y)+d(y x) \in Z(R)$ or $[x, y]+$ $d(x y)-d(y x) \in Z(R)$ for all $x, y \in R$, where d is a trace of D. Thenboth the cases of R is commutative.

Key Words: Semiprime ring, Symmetric mapping, Trace,Derivation, Symmetric bi-derivation, Symmetric left bi-derivation.

I. Introduction

The concept of bi-derivation was introduced by Maksa[3]. It is shown in [4] thatsymmetric biderivations are related to general solution of some functional equations. Vukman[6], [7] has studied some results concerning symmetric bi-derivations in prime and semiprime rings.The study ofcentralizing and commuting mappings was initiated by a well known theorem due to Posner[5] which states that the existence of nonzero centralizing derivation on a primering R implies that R is commutative. Daif and Bell [2] proved that if asemiprime ring R admits a derivation d such that $x y \pm d(x y)=y x \pm d(y x)$, for all $x, y \in R$, then R is commutative. Ashraf [1] proved that commutativity of a ring R which admits a symmetric bi-derivation $D(.,):. R \times R \rightarrow R$ such that (i) $x y \pm d(x y)=y x \pm d(y x)$, for all $x, y \in R$ and (ii) $[x, y]-d(x y)+d(y x) \in$ $Z(R)$ or $[x, y]+d(x y)-d(y x) \in Z(R)$ for all $x, y \in R$, where d is a trace of D. Then both the cases of R is commutative.In this paper we proved some results on symmetric left bi-derivations in semiprime rings.

Throughout this paper R will be an associative ring with center $Z(R)$. Recall that a ring R is prime if $\mathrm{aRb}=(0)$ implies that $\mathrm{a}=0$ or $\mathrm{b}=0$, and is a semiprime if axa $=0$ implies $a=0$. We shall writecommutator $[\mathrm{x}, \mathrm{y}]$ for $\mathrm{xy}-\mathrm{yx}$ and use the identities $[\mathrm{xy}, \mathrm{z}]=[\mathrm{x}, \mathrm{z}] \mathrm{y}+\mathrm{x}[\mathrm{y}, \mathrm{z}],[\mathrm{x}, \mathrm{yz}]=[\mathrm{x}, \mathrm{y}] \mathrm{z}+\mathrm{y}[\mathrm{x}, \mathrm{z}] . \mathrm{An}$ additive mapping $d: R \rightarrow R$ is called derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R . A$ mapping $B(.,):. R \times R \rightarrow R$ is said to be symmetric if $B(x, y)=B(y, x)$ holds for all $x, y \in R . A$ mapping $f: R \rightarrow R$ defined by $f(x)=B(x, x)$, where $B(\ldots): R \times R \rightarrow R$ is a symmetric mapping, is called a trace of B. It is obvious that, in case $B(\ldots): R \times R \rightarrow R$ is symmetric mapping which is also bi-additive (i. e. additive in both arguments) the trace of B satisfies the relation $f(x+y)=f(x)+f(y)+2 B(x, y)$, for all $x, y \in R$.We shall use also the fact that the trace of a symmetric bi-additive mapping is an even function.A symmetric bi-additive mapping $\mathrm{D}(.,):. \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ is called a symmetric bi-derivation if $\mathrm{D}(\mathrm{xy}, \mathrm{z})=\mathrm{D}(\mathrm{x}, \mathrm{z}) \mathrm{y}+\mathrm{xD}(\mathrm{y}, \mathrm{z})$ is fulfilled for all $x, y, z \in R$. Obviously, in this case also the relation $D(x, y z)=D(x, y) z+y D(x, z)$ for all $x, y, z \in R$. A symmetric bi-additive mapping $D(.,):. R \times R \rightarrow R$ is called a symmetric left bi-derivation if $D(x y, z)=$ $x D(y, z)+y D(x, z)$ for all $x, y, z \in R$. Obviously, in this case also the relation $D(x, y z)=y D(x, z)+z D(x, y)$ for all $x, y, z \in R$. A mapping $f: R \rightarrow R$ is said to be commuting on R if $[f(x), x]=0$ holds for all $x \in R$. A mapping $f: R \rightarrow R$ is said to be centralizing on R if $[f(x), x] \in Z(R)$ is fulfilled for all $x \in R$. A ring R is said to bea $n-$ torsion free if whenever na $=0$, with $a \in R$, then $a=0$, where n is nonzero integer.
Theorem 1: Let R be a 2-torsion freesemiprime ring. Suppose that there exists a symmetric left bi-derivation $D(.,):. R \times R \rightarrow R$ such that $x y \pm d(x y)=y x \pm d(y x)$ for all $x, y \in R$, where d is a trace of D. Then R is commutative.
Proof: We have $x y-d(x y)=y x-d(y x)$, for all $x, y \in R$.

$$
\begin{gathered}
x y-y x=d(x y)-d(y x) \\
{[x, y]=D(x y, x y)-D(y x, y x)} \\
{[x, y]=(x D(y, x y)+y D(x, x y))-(y D(x, y x)+x D(y, y x))}
\end{gathered}
$$

$$
[x, y]=\left(x^{2} D(y, y)+x y D(y, x)+y x D(x, y)+y^{2} D(x, x)\right)-\left(y^{2} D(x, x)+y x D(x, y)+x y D(y, x)+x^{2} D(y, y)\right)
$$

$$
[x, y]=x^{2} d(y)+x y D(y, x)+y x D(x, y)+y^{2} d(x)-y^{2} d(x)-y x D(x, y)-x y D(y, x)-x^{2} d(y)
$$

$[x, y]=0$, for all $x, y \in R$, and hence R is commutative.
Use the similar arguments if R satisfies the property $x y+d(x y)=y x+d(y x)$, for all $x, y \in R$, we can prove that R is commutative.
Theorem 2: Let R be a 2-torsion free semiprime ring. Suppose that there exists a symmetric left bi-derivation $D(.,):. R \times R \rightarrow R$ such that either $[x, y]-d(x y)+d(y x) \in Z(R)$ or $[x, y]+d(x y)-d(y x) \in Z(R) \quad$ for all $x, y \in R$, where d is a trace of D.Then R is commutative.

Proof: We have $[x, y]-d(x y)+d(y x) \in Z(R)$, for all $x, y \in R$.

$$
[x, y]-D(x y, x y)+D(y x, y x) \in Z(R)
$$

$$
[x, y]-(x D(y, x y)+y D(x, x y))+(y D(x, y x)+x D(y, y x)) \in Z(R)
$$

$[x, y]-\left(x^{2} D(y, y)+x y D(y, x)+y x D(x, y)+y^{2} D(x, x)\right)+\left(y^{2} D(x, x)+y x D(x, y)+x y D(y, x)+x^{2} D(y, y)\right)$

$$
\in \mathrm{Z}(\mathrm{R})
$$

$[x, y]-x^{2} d(y)-x y D(y, x)-y x D(x, y)-y^{2} d(x)+y^{2} d(x)+y x D(x, y)+x y D(y, x)+x^{2} d(y) \in Z(R)$
$[x, y] \in Z(R)$, for all $x, y \in R$.
We replace y by $y x$ in (1), we get
$[\mathrm{x}, \mathrm{yx}] \in \mathrm{Z}(\mathrm{R})$
$\mathrm{y}[\mathrm{x}, \mathrm{x}]+[\mathrm{x}, \mathrm{y}] \mathrm{x} \in \mathrm{Z}(\mathrm{R})$
$[\mathrm{x}, \mathrm{y}] \mathrm{x} \in \mathrm{Z}(\mathrm{R})$
$[x, y][x, r]=0$, for all $x, y, r \in R$.
We replace r by ry in (2), we get
$[\mathrm{x}, \mathrm{y}][\mathrm{x}, \mathrm{ry}]=0$

$$
[x, y] r[x, y]+[x, y][x, r] y=0
$$

By using (2) in the above equation, we get
$[\mathrm{x}, \mathrm{y}] \mathrm{r}[\mathrm{x}, \mathrm{y}]=0$
By the semiprimeness of R the above equation gives that $[x, y]=0$ for all $x, y \in R$, and hence R is commutative.
Use the similar arguments if R satisfies the property $[x, y]+d(x y)-d(y x) \in Z(R)$ we can prove that R is commutative.

References

[1]. Asharf. M.: On symmetric bi-derivations in rings, Rend. Istit. Mat. Univ. Trieste, Vol. XXXI, (1990), 25 - 36.
[2]. Daif. M. N and Bell. H. E.: Remarks on derivations on semiprime rings, Internat. J. Math.\& Math. Sci. 15 (1992), 205 - 206.
[3]. Maksa.Gy.: A remark on symmetric bi-additive functions having nonnegative diagonalization, Glasnik Mat. 15 (35), (1980), 279 282.
[4]. Maksa. Gy.: On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci.Canada 9 (1987), 303 - 307.
[5]. Posner. E. C.: Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093 - 1100.
[6]. Vukman. J.: Symmetric bi-derivations on prime and semi prime rings, Aequationesmathematics, 38 (1989), 245 - 254
[7]. Vukman. J.: Two results concerning symmetric bi-derivations on prim rings, Aequationes Math. 40 (1990), 181 - 189.

