Co - Isolated Locating Domination Number For Unicyclic Graphs

S. Muthammai ${ }^{1}$, N. Meenal ${ }^{2}$
${ }^{1}(P G \&$ Research Department of Mathematics, Government Arts College for Women (Autonomous), Tamilnadu, India)
${ }^{2}$ (Department of Mathematics \& Statistics, J.J. College of Arts and Science(Autonomous), Tamilnadu, India)

Abstract

Let $G(V, E)$ be a simple, finite, undirected connected graph. A non - empty set $S \subseteq V$ of a graph G is a dominating set, if every vertex in $V-S$ is adjacent to atleast one vertex in S. A dominating set $S \subseteq V$ is called a locating dominating set, if for any two vertices $v, w \in V-S, N(v) \cap S \neq N(w) \cap S$. A locating dominating set $S \subseteq V$ is called a co - isolated locating dominating set, if there exists atleast one isolated vertex in $\langle V-S\rangle$. The co - isolated locating domination number $\gamma_{\text {cild }}$ is the minimum cardinality of a co -isolated locating dominating set. In this paper, the number $\gamma_{\text {cild }}$ is obtained for unicyclic graphs.

Keywords: Dominating set, locating dominating set, co - isolated locating dominating set, co - isolated locating domination number.

I. Introduction

Let $G=(V, E)$ be a simple graph of order p. For $v \in V(G)$, the neighborhood $N_{G}(v)$ (or simply $N(v)$) of v is the set of all vertices adjacent to v in G. For a connected graph G, the eccentricity $e_{G}(v)$ of a vertex v in G is the distance to a vertex farthest from v. Thus, $e_{G}(v)=\left\{d_{G}(u, v): u \in V(G)\right\}$, where $d_{G}(u, v)$ is the distance between u and v in G. The minimum and maximum eccentricities are the radius and diameter of G, denoted $r(G)$ and $\operatorname{diam}(\mathrm{G})$ respectively. A pendant vertex in a graph G is a degree of vertex one and a vertex is called a support if it is adjacent to a pendant vertex. A unicyclic graph G is a graph with exactly one cycle. The concept of domination in graphs was introduced by Ore [1]. A non - empty set $S \subseteq V(G)$ of a graph G is a dominating set, if every vertex in $V(G)-S$ is adjacent to some vertex in S. A special case of dominating set S is called a locating dominating set. It was defined by D. F. Rall and P. J. Slater in [2]. A dominating set S in a graph G is called a locating dominating set in G, if for any two vertices $v, w \in V(G)-S, N_{G}(v) \cap S, N_{G}(w) \cap S$ are distinct. The locating dominating number of G is defined as the minimum number of vertices in a locating dominating set in G . A locating dominating set $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$ is called a co - isolated locating dominating set , if $\langle\mathrm{V}-\mathrm{S}\rangle$ contains atleast one isolated vertex. The minimum cardinality of a co - isolated locating dominating set is called the co - isolated locating domination number $\gamma_{\text {cild }}(\mathrm{G})$. In this paper, the unicyclic graphs having co isolated locating domination number $\gamma_{\text {cild }}(G)=3,4$, and 5 are characterized.

II. Prior Results

The following results are obtained in [3], [4], [5] \& [6]

Theorem 2.1[3]:

For every non - trivial simple connected graph G with p vertices, $1 \leq \gamma_{\text {cild }}(G) \leq p-1$.

Theorem 2.2[3]:

$$
\gamma_{\text {cild }}(\mathrm{G})=1 \text { if and only if } \mathrm{G} \cong \mathrm{~K}_{2} .
$$

Observation 2.3 [3]:

If S is a co - isolated locating dominating set of $G(V, E)$ with $|S|=k$, then $V(G)-S$ contains atmost $\mathrm{pC}_{1}+\mathrm{pC}_{2}+\ldots+\mathrm{pC}_{\mathrm{k}}$ vertices.

Theorem 2.4 [3]:

$\gamma_{\text {cild }}(G)=p-1(p \geq 4)$ if and only if $V(G)$ can be partitioned into two sets X and Y such that one of the sets X and Y say, Y is independent and each vertex in Y and the subgraph < $\mathrm{X}>$ of G induced by X is one of the following
(a) $\langle X\rangle$ is a complete graph
(b) $\langle\mathrm{X}\rangle$ is totally disconnected
(c) Any two non - adjacent vertices in $\mathrm{V}(\langle\mathrm{X}\rangle)$ have common neighbours in $\langle\mathrm{X}\rangle$.

Theorem 2.5 [4]:

$\gamma_{\text {cild }}(\mathrm{G})=2$ if and only if G is one of the following graphs
(a) $P_{p}(p=3,4,5)$, where P_{p} is a path on p vertices.
(b) $\mathrm{C}_{\mathrm{p}}(\mathrm{p}=3,5)$, where C_{p} is a path on p vertices.
(c) C_{5} with a chord.
(d) G is the graph obtained by attaching a pendant edge at a vertex of C_{3} (or) at a vertex of degree 2 in K_{4} e.
(e) G is the graph obtained by attaching a path of length 2 at a vertex of C_{3}.
(f) G is the Bull graph.

Theorem 2.6 [5]:

For a path P_{p} on p vertices,
$\gamma_{\text {cild }}\left(\mathrm{P}_{\mathrm{p}}\right)=\left\lfloor\frac{2 p+4}{5}\right\rfloor, \mathrm{p} \geq 3$.
Theorem 2.7 [6]:
If $\mathrm{C}_{\mathrm{p}}(\mathrm{p} \geq 3)$ is a cycle on p vertices, then $\gamma_{\text {cild }}\left(\mathrm{C}_{\mathrm{p}}\right) \leq\left\lceil\frac{2 p}{5}\right\rceil$.

III. Main Results

In the following, the unicyclic graphs having co-isolated locating domination number $\gamma_{\text {cild }}(\mathrm{G})=3,4$ and 5 are characterized.

Notations 3.1:

1. $\quad \mathrm{C}_{\mathrm{p}} @ \mathrm{P}_{\mathrm{k}}$ is a graph obtained by attaching a path of length k at exactly one vertex of C_{p}.

Example 3.1.1: The graph $G \cong C_{4} @ P_{3}$ is given in Fig. 3.1.

Fig. 3.1.
2. $\quad \mathrm{C}_{\mathrm{p}} @ P_{k_{1}} @{ }_{\mathrm{r}} P_{k_{2}}$ is a graph obtained by attaching paths of length k_{1} and k_{2} respectively at vertices u and v of C_{p} such that $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{r}$.
Example 3.1.2: The graph $\mathrm{G} \cong \mathrm{C}_{5} @ P_{3} @_{2} P_{2}$ is given in Fig. 3.2.

Fig. 3.2.
3. $\mathrm{C}_{\mathrm{p}} @ P_{k_{1}} @_{\mathrm{r}} P_{k_{2}} @_{\mathrm{s}} P_{k_{3}}$ is a graph obtained by attaching paths of length $\mathrm{k}_{1}, \mathrm{k}_{2}$ and k_{3} respectively at vertices u, v and of C_{p} such that $d(u, v)=r ; d(v, w)=s$.
Example 3.1.3: The graph $\mathrm{G} \cong \mathrm{C}_{8} @ P_{2} @_{2} P_{4} @_{3} P_{3}$ is given in Fig. 3.3.

Fig. 3.3.
4. $\mathrm{C}_{\mathrm{p}} @ P_{k_{1}} @_{\mathrm{q}} P_{k_{2}} @_{\mathrm{r}} P_{k_{3}} @_{\mathrm{s}} P_{k_{4}}(\mathrm{n} \geq 4)$ is a graph obtained by attaching paths of length $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$ and k_{4} respectively at vertices u, v, w and x on C_{p} such that $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{q} ; \mathrm{d}(\mathrm{v}, \mathrm{w})=\mathrm{r} ; \mathrm{d}(\mathrm{w}, \mathrm{x})=\mathrm{s}$.
Example3.1.4: The graph $\mathrm{G} \cong \mathrm{C}_{8} @ P_{2} @_{2} P_{4} @_{3} P_{3} @_{1} P_{1}$ is given in Fig. 3.4.

Fig. 3.4.
5. $\quad \mathrm{C}_{\mathrm{p}} @_{s} \mathrm{P}_{\mathrm{k}}$ is a graph obtained by attaching a support of a path of length k at a vertex of C_{p}.

Example 3.1.5: The graph $G \cong \mathrm{C}_{4} @_{s} \mathrm{P}_{5}$ is given in Fig. 3.5.

6. $\quad C_{p} @_{c} P_{k}$ is a graph obtained by attaching the central vertex of a path of length $k(k$ is even) at a vertex of C_{p}.
Example 3.1.6: The graph $\mathrm{G} \cong \mathrm{C}_{8} @_{c} \mathrm{P}_{4}$ is given in Fig. 3.6.

Fig. 3.6.
7. $\mathrm{C}_{\mathrm{p}} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{\mathrm{k}}$ is a graph obtained by attaching a path of length one at a vertex of C_{p} and then attaching a support of a path of length k to the pendant vertex of P_{1}.
Example 3.1.7: The graph $G \cong \mathrm{C}_{5} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3}$ is given in Fig. 3.7.

Fig. 3.7.
8. $\quad \mathrm{C}_{\mathrm{p}} @\binom{P_{1}}{P_{k_{1}} @ @_{s} P_{k}}$ is a graph obtained by attaching a path of length 1 and also a path of length k_{1} at a vertex of C_{p} and then attaching a support of path of length k at a pendant vertex of the path $P_{k_{1}}$.
Example 3.1.8: The graph $\mathrm{G} \cong \mathrm{C}_{3} @\binom{P_{1}}{P_{1} @_{e S} P_{3}}$ is given in Fig. 3.8.

$$
\mathrm{G} \cong
$$

Fig. 3.8.
Example 3.1.9: $\mathrm{G} \cong \mathrm{C}_{5} @\binom{P_{1}}{P_{2} @_{\mathrm{e} S} P_{4}}$ is given in Fig. 3.9.

Fig. 3.9.
9. A graph can also be obtained by performing the combinations of the above operations.

Example 3.1.10: The graphs $G \cong \mathrm{C}_{6} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @{ }_{2 s} \mathrm{P}_{3}$ and

$$
\mathrm{G} \cong \mathrm{C}_{4} @\binom{P_{1}}{P_{2} @_{\mathrm{ec}} P_{6}} @_{2} \mathrm{P}_{2 \text {. are given in Fig. 3.10. }}
$$

in. 3.10

Theorem 3.2:

For a connected unicyclic graph $\mathrm{G}, \gamma_{\text {cid }}(\mathrm{G})=2$ if and only if G is one of the graphs in the family \mathcal{A}, where $\mathcal{A}=\left\{\mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{3} @ \mathrm{P}_{1}, \mathrm{C}_{3} @ \mathrm{P}_{2}\right\}$
Proof:
If G is one of the graphs of \mathcal{A}, then $\gamma_{\text {cid }}(G)=2$.

Conversely, assume that $\gamma_{\text {cild }}(G)=2$. Let $S=\{a, b\}$ be a $\gamma_{\text {cild }}-$ set of G with $|S|=2$. Then $|V-S| \leq 2^{2}-$ $1=3$ and $\langle\mathrm{V}-\mathrm{S}\rangle$ contains atleast one isolated vertex.

Case (1): $|\mathrm{V}-\mathrm{S}|=1$
If $\langle S\rangle \cong 2 \mathrm{~K}_{1}$, then G is not unicyclic.
If $\langle S\rangle \cong K_{2}$, then $G \cong \mathrm{C}_{3}$.

Case (2): $|\mathrm{V}-\mathrm{S}|=2$
Let $V-S=\left\{x_{1}, x_{2}\right\}$. Then $\langle V-S\rangle \cong 2 K_{1}$.
If $N\left(x_{1}\right) \cap S=\{a, b\} N\left(x_{2}\right) \cap S=\{a\}$ (or) $\{b\}$,then $G \cong C_{3} @ P_{1}$.
In all the other cases, G is not unicyclic.

Case (3): $|\mathrm{V}-\mathrm{S}|=3$
Let $V-S=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $N\left(x_{1}\right) \cap S=\{a\} ; N\left(x_{2}\right) \cap S=\{b\}$ and $N\left(x_{2}\right) \cap S=\{a, b\}$.

Subcase(3.a): $x_{2} x_{3} \in\langle V-S\rangle$ and x_{1} is isolated in $\langle V-S\rangle$
If $\mathrm{ab} \notin \mathrm{E}(\mathrm{G})$, then $\mathrm{G} \cong \mathrm{C}_{3} @ \mathrm{P}_{2}$ and if $\mathrm{ab} \in \mathrm{E}(\mathrm{G})$, then G is not unicyclic.

Subcase(3.b): x_{1}, x_{2} and x_{3} are all isolated in $\langle V-S\rangle$.
If $\mathrm{ab} \notin \mathrm{E}(\mathrm{G})$, then $\mathrm{G} \cong \mathrm{C}_{5}$ and if $\mathrm{ab} \in \mathrm{E}(\mathrm{G})$, then G is not unicyclic.
Hence the theorem follows.

Notation 3.3:

The family of graphs $\mathscr{B}=\left\{\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{8}, \mathcal{B}_{9}\right\}$ are defined as follows, where

$$
\begin{aligned}
& \mathcal{B}_{1}=\left\{\mathrm{B}_{1,1}, \mathrm{~B}_{1,2}, \ldots, \mathrm{~B}_{1,5}, \mathrm{~B}_{1,6}\right\}=\left\{\mathrm{C}_{6}, \mathrm{C}_{6} @ \mathrm{P}_{1}, \mathrm{C}_{7}, \mathrm{C}_{6} @ \mathrm{P}_{2}, \mathrm{C}_{7} @ \mathrm{P}_{1}, \mathrm{C}_{6} @ \mathrm{P}_{3}\right\} \\
& \mathscr{B}_{2}=\left\{\mathrm{B}_{2,1}, \mathrm{~B}_{2,2}, \mathrm{~B}_{2,3}, \mathrm{~B}_{2,4}\right\} \quad=\left\{\mathrm{C}_{5} @ \mathrm{P}_{1}, \mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1}, \mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1}, \mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}\right\} \\
& \mathscr{B}_{3}=\left\{\mathrm{B}_{3,1}, \mathrm{~B}_{3,2}, \ldots, \mathrm{~B}_{3,6}\right\}=\left\{\mathrm{C}_{4}, \mathrm{C}_{4} @ \mathrm{P}_{1}, \mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1}, \mathrm{C}_{4} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1}, \mathrm{C}_{3} @ \mathrm{P}_{1} @{ }_{s} \mathrm{P}_{2},\right. \\
& \left.\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}\right\} \\
& \mathcal{B}_{4}=\left\{\mathrm{B}_{4,1}\right\} \quad=\left\{\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}\right\} \\
& \mathcal{B}_{5}=\left\{\mathrm{B}_{5,1}, \mathrm{~B} 5,2, \ldots, \mathrm{~B}_{5,7}\right\}=\left\{\mathrm{C}_{3} @_{s} \mathrm{P}_{3}, \mathrm{C}_{3} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3}, \mathrm{C}_{3} @ \mathrm{P}_{2} @ \mathrm{P}_{2}, \mathrm{C}_{3} @ \mathrm{P}_{4},\right. \\
& \left.\mathrm{C}_{3} @ \mathrm{P}_{1} \text { @ }{ }_{\mathrm{es}} \mathrm{P}_{4}, \mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{2}, \mathrm{C}_{3} @ \mathrm{P}_{3} @ \mathrm{P}_{2}\right\} \\
& \mathscr{B}_{6}=\left\{\mathrm{B}_{6,1}, \mathrm{~B}_{6,2}\right\} \quad=\left\{\mathrm{C}_{3} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2}, \mathrm{C}_{3} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3}\right\} \\
& \mathcal{B}_{7}=\left\{\quad \mathrm{B}_{7,1}, \mathrm{~B}_{7,2}, \ldots, \mathrm{~B}_{7,7}\right\}=\left\{\mathrm{C}_{4} @ \mathrm{P}_{2}, \mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{2}, \mathrm{C}_{5} @ \mathrm{P}_{2}, \mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1}\right. \text {, } \\
& \left.\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{1}, \mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{2}, \mathrm{C}_{5} @ \mathrm{P}_{3}\right\} \\
& \mathscr{B}_{8}=\left\{\mathrm{B}_{8,1}, \mathrm{~B}_{8,2}, \mathrm{~B}_{8,3}\right\} \quad=\left\{\quad \mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2}, \mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{3}, \mathrm{C}_{3} @ \mathrm{P}_{1} @_{s} \mathrm{P}_{3}\right\} \text { and } \\
& B_{9}=\left\{\quad \mathrm{B}_{9,1}, \mathrm{~B}_{9,2}, \mathrm{~B}_{9,3}\right\}=\left\{\mathrm{C}_{3} @_{s} \mathrm{P}_{2}, \mathrm{C}_{3} @_{s} \mathrm{P}_{3}, \mathrm{C}_{3} @ \mathrm{P}_{1} @_{s} \mathrm{P}_{3}\right\}
\end{aligned}
$$

Theorem 3.4:

For a connected unicyclic graph $G, \gamma_{\text {cild }}(G)=3$ if and only if G is one of the graphs in the family \mathcal{B}.

Proof:

If G is one of the graphs in the family \mathcal{B}, then $\gamma_{\text {cild }}(G)=3$.
Conversely, let S be a $\gamma_{\text {cild }}$ - set of a unicyclic graph G with $|S|=3$ and therefore
$|\mathrm{V}-\mathrm{S}| \leq 2^{3}-1=7$.

Case(1): All the vertices of S lie on the cycle.
Then $\langle S\rangle \cong 3 K_{1}, K_{1} \cup K_{2}, P_{3}$ (or) C_{3}.

Subcase(1.a.): $\langle S\rangle \cong 3 K_{1}$
Since all the vertices of S lie on the cycle and $\langle S\rangle \cong 3 K_{1}$, the cycle in this case is C_{6} (or) C_{7}. Hence, $3 \leq|V-S|$ ≤ 6.
(i) $|\mathrm{V}-\mathrm{S}|=3$

If $\langle V-S\rangle \cong 3 K_{1}$, then $G \cong B_{1,1}$
If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then G is not unicyclic.
(ii) $|\mathrm{V}-\mathrm{S}|=4$

If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong B_{1,2}$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then $G \cong B_{1,3}$.
(iii) $|\mathrm{V}-\mathrm{S}|=5$

If $\langle V-S\rangle \cong 5 K_{1}$, then $G \cong B_{1,4}$.
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{B}_{1,5}$.
(iv) $|\mathrm{V}-\mathrm{S}|=6$

If $\langle V-S\rangle \cong 6 K_{1}$, then $G \cong B_{1,6}$.
If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$, then $G \cong C_{7} @ P_{2}$ and for this graph $\gamma_{\text {cild }}(G)=4$.
(v) $|\mathrm{V}-\mathrm{S}|=7$, then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}-$ set of G .

Subcase(1.b): $\langle S\rangle \cong K_{1} \cup K_{2}$
The cycle in this case is C_{5} (or) C_{6}.
(i) $|\mathrm{V}-\mathrm{S}|=3$

If $\langle V-S\rangle \cong 3 K_{1}$, then $G \cong B_{2,1}$.
If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then $G \cong B_{1,1}$.
(ii) $|\mathrm{V}-\mathrm{S}|=4$

If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong B_{2,2}$ (or) $B_{2,3}$.
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then $G \cong B_{1,2}$.
(iii) $|\mathrm{V}-\mathrm{S}|=5$

If $\langle V-S\rangle \cong 5 K_{1}$, then $G \cong B_{2,4}$.
If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G.
(iv) $|\mathrm{V}-\mathrm{S}|=6$ (or) 7 , then G is not unicyclic.

Subcase(1.c): $\langle S\rangle \cong P_{3}$
The cycle in this case is C_{3} (or) C_{4}.
(i) $|\mathrm{V}-\mathrm{S}|=1$

If $\langle V-S\rangle \cong K_{1}$, then $G \cong B_{3,1}$.
(ii) $|\mathrm{V}-\mathrm{S}|=2$

If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{B}_{3,2}$.
(iii) $|\mathrm{V}-\mathrm{S}|=3$

If $\langle V-S\rangle \cong 3 K_{1}$, then $G \cong B_{3,3,} B_{3,4}$ (or) $B_{3,5}$.
If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then $G \cong B_{2,1}$.
(v) $|\mathrm{V}-\mathrm{S}|=4$

If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong B_{3,6}$.
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then G is not unicyclic.
(vi) $|\mathrm{V}-\mathrm{S}|=5$ (or) 6 (or) 7 , then G is not unicyclic.

Subcase(1.d): <S> $\cong \mathrm{C}_{3}$
If $|V-S|=1$ (or) 2 , then S will not be a $\gamma_{\text {cild }}-$ set of G. If $|V-S|>3$, then G is not unicyclic. Hence $|V-S|=3$. If $\langle V-S\rangle \cong 3 K_{1}$, then $G \cong B_{4,1}$.

Case(2): One vertex of S lie on the cycle and the other two vertices does not lie on the cycle.
The only cycle with this property is C_{3}. Also, $\langle\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1}$ (or) $\mathrm{K}_{1} \cup \mathrm{~K}_{2}$.
Subcase(2.a): $\langle S\rangle \cong 3 K_{1}$
Then $\langle\mathrm{V}-\mathrm{S}\rangle$ must contain K_{2} to form C_{3}. Also, $\langle\mathrm{V}-\mathrm{S}\rangle$ must have atleast one isolated vertex. Therefore |V $S \mid \geq 3$.
(i) $|\mathrm{V}-\mathrm{S}|=3$

If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then $G \cong B_{5,1}$.
(ii) $|\mathrm{V}-\mathrm{S}|=4$

If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{B}_{5,2}$ (or) $\mathrm{B}_{5,3}$ (or) $\mathcal{B}_{5,4}$.
(iii) $|\mathrm{V}-\mathrm{S}|=5$

If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then $G \cong B_{5,5}$ (or) $B_{5,6}$ (or) $B_{5,7}$.
(iv) $|\mathrm{V}-\mathrm{S}|=6$ (or) 7 , then G is not unicyclic.

Subcase(2.b): $\langle S\rangle \cong K_{1} \cup K_{2}$
By a similar argument as in $\operatorname{Subcase}(2 . a),|V-S| \geq 3$.
(i) $|\mathrm{V}-\mathrm{S}|=3$

If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then $G \cong B_{6,1}$.
(ii) $|\mathrm{V}-\mathrm{S}|=4$

If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{B}_{6,2}$.
(iii) $|\mathrm{V}-\mathrm{S}|=5$ (or) 6 (or) 7 , then G is not unicyclic.

Case(3): Two vertices of S lie on the cycle and the other vertex does not lie on the cycle.
In this case, $\langle S\rangle \cong 3 \mathrm{~K}_{1}$ (or) $\mathrm{K}_{1} \cup \mathrm{~K}_{2}$ (or) P_{3}.
Subcase(3.a): $\langle\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1}$
(i) $|\mathrm{V}-\mathrm{S}|=3$

If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{B}_{7,1}$.
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong \mathrm{K}_{1} \cup \mathrm{~K}_{2}$, then is not unicyclic.
(ii) $|\mathrm{V}-\mathrm{S}|=4$

If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong B_{7,2}$.
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then $G \cong B_{7,3}$ (or) $B_{7,4}$.
(iii) $|\mathrm{V}-\mathrm{S}|=5$

If $\langle V-S\rangle \cong 5 K_{1}$, then $G \cong B_{7,5}$.
If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then $G \cong B_{7,6}$ (or) $B_{7,7}$.
(iv) $|\mathrm{V}-\mathrm{S}|=6$ (or) 7 , then G is not unicyclic.

Subcase(3.b): $\langle S\rangle \cong K_{1} \cup K_{2}$
If $\langle V-S\rangle$ contains K_{2}, then G is not unicyclic. The only cycle in this case is C_{3}. If $\quad|V-S|=1$ (or) 2 , then S will not be a $\gamma_{\text {cild }}-$ set of G.
(i) $|\mathrm{V}-\mathrm{S}|=3$

If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{B}_{8,1}$.
(ii) $|\mathrm{V}-\mathrm{S}|=4$

If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 4 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{B}_{8,2}$ (or) $\mathrm{B}_{8,3}$.
(iii) $|\mathrm{V}-\mathrm{S}|=5$ (or) 6 (or) 7 then G is not unicyclic.

Subcase(3.c): $\langle\mathrm{S}\rangle \cong \mathrm{P}_{3}$
The only cycle in this case is C_{3}.
(i) $|\mathrm{V}-\mathrm{S}|=1$

If $\langle\mathrm{V}-\mathrm{S}\rangle \cong \mathrm{K}_{1}$, then G is not unicyclic.
(ii) $|\mathrm{V}-\mathrm{S}|=2$

If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{B}_{9,1}$
(iii) $|\mathrm{V}-\mathrm{S}|=3$

If $\langle V-S\rangle \cong 3 K_{1}$, then $G \cong B_{9,1}$ (or) $B_{9,2}$
(iv) $|\mathrm{V}-\mathrm{S}|=4$

If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong B_{9,3}$
(v) $|\mathrm{V}-\mathrm{S}|=5$ (or) 6 (or) 7 , then G is not unicyclic.

Hence the theorem follows.

Notation 3.5:

The family of graphs $C=\left\{C_{1}, C_{2}\right\}$ are defined as follows, where

$$
C_{1}=\left\{\mathrm{C}_{1,1} \mathrm{C}_{1,2}, \ldots, \mathrm{C}_{1,43}, \mathrm{C}_{1,44}\right\} ; \text { and } C_{2}=\left\{\mathrm{C}_{2,1}, \mathrm{C}_{2,2}, \ldots, \mathrm{C}_{2,11}, \mathrm{C}_{2,12}\right\}
$$

$\mathrm{C}_{1,1}=\mathrm{C}_{3} @ \mathrm{P}_{2} @ \mathrm{P}_{2}$
$\mathrm{C}_{1,2}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{C}_{1,2}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @{ }_{s} \mathrm{P}_{3}$
$\mathrm{C}_{1,3}=\mathrm{C}_{3} @ \mathrm{P}_{1} @_{c} \mathrm{P}_{4}$
$\mathrm{C}_{1,4}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3}$
$\mathrm{C}_{1,5}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{C}_{1,6}=\mathrm{C}_{3} @ \mathrm{P}_{2}$ @ P_{3}
$\mathrm{C}_{1,7}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{C}_{1,8}=\mathrm{C}_{4} @ \mathrm{P}_{1} @_{s} \mathrm{P}_{3}$
$\mathrm{C}_{1,9}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{C}_{1,10}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{2}$
$\mathrm{C}_{1,11}=\mathrm{C}_{3} @ \mathrm{P}_{1} @{ }_{e c} \mathrm{P}_{4}$
$\mathrm{C}_{1,12}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{2}$
$\mathrm{C}_{1,13}=\mathrm{C}_{4} @ \mathrm{P}_{1} @{ }_{c} \mathrm{P}_{4}$
$\mathrm{C}_{1,14}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3}$
$\mathrm{C}_{1,15}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{s} \mathrm{P}_{4}$
$\mathrm{C}_{1,16}=\mathrm{C}_{3} @ \mathrm{P}_{2} @_{c} \mathrm{P}_{4}$
$\mathrm{C}_{1,17}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{4}$
$\mathrm{C}_{1,18}=\mathrm{C}_{3} @ \mathrm{P}_{1} @{ }_{e s} \mathrm{P}_{3} @ \mathrm{P}_{2}$
$\mathrm{C}_{1,19}=\mathrm{C}_{3} @ \mathrm{P}_{1} @_{c} \mathrm{P}_{5}$


```
\(\mathrm{C}_{1,39}=\mathrm{C}_{3} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3} @ \mathrm{P}_{3}\)
\(\mathrm{C}_{1,40}=\mathrm{C}_{3} @ \mathrm{P}_{2} @ \mathrm{P}_{2} @{ }_{s} \mathrm{P}_{4}\)
\(\mathrm{C}_{1,41}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{4}\)
\(\mathrm{C}_{1,42}=\mathrm{C}_{3} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{4} @ \mathrm{P}_{2}\)
\(\mathrm{C}_{1,43}=\mathrm{C}_{3} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{4} @ \mathrm{P}_{3}\)
\(\mathrm{C}_{1,44}=\mathrm{C}_{3} @ \mathrm{P}_{2} @{ }_{c} \mathrm{P}_{6}\)
\(\mathrm{C}_{2,1}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{2}\)
\(\mathrm{C}_{2,2}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2}\)
\(\mathrm{C}_{2,3}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @{ }_{s} \mathrm{P}_{2}\)
\(\mathrm{C}_{2,4}=\mathrm{C}_{3} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2} @ \mathrm{P}_{2}\)
\(\mathrm{C}_{2,5}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{2}\)
\(\mathrm{C}_{2,6}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2}\)
\(\mathrm{C}_{2,7}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2}\)
\(\mathrm{C}_{2,8}=\mathrm{C}_{3} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{2} @ \mathrm{P}_{2}\)
\(\mathrm{C}_{2,9}=\mathrm{C}_{3} @_{s} \mathrm{P}_{2} @ \mathrm{P}_{2} @ \mathrm{P}_{2}\)
\(\mathrm{C}_{2,10}=\mathrm{C}_{3} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2} @ \mathrm{P}_{2} @ \mathrm{P}_{1}\)
\(\mathrm{C}_{2,11}=\mathrm{C}_{3} @_{s} \mathrm{P}_{4} @ \mathrm{P}_{2}\)
\(\mathrm{C}_{2,12}=\mathrm{C}_{3} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2} @ \mathrm{P}_{3}\)
```


Theorem 3.6:

Let G be a connected unicyclic graph in which one vertex of a $\gamma_{\text {cild }}-$ set lies on the cycle. Then $\gamma_{\text {cild }}(G)$ $=4$ if and only if G is one of the graphs in the family C.

Proof:

If G is one of the graphs in the family C, then $\gamma_{\text {cild }}(G)=4$.
Conversely, let S be a $\gamma_{\text {cild }}-$ set of the unicyclic graph G with $|S|=4$ and therefore $|V-S| \leq 2^{4}-1=15$ and $<V$ $-S>$ contains atleast one isolated vertex. Let a vertex of S lie on the cycle. Then the cycle in G is one of C_{3}, C_{4} and C_{5}. Also it is observed that, $|\mathrm{N}(\mathrm{u}) \cap \mathrm{S}|=1$ (or) 2 , for any $\mathrm{u} \in \mathrm{V}-\mathrm{S}$. Hence $|\mathrm{V}-\mathrm{S}| \leq 7$.
Therefore, $\langle S\rangle \cong 4 K_{1}, 2 K_{1} \cup K_{2}, K_{1} \cup P_{3}$ (or) $K_{1,3}$
Case (1): $\langle S\rangle \cong 4 K_{1}$
Then $\langle V-S\rangle$ must contain K_{2}. Since $\langle V-S\rangle$ contains atleast one isolated vertex,
$|\mathrm{V}-\mathrm{S}| \geq 3$.
Subcase(1.a): $|\mathrm{V}-\mathrm{S}|=3$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong \mathrm{K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{C}_{1,1}$
Subcase(1.b): $|V-S|=4$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then G is one of the graphs from $C_{1,2}$ to $C_{1,5}$
If $\langle V-S\rangle \cong K_{1} \cup P_{3}$, then G is one of the graphs from $C_{1,6}$ to $C_{1,9}$
Subcase(1.c): $|V-S|=5$
If $\langle V-S\rangle \cong K_{1} \cup P_{4}$, then $G \cong C_{1,10}$
If $\langle V-S\rangle \cong 2 K_{1} \cup P_{3}$, then G is one of the graphs from $C_{1,11}$ to $C_{1,14}$
If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then G is one of the graphs from $C_{1,15}$ to $C_{1,24}$
Subcase(1.d): $|V-S|=6$
If $\langle V-S\rangle \cong 3 K_{1} \cup P_{3}$, then G is one of the graphs from $C_{1,25}$ to $C_{1,27}$
If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$, then G is one of the graphs from $C_{1,28}$ to $C_{1,39}$
Subcase(1.e): $|\mathrm{V}-\mathrm{S}|=7$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 5 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then G is of the graphs from $\mathrm{C}_{1,40}$ to $\mathrm{C}_{1,44}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1} \cup 2 \mathrm{~K}_{2}$ (or) $\mathrm{K}_{1} \cup 3 \mathrm{~K}_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G .

Case (2): $\langle\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$
By a similar argument as in Case(1), $|\mathrm{V}-\mathrm{S}| \geq 3$.
Subcase(2.a): $|V-S|=3$
If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then $G \cong C_{2,1}$ and $C_{2,2}$
Subcase(2.b): $|V-S|=4$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then G is one of the graphs from $C_{2,3}$ to $C_{2,7}$ and $C_{1,2}$
Subcase(2.c): $|V-S|=5$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then G is one of the graphs from $\mathrm{C}_{2,8}$ to $\mathrm{C}_{2,12}$ and $\mathrm{C}_{1,19}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{P}_{3}$, then $\mathrm{G} \cong \mathrm{C}_{1,14}$
Subcase(2.d): $|V-S|=6$
If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$, then $G \cong C_{1,31}$
Subcase(2.e): $|\mathrm{V}-\mathrm{S}|=7$
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}$ - set of G .
Case (3): $\langle S\rangle \cong K_{1,3}$
In this case, it is observed that all vertices in $\langle\mathrm{V}-\mathrm{S}\rangle$ are isolated vertices.
Therefore, $|\mathrm{V}-\mathrm{S}|=4$.
Subcase(3.a): $|\mathrm{V}-\mathrm{S}|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong C_{1,3}$
Case (4): $\langle S\rangle \cong K_{1} \cup P_{3}$
By a similar argument as in Case(1), $|\mathrm{V}-\mathrm{S}| \geq 3$.
Subcase(4.a): $|\mathrm{V}-\mathrm{S}|=3$
If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then $G \cong C_{1,1}$
Subcase(4.b): $|V-S|=4$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{C}_{1,6}$ and $\mathrm{C}_{1,3}$
Subcase(4.c): $|V-S|=5$
If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then $G \cong \mathrm{C}_{1,16}$
Subcase(4.d): $|V-S|=6$ (or) 7
If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then $G \cong \mathrm{C}_{1,16}$
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}-$ set of G.
This completes the proof of the theorem.

Notation 3.7:

The family of graphs $\mathcal{D}=\left\{\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \mathscr{D}_{4}\right\}$ are defined as follows, where
$\mathcal{D}_{1}=\left\{\mathrm{D}_{1,1} \mathrm{D}_{1,2}, \ldots ., \mathrm{D}_{1,49}, \mathrm{D}_{1,50}\right\} ; \mathcal{D}_{2}=\left\{\mathrm{D}_{2,1}, \mathrm{D}_{2,2}, \ldots, \mathrm{D}_{2,37}, \mathrm{D}_{2,38}\right\}$;
$\mathcal{D}_{3}=\left\{D_{3,1}, D_{3,2}, \ldots, D_{3,6}, D_{3,7}\right\}$; and $\mathscr{D}_{4}=\left\{D_{4,1}, D_{4,2}, D_{4,3}, D_{4,4}, D_{4,5}\right\}$
$\mathrm{D}_{1,1}=\mathrm{C}_{4} @ \mathrm{P}_{1} @{ }_{s} \mathrm{P}_{2}$
$\mathrm{D}_{1,2}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{D}_{1,3}=\mathrm{C}_{4} @_{s} \mathrm{P}_{3}$
$\mathrm{D}_{1,4}=\mathrm{C}_{5} @ \mathrm{P}_{3}$
$\mathrm{D}_{1,5}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{D}_{1,6}=\mathrm{C}_{4} @ \mathrm{P}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{D}_{1,7}=\mathrm{C}_{4} @ \mathrm{P}_{2} @ \mathrm{P}_{3}$
$\mathrm{D}_{1,8}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{4}$
$\mathrm{D}_{1,9}=\mathrm{C}_{4} @ \mathrm{P}_{1} @{ }_{c} \mathrm{P}_{4}$
$\mathrm{D}_{1,10}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{D}_{1,11}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2}$
$\mathrm{D}_{1,12}=\mathrm{C}_{4} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3}$
$\mathrm{D}_{1,13}=\mathrm{C}_{4} @ \mathrm{P}_{2} @{ }_{s} \mathrm{P}_{3}$
$\mathrm{D}_{1,14}=\mathrm{C}_{5} @ \mathrm{P}_{1} @{ }_{s} \mathrm{P}_{3}$
$\mathrm{D}_{1,15}=\mathrm{C}_{5} @ \mathrm{P}_{2} @_{3} \mathrm{P}_{2}$
$\mathrm{D}_{1,16}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$

$$
\begin{aligned}
& \mathrm{D}_{1,33}=\mathrm{C}_{5} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{4} \\
& \mathrm{D}_{1,34}=\mathrm{C}_{5} @ \mathrm{P}_{2} @{ }_{s} \mathrm{P}_{3} \\
& \mathrm{D}_{1,35}=\mathrm{C}_{5} @{ }_{s} \mathrm{P}_{4} @ \mathrm{P}_{1} \\
& \mathrm{D}_{1,36}=\mathrm{C}_{5} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{3} \\
& \mathrm{D}_{1,37}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{2} \\
& \mathrm{D}_{1,38}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3} \\
& \mathrm{D}_{1,39}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{1} @ \mathrm{P}_{1} \\
& \mathrm{D}_{1,40}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{3} \\
& \mathrm{D}_{1,41}=\mathrm{C}_{5} @ \mathrm{P}_{2} @ \mathrm{P}_{1} @ \mathrm{P}_{2} \\
& \mathrm{D}_{1,42}=\mathrm{C}_{6} @ \mathrm{P}_{2} @ \mathrm{P}_{2} \\
& \mathrm{D}_{1,43}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{1} \\
& \mathrm{D}_{1,44}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @{ }_{s} \mathrm{P}_{4} \\
& \mathrm{D}_{1,45}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{2} @ \mathrm{P}_{1} \\
& \mathrm{D}_{1,46}=\mathrm{C}_{5} @{ }_{s} \mathrm{P}_{4} @ \mathrm{P}_{2} \\
& \mathrm{D}_{1,47}=\mathrm{C}_{5} @ \mathrm{P}_{2} @ \mathrm{P}_{4} \\
& \mathrm{D}_{1,48}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ e s \\
& \mathrm{P}_{4} @ \mathrm{P}_{1}
\end{aligned}
$$

$\mathrm{D}_{1,49}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{4}$
$\mathrm{D}_{1,50}=\mathrm{C}_{5} @ \mathrm{P}_{2} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{3}$
$\mathrm{D}_{2,1}=\mathrm{C}_{4} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2}$
$\mathrm{D}_{2,2}=\mathrm{C}_{3} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2} @ \mathrm{P}_{1}$
$\mathrm{D}_{2,3}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{D}_{2,4}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3}$
$\mathrm{D}_{2,5}=\mathrm{C}_{3} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{4}$
$\mathrm{D}_{2,6}=\mathrm{C}_{4} @ \mathrm{P}_{2} @_{s} \mathrm{P}_{2}$
$\mathrm{D}_{2,7}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{s} \mathrm{P}_{2}$
$\mathrm{D}_{2,8}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{2}$
$\mathrm{D}_{2,9}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{D}_{2,10}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{2}$
$\mathrm{D}_{2,11}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @{ }_{e s} \mathrm{P}_{3}$
$\mathrm{D}_{2,12}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3}$
$\mathrm{D}_{2,13}=\mathrm{C}_{3} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{3} @ \mathrm{P}_{1}$
$\mathrm{D}_{2,14}=\mathrm{C}_{3} @\binom{P_{1}}{P_{2} @_{\mathrm{es}} P_{3}}$
$\mathrm{D}_{2,15}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{4}$
$\mathrm{D}_{2,16}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{4}$
$\mathrm{D}_{2,17}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{3}$

$\mathrm{D}_{2,18}=\mathrm{C}_{3} @ \mathrm{P}_{2} @ \mathrm{P}_{1} @{ }_{s} \mathrm{P}_{3}$	$\mathrm{D}_{2,36}=\mathrm{C}_{4} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{4}$
$\mathrm{D}_{2,19}=\mathrm{C}_{3} @ \mathrm{P}_{2} @{ }_{s} \mathrm{P}_{4}$	$\mathrm{D}_{2,37}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{2}$
$\begin{aligned} & \mathrm{D}_{2,20}=\mathrm{C}_{3} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{4} \\ & \mathrm{D}_{2,21}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{s} \mathrm{P}_{4} \end{aligned}$	$\mathrm{D}_{2,38}=\mathrm{C}_{3} @\binom{P_{1}}{P_{2} @_{\mathrm{es}} P_{4}} @ \mathrm{P}_{1}$
$\mathrm{D}_{2,22}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2} @ \mathrm{P}_{1}$	$\mathrm{D}_{3,1}=\mathrm{C}_{3} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{2}$
$\mathrm{D}_{2,23}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @{ }_{s} \mathrm{P}_{2}$	$\mathrm{D}_{3,2}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2}$
$\mathrm{D}_{2,24}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{2}$	$\mathrm{D}_{3,3}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{\text {d }}$
$\left\lvert\, \begin{aligned} & \mathrm{D}_{2,25}=\mathrm{C}_{4} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{3} \\ & \mathrm{D}_{2,26}=\mathrm{C}_{4} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{4} \end{aligned}\right.$	$\mathrm{D}_{3,4}=\mathrm{C}_{3} @\binom{P_{1}}{P_{2} @_{\mathrm{eS}} P_{2}}$
$\mathrm{D}_{2,27}=\mathrm{C}_{5} @ \mathrm{P}_{2} @{ }_{s} \mathrm{P}_{2}$	$\mathrm{D}_{3,5}=\mathrm{C}_{3} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{3}$
$\mathrm{D}_{2,28}=\mathrm{C}_{5} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{2}$	$\mathrm{D}_{3,6}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{2}$
$\mathrm{D}_{2,29}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{2}$	$\mathrm{D}_{3,7}=\mathrm{C}_{4} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{3}$
$\mathrm{D}_{2,30}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{4}$	$\begin{aligned} & \mathrm{D}_{4,1}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{s} \mathrm{P}_{2} \\ & \mathrm{D}_{4,2}=\mathrm{C}_{3} @ \mathrm{P}_{2} @{ }_{s} \mathrm{P}_{2} \end{aligned}$
$\mathrm{D}_{2,31}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @_{s} \mathrm{P}_{4}$	$\mathrm{D}_{4,3}=\mathrm{C}_{3} @ \mathrm{P}_{2} @_{s} \mathrm{P}_{3}$
$\mathrm{D}_{2,32}=\mathrm{C}_{3} @\binom{P_{1}}{P_{2} @_{\mathrm{es}} P_{3}} @ \mathrm{P}_{1}$	$\mathrm{D}_{4,4}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{D}_{2,33}=\mathrm{C}_{3} @\binom{P_{1}}{P_{2} @_{e s} P_{4}}$	$\mathrm{D}_{4,5}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @{ }_{s} \mathrm{P}_{2}$
$\mathrm{D}_{2,34}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @_{e s} \mathrm{P}_{4}$	
$\mathrm{D}_{2,35}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{1} @_{e s} \mathrm{P}_{3}$	

Theorem 3.8:

Let G be a connected unicyclic graph in which two vertices of $\gamma_{\text {cild }}-$ set lie on the cycle. Then $\gamma_{\text {cild }}(G)=$ 4 if and only if G is one of the graphs in the family \mathcal{D}.

Proof:

If G is one of the graphs in the family \mathscr{D}, then $\gamma_{\text {cild }}(\mathrm{G})=4$.
Conversely, let S be a $\gamma_{\text {cild }}$ - set of the unicyclic graph G with $|S|=4$ and two vertices of S lie on the cycle of G. By Theorem 3.6, $3 \leq|\mathrm{V}-\mathrm{S}| \leq 7$. Since $\langle\mathrm{V}-\mathrm{S}>$ contains atleast one isolated vertex, $\langle S\rangle \cong 4 K_{1}, 2 K_{1} \cup K_{2}, 2 K_{2}$ (or) $K_{1} \cup P_{3}$.
Case (1): $\langle S\rangle \cong 4 K_{1}$
Subcase(1.a): $|\mathrm{V}-\mathrm{S}|=3$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{D}_{1,1}$
Subcase(1.b): $|V-S|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong D_{1,2}$ and $D_{1,3}$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{D}_{1,4}$ If $\langle V-S\rangle \cong K_{1} \cup P_{3}$, then $G \cong D_{1,5}$
Subcase(1.c): $|V-S|=5$
If $\langle V-S\rangle \cong 5 K_{1}$, then G is one of the graphs from $D_{1,6}$ to $D_{1,13}$ If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then G is one of the graphs from $D_{1,14}$ to $D_{1,21}$ If $\langle V-S\rangle \cong K_{1} \cup 2 K_{2}$, then $G \cong D_{1,22}$ and $D_{1,23}$ If $\langle V-S\rangle \cong 2 K_{1} \cup P_{3}$, then $G \cong D_{1,24}, D_{1,22}$ and $D_{1,23}$
Subcase(1.d): $|V-S|=6$
If $\langle V-S\rangle \cong 6 K_{1}$, then G is one of the graphs from $D_{1,25}$ to $D_{1,31}$ If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$, then G is one of the graphs from $D_{1,32}$ to $D_{1,41}$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{D}_{1,42}$ and $\mathrm{D}_{1,22}$ If $\langle V-S\rangle \cong 3 K_{1} \cup P_{3}$, then $G \cong D_{1,43}$
Subcase(1.e): $|V-S|=7$ If $\langle V-S\rangle \cong 7 K_{1}$, then G is one of the graphs from $D_{1,44}$ to $D_{1,48}$ If $\langle V-S\rangle \cong 5 K_{1} \cup K_{2}$, then $G \cong D_{1,49}$ and $D_{1,50}$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1} \cup 2 \mathrm{~K}_{2}$ (or) $\mathrm{K}_{1} \cup 3 \mathrm{~K}_{2}$, then S will not a $\gamma_{\text {cild }}-$ set of G .
Case (2): $\langle S\rangle \cong 2 K_{1} \cup K_{2}$

Subcase(2.a): $|\mathrm{V}-\mathrm{S}|=3$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{D}_{2,1}, \mathrm{D}_{2,2}$ and $\mathrm{D}_{1,1}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{D}_{2,2}$
Subcase(2.b): $|\mathrm{V}-\mathrm{S}|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then G is one of the graphs from $D_{2,3}$ to $D_{2,7}$ and $D_{1,12}$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then $G \cong D_{2,8}$ to $D_{2,10} \quad D_{1,8}$ and $D_{1,19}$
Subcase(2.c): $|\mathrm{V}-\mathrm{S}|=5$
If $\langle V-S\rangle \cong 5 K_{1}$, then G is one of the graphs from $D_{2,11}$ to $D_{2,23}, D_{1,30}$ and $D_{1,31}$
If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then G is one of the graphs from $D_{2,24}$ to $D_{2,29}, D_{1,14}, D_{1,19}$ and $D_{2,15}$
Subcase(2.d): $|V-S|=6$
If $\langle V-S\rangle \cong 6 K_{1}$, then G is one of the graphs from $D_{2,30}$ to $D_{2,34}$ and $D_{1,11}$
If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$, then G is one of the graphs from $D_{2,35}$ to $D_{2,37}, D_{1,30}, D_{1,34}$ and $D_{1,36}$
Subcase(2.e): $|\mathrm{V}-\mathrm{S}|=7$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 7 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{D}_{2,38}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 5 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then G is not unicyclic.
Case (3): $\langle S\rangle \cong 2 K_{2}$
Subcase(3.a): $|\mathrm{V}-\mathrm{S}|=3$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{D}_{3,1}$ and $\mathrm{D}_{3,2}$ If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then $G \cong D_{1,11}$
Subcase(3.b): $|\mathrm{V}-\mathrm{S}|=4$ If $\langle V-S\rangle \cong 4 K_{1}$, then G is one of the graphs from $D_{3,3}$ to $D_{3,6}$ and $D_{2,13}$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{D}_{3,7}$
Subcase(3.c): $|\mathrm{V}-\mathrm{S}|=5$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 5 \mathrm{~K}_{1}$, then G is one of the graphs $\mathrm{D}_{3,5}, \mathrm{D}_{3,6}, \mathrm{D}_{2,13}$ and $\mathrm{D}_{2,16}$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{D}_{3,7}$
Subcase(3.d): $|V-S|=6$ If $\langle V-S\rangle \cong 6 K_{1}$, then $G \cong D_{2,35}$
Subcase(3.d): $|V-S|=7$
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}-$ set of G.
Case (4): $\langle S\rangle \cong K_{1} \cup P_{3}$
Subcase(4.a): $|V-S|=3$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{D}_{4,1}$ and $\mathrm{D}_{4,2}$
Subcase(4.b): $|V-S|=4$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 4 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{D}_{4,3}, \mathrm{D}_{4,4}$ and $\mathrm{D}_{4,5}$
Subcase(4.c): $|V-S|=5$ If $\langle V-S\rangle \cong 5 K_{1}$, then $G \cong D_{4,5}$
Subcase(4.d): $|\mathrm{V}-\mathrm{S}|=6$ (or) 7
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}$ - set of G .
This completes the proof of the theorem.

Notation 3.9:

The family of graphs $\mathcal{E}=\left\{\mathcal{E}_{1}, \mathbb{E}_{2}, \ldots, E_{5}, \mathcal{E}_{6}\right\}$ are defined as follows, where

$$
\mathcal{E}_{1}=\left\{\mathrm{E}_{1,1}, \mathrm{E}_{1,2}, \ldots, \mathrm{E}_{1,31}, \mathrm{E}_{1,32}\right\} ; \mathcal{E}_{2}=\left\{\mathrm{E}_{2,1}, \mathrm{E}_{2,2}, \ldots, \mathrm{E}_{2,27}, \mathrm{E}_{2,28}\right\} ; \mathcal{E}_{3}=\left\{\mathrm{E}_{3,1}, \mathrm{E}_{3,2}, \mathrm{E}_{3,3}, \mathrm{E}_{3,4}\right\} ; \mathcal{E}_{4}=\left\{\mathrm{E}_{4,1}, \mathrm{E}_{4,2},\right.
$$

$\left.\ldots, \mathrm{E}_{4,14}, \mathrm{E}_{4,14}\right\} ; \mathcal{E}_{5}=\left\{\mathrm{E}_{5,1}, \mathrm{E}_{5,2}, \mathrm{E}_{5,3}, \mathrm{E}_{5,4}\right\} ;$ and $\mathcal{E}_{6}=\left\{\mathrm{E}_{6,1}\right\}$.

$\mathrm{E}_{1,1}=\mathrm{C}_{6} @ \mathrm{P}_{2}$	$\mathrm{E}_{1,7}=\mathrm{C}_{6} @ \mathrm{P}_{1} @_{3} \mathrm{P}_{2}$	$\mathrm{E}_{1,13}=\mathrm{C}_{6} @{ }_{s} \mathrm{P}_{4}$
$\mathrm{E}_{1,2}=\mathrm{C}_{6} @ \mathrm{P}_{3}$	$\mathrm{E}_{1,8}=\mathrm{C}_{7} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$	$\mathrm{E}_{1,14}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{E}_{1,3}=\mathrm{C}_{6} @{ }_{s} \mathrm{P}_{3}$	$\mathrm{E}_{1,9}=\mathrm{C}_{7} @ \mathrm{P}_{1} @ \mathrm{P}_{3} \mathrm{P}_{1}$	$\mathrm{E}_{1,15}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{1}$
$\mathrm{E}_{1,4}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{2}$	$\mathrm{E}_{1,10}=\mathrm{C}_{7} @ \mathrm{P}_{2}$	$\mathrm{E}_{1,16}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{2} \mathrm{P}_{1} @ \mathrm{P}_{2}$
$\mathrm{E}_{1,5}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{2}$	$\mathrm{E}_{1,11}=\mathrm{C}_{8} @ \mathrm{P}_{1}$	
$\mathrm{E}_{1,6}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ 2 \mathrm{P}_{1} @ \mathrm{P}_{2}$		
	$\mathrm{E}_{1,12}=\mathrm{C}_{5} @ \mathrm{P}_{4} @ \mathrm{P}_{1}$	$\mathrm{E}_{1,18}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{2}$

```
\(\mathrm{E}_{1,19}=\mathrm{C}_{7} @ \mathrm{P}_{3}\)
\(\mathrm{E}_{1,20}=\mathrm{C}_{7} @_{s} \mathrm{P}_{3}\)
\(\mathrm{E}_{1,21}=\mathrm{C}_{7} @ \mathrm{P}_{1} @ \mathrm{P}_{2}\)
\(\mathrm{E}_{1,22}=\mathrm{C}_{7} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{2}\)
\(\mathrm{E}_{1,23}=\mathrm{C}_{7} @ \mathrm{P}_{1} @_{3} \mathrm{P}_{2}\)
\(\mathrm{E}_{1,24}=\mathrm{C}_{7} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @ \mathrm{P}_{2}\)
\(\mathrm{E}_{1,25}=\mathrm{C}_{8} @ \mathrm{P}_{2}\)
\(\mathrm{E}_{1,26}=\mathrm{C}_{6} @ \mathrm{P}_{1} @_{2 s} \mathrm{P}_{4}\)
\(\mathrm{E}_{1,27}=\mathrm{C}_{6} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @_{2} \mathrm{P}_{3}\)
\(\mathrm{E}_{1,28}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{2 s} \mathrm{P}_{3}\)
\(\mathrm{E}_{1,29}=\mathrm{C}_{6} @ \mathrm{P}_{1} @{ }_{2} \mathrm{P}_{1} @ \mathrm{P}_{2} @ \mathrm{P}_{1}\)
\(\mathrm{E}_{1,30}=\mathrm{C}_{7} @_{s} \mathrm{P}_{4}\)
\(\mathrm{E}_{1,31}=\mathrm{C}_{7} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{3}\)
\(\mathrm{E}_{1,32}=\mathrm{C}_{6} @ \mathrm{P}_{1} @_{2 s} \mathrm{P}_{4} @_{2} \mathrm{P}_{1}\)
\(\mathrm{E}_{2,1}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}\)
\(\mathrm{E}_{2,2}=\mathrm{C}_{5} @ \mathrm{P}_{2} @{ }_{2} \mathrm{P}_{1}\)
\(\mathrm{E}_{2,3}=\mathrm{C}_{5} @_{s} \mathrm{P}_{3}\)
\(\mathrm{E}_{2,4}=\mathrm{C}_{6} @_{s} \mathrm{P}_{2}\)
\(\mathrm{E}_{2,5}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{1}\)
\(\mathrm{E}_{2,6}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}\)
\(\mathrm{E}_{2,7}=\mathrm{C}_{5} @ \mathrm{P}_{2} @ \mathrm{P}_{1} @ \mathrm{P}_{1}\)
\(\mathrm{E}_{2,8}=\mathrm{C}_{5} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @ \mathrm{P}_{2}\)
```


$\mathrm{E}_{3,3}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{2 s} \mathrm{P}_{2}$
$\mathrm{E}_{3,4}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{2 s} \mathrm{P}_{3}$
$\mathrm{E}_{4,1}=\mathrm{C}_{5} @_{s} \mathrm{P}_{2}$
$\mathrm{E}_{4,2}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{E}_{4,3}=\mathrm{C}_{4} @ \mathrm{P}_{2} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{E}_{4,4}=\mathrm{C}_{5} @ \mathrm{P}_{1} @_{s} \mathrm{P}_{2}$
$\mathrm{E}_{4,5}=\mathrm{C}_{5} @ \mathrm{P}_{1} @{ }_{2 s} \mathrm{P}_{2}$
$\mathrm{E}_{4,6}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{2}$
$\mathrm{E}_{4,7}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @{ }_{s} \mathrm{P}_{3}$
$\mathrm{E}_{4,8}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{E}_{4,9}=\mathrm{C}_{5} @ \mathrm{P}_{1} @_{s} \mathrm{P}_{2} @_{2} \mathrm{P}_{1}$
$\mathrm{E}_{4,10}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{E}_{4,11}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{2}$
$\mathrm{E}_{4,12}=\mathrm{C}_{5} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @_{s} \mathrm{P}_{3}$
$\mathrm{E}_{4,13}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{s} \mathrm{P}_{4}$
$\mathrm{E}_{5,1}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{2}$
$\mathrm{E}_{5,2}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{E}_{5,3}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{3}$
$\mathrm{E}_{5,4}=\mathrm{C}_{3} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @{ }_{s} \mathrm{P}_{4}$
$\mathrm{E}_{6,1}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @{ }_{s} \mathrm{P}_{2}$

Theorem 3.10:

Let G be connected unicyclic graph in which three vertices of $\gamma_{\text {cild }}-$ set lie on the cycle. Then $\gamma_{\text {cild }}(G)=$ 4 if and only if G is one of the graphs in the family E.

Proof:

If G is one of the graphs in the family \mathcal{E}, then $\gamma_{\text {cild }}(G)=4$.
Conversely, let S be a $\gamma_{\text {cild }}-$ set of the unicyclic graph G with $|S|=4$. Since three vertices of S lie on the cycle and G is unicyclic, $3 \leq|\mathrm{V}-\mathrm{S}| \leq 8$.
Since $\langle\mathrm{V}-\mathrm{S}\rangle$ contains atleast one isolated vertex,
$\langle S\rangle \cong 4 K_{1}, 2 K_{1} \cup K_{2}, 2 K_{2}, \mathrm{P}_{3}, \mathrm{C}_{3}$ (or) $\mathrm{K}_{1,3}$.
Case (1): $\langle S\rangle \cong 4 K_{1}$
Subcase(1.a): $|V-S|=3$
Then S is not a $\gamma_{\text {cild }}-$ set of G.
Subcase(1.b): $|V-S|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong E_{1,1}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then G is not unicyclic.
Subcase(1.c): $|V-S|=5$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 5 \mathrm{~K}_{1}$, then G is one of the graphs from $\mathrm{E}_{1,2}$ to $\mathrm{E}_{1,7}$
If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then G is one of the graphs from $E_{1,8}$ to $E_{1,10}$
If $\langle V-S\rangle \cong K_{1} \cup 2 K_{2}$, then $G \cong E_{1,11}$
Subcase(1.d): $|V-S|=6$
If $\langle V-S\rangle \cong 6 K_{1}$, then G is one of the graphs from $E_{1,12}$ to $E_{1,18}$
If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$, then G is one of the graphs from $E_{1,19}$ to $E_{1,24}$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{E}_{1,25}$
Subcase(1.e): $|\mathrm{V}-\mathrm{S}|=7$
If $\langle V-S\rangle \cong 7 K_{1}$, then G is one of the graphs from $E_{1,26}$ to $E_{1,29}$ and $E_{1,24}$ If $\langle V-S\rangle \cong 5 K_{1} \cup K_{2}$, then $G \cong \mathrm{E}_{1,30}, \mathrm{E}_{1,31}$ and $\mathrm{E}_{1,24}$ If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1} \cup 2 \mathrm{~K}_{2}$ (or) $\mathrm{K}_{1} \cup 3 \mathrm{~K}_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G .
Subcase(1.f): $|\mathrm{V}-\mathrm{S}|=8$

If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 8 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{E}_{1,32}$
If $\langle\mathrm{V}-\mathrm{S}\rangle$ contains K_{2} as one of its components, then S will not be a $\gamma_{\text {cild }}-$ set of G .
Case (2): $\langle\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$
Subcase(2.a): $|\mathrm{V}-\mathrm{S}|=3$
Then S is not a $\gamma_{\text {cild }}-$ set of G.
Subcase(2.b): $|V-S|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then G is one of the graphs from $E_{2,1}$ to $E_{2,4}$ and $E_{1,1}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{E}_{2,5}$
Subcase(2.c): $|\mathrm{V}-\mathrm{S}|=5$
If $\langle V-S\rangle \cong 5 K_{1}$, then G is one of the graphs from $E_{2,6}$ to $E_{2,14}$ and $E_{1,3}$
If $\langle V-S\rangle \cong 3 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then G is one of the graphs $\mathrm{E}_{2,15}, \mathrm{E}_{2,16}, \mathrm{E}_{1,10}, \mathrm{E}_{2,3}$ and $\mathrm{E}_{2,10}$
Subcase(2.d): $|V-S|=6$
If $\langle V-S\rangle \cong 6 K_{1}$, then G is one of the graphs from $E_{2,17}$ to $E_{2,25}$
If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$, then $G \cong E_{2,26}, E_{1,16}$ and $E_{1,19}$
Subcase(2.e): $|V-S|=7$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 7 \mathrm{~K}_{1}$, then G is one of the graphs $\mathrm{E}_{2,27}, \mathrm{E}_{2,28}, \mathrm{E}_{1,26}$ and $\mathrm{E}_{1,27}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 5 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then G is not unicyclic.
Subcase(2.f): $|\mathrm{V}-\mathrm{S}|=8$
Then either G is not unicyclic or S will not be a $\gamma_{\mathrm{cild}}-$ set of G .
Case (3): $\langle\mathrm{S}\rangle \cong 2 \mathrm{~K}_{2}$
Subcase(3.a): $|V-S|=3$
Then S is not a $\gamma_{\text {cild }}-$ set of G.
Subcase(3.b): $|V-S|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong E_{3,1}$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G.
Subcase(3.c): $|V-S|=5$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 5 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{E}_{3,2}$ and $\mathrm{E}_{3,3}$
If $\langle V-S\rangle \cong K_{1} \cup K_{2}$ (or) $3 K_{1} \cup K_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G.
Subcase(3.d): $|\mathrm{V}-\mathrm{S}|=6$.
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 6 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{E}_{3,4}$
If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$ (or) $2 \mathrm{~K}_{1} \cup 2 \mathrm{~K}_{2}$, then G is not unicyclic.
Subcase(3.e): $|\mathrm{V}-\mathrm{S}|=7$ (or) 8
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}-$ set of G .
Case (4): $\langle S\rangle \cong K_{1} \cup P_{3}$
Subcase(4.a): $|V-S|=3$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{E}_{4,1}$
Subcase(4.b): $|V-S|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then G is one of the graphs from $E_{4,2}$ to $E_{4,5}$ and $E_{2,3}$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G.
Subcase(4.c): $|V-S|=5$
If $\langle V-S\rangle \cong 5 K_{1}$, then G is one of the graphs from $E_{4,6}$ to $E_{4,11}$ and $E_{1,3}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong \mathrm{K}_{1} \cup \mathrm{~K}_{2}$ (or) $3 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G.
Subcase(4.d): $|V-S|=6$
If $\langle V-S\rangle \cong 6 K_{1}$, then $G \cong E_{4,12}$ and $E_{4,13}$
If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$ (or) $2 \mathrm{~K}_{1} \cup 2 \mathrm{~K}_{2}$, then G is not unicyclic.
Subcase(4.e): $|\mathrm{V}-\mathrm{S}|=7$ (or) 8
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}-$ set of G .
Case (5): $\langle S\rangle \cong K_{1} \cup C_{3}$
Subcase(5.a): $|\mathrm{V}-\mathrm{S}|=3$
If $\langle V-S\rangle \cong 3 K_{1}$, then $G \cong E_{5,1}$
Subcase(5.b): $|\mathrm{V}-\mathrm{S}|=4$

If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong E_{5,2}$ and $E_{5,3}$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G.
Subcase(5.c): $|V-S|=5$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 5 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{E}_{5,4}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong \mathrm{K}_{1} \cup \mathrm{~K}_{2}$ (or) $3 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G .
Subcase(5.d): $|\mathrm{V}-\mathrm{S}|=6,7$ (or) 8
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}-$ set of G .
Case (6): $\langle S\rangle \cong P_{4}$
Subcase(6.a): $|\mathrm{V}-\mathrm{S}|=3$
Then S is not a $\gamma_{\text {cild }}-$ set of G.
Subcase(6.b): $|V-S|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong E_{6,1}$
Subcase(6.c): $|V-S|=5$
If $\langle V-S\rangle \cong 5 K_{1}$, then $G \cong E_{4,8}$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G.
Subcase(6.d): $|\mathrm{V}-\mathrm{S}|=5,6,7$ (or) 8
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}$ - set of G .
This completes the proof of the theorem.

Notation 3.11:

The family of graphs $F=\left\{F_{1}, F_{2}, \ldots, F_{5}\right\}$ are defined as follows, where

$\mathrm{F}_{1,1}=\mathrm{C}_{8}$	$\mathrm{F}_{1,9}=\mathrm{C}_{8} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @_{2} \mathrm{P}_{1}$	$\mathrm{F}_{3,1}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{F}_{1,2}=\mathrm{C}_{8} @ \mathrm{P}_{1}$	$\mathrm{F}_{2,1}=\mathrm{C}_{7} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$	$\mathrm{F}_{3,2}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{3} \mathrm{P}_{1}$
$\mathrm{F}_{1,3}=\mathrm{C}_{9}$	$\mathrm{F}_{2,2}=\mathrm{C}_{7} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1}$	$\mathrm{F}_{3,3}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @{ }_{2} \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{F}_{1,4}=\mathrm{C}_{8} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1}$	$\mathrm{F}_{2,3}=\mathrm{C}_{7} @ \mathrm{P}_{1} @_{3} \mathrm{P}_{1}$	$\mathrm{F}_{4,1}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{F}_{1,5}=\mathrm{C}_{9} @ \mathrm{P}_{1}$	$\mathrm{F}_{2,4}=\mathrm{C}_{7} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @_{2} \mathrm{P}_{1}$	$\mathrm{F}_{4,2}=\mathrm{C}_{6} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{2} \mathrm{P}_{1}$
$\mathrm{F}_{1,6}=\mathrm{C}_{10}$	$\mathrm{F}_{2,5}=\mathrm{C}_{7} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1}$	$\mathrm{F}_{5,1}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{F}_{1,7}=\mathrm{C}_{8} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @_{2} \mathrm{P}_{1}$	$\mathrm{F}_{2,6}=\mathrm{C}_{8} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$	$\mathrm{F}_{5,2}=\mathrm{C}_{5} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$
$\mathrm{F}_{1,8}=\mathrm{C}_{9} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1}$	$\mathrm{F}_{2,7}=\mathrm{C}_{7} @ \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @_{2} \mathrm{P}_{1} @ \mathrm{P}_{1}$	$\mathrm{F}_{5,3}=\mathrm{C}_{4} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1} @ \mathrm{P}_{1}$

Theorem 3.12:

Let G be a connected unicyclic graph G in which four vertices of $\gamma_{\text {cild }}$ - set lie on the cycle. Then $\gamma_{\text {cild }}(G)=4$ if and only if G is one of the graphs in the family \mathcal{F}.
Proof:
If G is one of the graphs in the family F, then $\gamma_{\text {cild }}(G)=4$.
Conversely, let S be a $\gamma_{\text {cild }}-$ set of the unicyclic graph G. Since four vertices of S lie on the cycle, $4 \leq|V-S| \leq$ 8.

Since $\left\langle\mathrm{V}-\mathrm{S}>\right.$ contains atleast one isolated vertex, $\left\langle\mathrm{S}>\right.$ is one of the graphs $4 \mathrm{~K}_{1}, 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}, \mathrm{~K}_{1} \cup \mathrm{P}_{3}, \mathrm{P}_{4}$ and C_{4}.
Case (1): $\langle S\rangle \cong 4 K_{1}$
Subcase(1.a): $|\mathrm{V}-\mathrm{S}|=4$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 4 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{F}_{1,1}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then G is not unicyclic.
Subcase(1.b): $|V-S|=5$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 5 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{F}_{1,2}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{F}_{1,3}$
Subcase(1.c): $|V-S|=6$
If $\langle V-S\rangle \cong 6 K_{1}$, then $G \cong F_{1,4}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 4 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then $\mathrm{G} \cong \mathrm{F}_{1,5}$

If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then $G \cong F_{1,6}$
Subcase(1.d): $|V-S|=7$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 7 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{F}_{1,7}$
If $\langle V-S\rangle \cong 5 K_{1} \cup K_{2}$, then $G \cong F_{1,8}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 3 \mathrm{~K}_{1} \cup 2 \mathrm{~K}_{2}$ (or) $\mathrm{K}_{1} \cup 3 \mathrm{~K}_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G.
Subcase(1.e): $|\mathrm{V}-\mathrm{S}|=8$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 8 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{F}_{1,9}$
If $\langle\mathrm{V}-\mathrm{S}\rangle$ contains K_{2} as one of its components, then S will not be a $\gamma_{\text {cild }}$ - set of G.
Case (2): $\langle S\rangle \cong 2 K_{1} \cup K_{2}$
Subcase(2.a): $|\mathrm{V}-\mathrm{S}|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong F_{1,2}$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then $G \cong F_{1,1}$
Subcase(2.b): $|V-S|=5$
If $\langle V-S\rangle \cong 5 K_{1}$, then $G \cong F_{2,1}, F_{2,2}$ and $F_{2,3}$
If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then $G \cong F_{1,3}$
Subcase(2.c): $|V-S|=6$
If $\langle V-S\rangle \cong 6 K_{1}$, then $G \cong F_{2,4}$ and $F_{2,5}$
If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$, then $G \cong F_{2,6}$
Subcase(2.d): $|\mathrm{V}-\mathrm{S}|=7$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 7 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{F}_{2,7}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 5 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then G is not unicyclic.
Subcase(2.e): $|\mathrm{V}-\mathrm{S}|=8$
Then either G is not unicyclic or S will not be a $\gamma_{\mathrm{cild}}-$ set of G .
Case (3): $\langle S\rangle \cong 2 K_{2}$
Subcase(3.a): $|\mathrm{V}-\mathrm{S}|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong F_{3,1}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 2 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$, then S will not a $\gamma_{\text {cild }}-$ set of G.
Subcase(3.b): $|\mathrm{V}-\mathrm{S}|=5$
If $\langle V-S\rangle \cong 5 K_{1}$, then $G \cong F_{3,2}$
If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then $G \cong F_{2,2}$
If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then S will not a $\gamma_{\text {cild }}-$ set of G.
Subcase(3.c): $|V-S|=6$
If $\langle V-S\rangle \cong 6 K_{1}$, then $G \cong F_{3,3}$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 4 \mathrm{~K}_{1} \cup \mathrm{~K}_{2}$ (or) $2 \mathrm{~K}_{1} \cup 2 \mathrm{~K}_{2}$, then G is not unicyclic.
Subcase(3.d): $|\mathrm{V}-\mathrm{S}|=7$ (or) 8
Then either G is not unicyclic or S will not be a $\gamma_{\mathrm{cild}}-$ set of G .
Case (4): $\langle S\rangle \cong K_{1} \cup P_{3}$
Subcase(4.a): $|V-S|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong F_{3,1}$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G.
Subcase(4.b): $|V-S|=5$
If $\langle V-S\rangle \cong 5 K_{1}$, then $G \cong F_{4,1}$ and $F_{2,2}$
If $\langle V-S\rangle \cong 3 K_{1} \cup K_{2}$, then $G \cong F_{2,1}$
If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then S will not be a $\gamma_{\text {cild }}-$ set of G.
Subcase(4.c): $|V-S|=6$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 6 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{F}_{4,2}$
If $\langle V-S\rangle \cong 4 K_{1} \cup K_{2}$ (or) $2 \mathrm{~K}_{1} \cup 2 \mathrm{~K}_{2}$, then G is not unicyclic.
Subcase(4.d): $|\mathrm{V}-\mathrm{S}|=7$ (or) 8
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}-$ set of G .
Case (5): $\langle S\rangle \cong P_{4}$
Subcase(5.a): $|\mathrm{V}-\mathrm{S}|=4$

If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 4 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{F}_{5,1}$
If $\langle V-S\rangle \cong 2 K_{1} \cup K_{2}$, then $G \cong F_{3,1}$
Subcase(5.b): $|V-S|=5$
If $\langle\mathrm{V}-\mathrm{S}\rangle \cong 5 \mathrm{~K}_{1}$, then $\mathrm{G} \cong \mathrm{F}_{5,2}$
If $\langle V-S\rangle \cong K_{1} \cup K_{2}$, then G is not unicyclic.
Subcase(5.c): $|\mathrm{V}-\mathrm{S}|=6,7$ (or) 8
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}$ - set of G .
Case (6): $\langle S\rangle \cong C_{4}$
Subcase(6.a): $|\mathrm{V}-\mathrm{S}|=4$
If $\langle V-S\rangle \cong 4 K_{1}$, then $G \cong F_{5,3}$
Subcase(6.b): $|\mathrm{V}-\mathrm{S}|=5,6,7$ (or) 8
Then either G is not unicyclic or S will not be a $\gamma_{\text {cild }}-$ set of G .
This completes the proof of the theorem.

Remark 3.13:

Let G be a connected unicyclic graph. Then $\gamma_{\text {cild }}(G)=4$ if and only if G is isomorphic to one of the graphs in the family of graphs $\mathcal{A}, \mathcal{B}, C$ and \mathcal{D}.

IV. Conclusion

This paper results on finding the co - isolated locating domination number for unicyclic graphs. Determining the co - isolated locating domination number remain open. In particular the co - isolated locating domination number equal to 3 (or) 4 (or) 5 are of interest. For large values of $n \geq 6$ proof similar to those presented in this paper get too complicated. So a new approach seems necessary.

References

[1] Ore. O., Theory of Graphs, Amer. Math. Soc. Coel. Publ. 38, Providence, RI, 1962.
[2] Rall. D. F., Slater. P. J., On location domination number for certain classes of graphs, Congrences Numerantium, 45 (1984), 77 106.
[3] S.Muthammai., N.Meenal., Co - isolated Locating Domination Number for some standard Graphs, National conference on Applications of Mathematics \& Computer Science (NCAMCS-2012), S.D.N.B Vaishnav College for Women(Autonomous), Chennai, February 10, 2012, p. 60-61.
[4] S.Muthammai., N.Meenal., Co - isolated Locating Domination Number of a Graph, Proceedings of the UGC sponsored National Seminar on Applications in Graph Theory, Seethalakshmi Ramaswamy College (Autonomous), Tiruchirappalli, $18^{\text {th }} \& 19^{\text {th }}$ December 2012, p. 7 - 9.
[5] Muthammai.S., Meenal. N., Co - isolated Locating Domination Number for Cartesian Product Of Two Graphs, International Journal of Engineering Science, Advanced Computing and Bio - Technology, VOL 6, No.1, January - March 2015, p. 17 - 27
[6] Muthammai.S., Meenal. N., The Number of Minimum Co - isolated Locating Dominating Sets Of Cycles, International Research Journal of Pure Algebra - 5(4),April-2015, p. 45-49
[7] F.Harary.,Graph Theory, (Addison - Wesley, Reading Mass, 1969).
[8] T.W.Haynes., S.T.Hedetniemi., P.J.Slater., Fundamental Of Domination In Graphs, (Marcel Dekker, New York, 1997).
[9] V.R.Kulli.,Theory of Domination in Graphs, (Vishwa International Publications, 2010).
[10] Nader Jafari Rad., Characterization Of Total Restrained Domination Edge Critical Unicyclic Graphs, Australian Journal of Combinatorics, volume 47(2010), p. $77-82$.

