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Abstract: The aim of this paper, is to use a more realistic model which incorporates the effects of Brownian 

motion and thermophoresis for studying the effect of a uniform heat source on the onset of convective instability 

in a confined medium filled of a Newtonian nanofluid layer and heated from below, this layer is assumed to 

have a low concentration of nanoparticles. The linear study in the rigid - rigid case which was achieved in this 

investigation shows that the thermal stability of Newtonian nanofluids depends of the volumetric heat delivered 

by the internal source, the Brownian motion, the thermophoresis and other thermos-physical properties of 

nanoparticles. Our problem will be solved using a technique of converting a boundary value problem to an 

initial value problem, in this technique we will also approach the searched solutions with polynomials of high 

degree.  

Keywords: Linear stability, Nanofluid, Brownian motion, Thermophoresis, Internal heat source, Power series, 
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I. Introduction 

The nanofluid is considered as a homogeneous fluid containing colloidal suspensions of nano-sized 

particles named nanoparticles in the base fluid (water, ethylene glycol, oil). The nanoparticles used in nanofluids 

are generally prepared of metals, oxides, carbides, or carbon nanotubes. The purpose of using nanofluids is to 

obtain a higher values of heat transfer coefficient compared with that of the base fluid , this remarkable 

properties make them potentially useful in many heat transfer applications , for example micro 

electromechanical systems, coolant in machining, automobile radiator cooling , solar water heating, heat 

exchangers, nuclear reactors  and in several aerospace applications. 

The nanofluid term was introduced by Choi [1] in 1995 and remains usually used to characterize this 

type of colloidal suspension. Buongiorno [2] was the first researcher who treated the convective transport 

problem in nanofluids, he was established the conservation equations of a non-homogeneous equilibrium model 

of nanofluids for mass, momentum and heat transport. The thermal problem of instability in nanofluids with 

rigid-free and free-free boundaries was studied by Tzou [3, 4] using the eigenfunction expansions method. The 

onset of convection in a horizontal nanofluid layer of finite depth was studied by Nield and Kuznetsov [5], they 

found that the critical Rayleigh number can be decreased or increased by a significant quantity depending on the 

relative distribution of nanoparticles between the top and bottom walls.  

In this paper, we will study the rigid-rigid case and examine the effect of an internal heat source which 

produces a constant volumetric heat on the onset of convection in a Newtonian nanofluid layer heated uniformly 

from below in the case where the nanoparticle flux is assumed to be zero on the impermeable boundaries instead 

of consider that the volumetric fraction of nanoparticles is constant at the horizontal walls. Currently, this new 

boundary conditions of nanoparticles is used by several authors for studying the convective problem in 

nanofluids [6-11] , among these authors we find D.A. Nield and A.V. Kuznetsov [6] who studied analytically 

the linear thermal stability in a porous medium for a Newtonian nanofluid , Shilpi Agarwal [7] treated 

analytically the linear thermal stability of a rotating porous layer for a Newtonian nanofluid , I.S. Shivakumara 

et al. [8] made a numerically investigation on the linear thermal stability of a porous layer for an Oldroyd-B 

nanofluid , Shilpi Agarwal and Puneet Rana [9] analyzed analytically and numerically the linear and nonlinear 

thermal stability of a rotating porous layer for an Oldroyd-B nanofluid.  D.A. Nield and A.V. Kuznetsov [6] are 

considered as the first ones who were used the new boundary conditions for the nanoparticles, which are 

physically more realistic than the previous model which imposes a temperature and nanoparticle volume 

fractions at the boundaries of the layer. 

To show the accuracy of our method in this study, we will check some results treated by 

Chandrasekhar [12] and Dhananjay Yadav et al. [13] concerning the study of the convective instability of the 

regular fluids in presence or in absent of an internal heat source which produces a constant volumetric heat in 

the rigid-rigid case. 
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 The verification of our results will be done by using polynomials of high degree for approaching the 

searched solutions and increasing the convergence of our method. The contributions of Brownian motion and 

thermophoresis are strongly appear in the equation expressing the conservation of nanoparticles. The 

temperature and particle density are coupled in a particular way in which the instability is almost purely a 

phenomenon due to buoyancy coupled with the conservation of nanoparticles motion.  

 

II. Mathematical Formulation  

We consider an infinite horizontal layer of an incompressible Newtonian nanofluid characterized by a 

low concentration of nanoparticles, heated uniformly from below and confined between two identical horizontal 

surfaces where the temperature is constant and the nanoparticle flux is zero on the boundaries, this layer will be 

subjected to an internal heat source which will provide a constant volumetric heat Qs and also  to  the gravity 

field  g⃗  ( see Figure 1 ) .The thermo-physical properties of nanofluid (viscosity, thermal conductivity, specific 

heat) are assumed constant in the analytical formulation except for the density variation in the momentum 

equation which is based on the Boussinesq approximations .The asterisks are used to distinguish the 

dimensional variables from the nondimensional variables (without asterisks) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          Figure   1   :   Physical configuration.  

Within the framework of the assumptions which were made by Buongiorno [2] and Tzou [3, 4] in their 

publications for the Newtonian nanofluids, we can write the basic equations of conservation which govern our 

problem in dimensionless form as follows: 

∇⃗⃗ ∗. V⃗⃗ ∗ = 0    (1)  

ρf [
∂V⃗⃗ ∗

∂t∗
+ (V⃗⃗ ∗ . ∇⃗⃗ ∗)V⃗⃗ ∗] = −∇⃗⃗ ∗P∗ + {ρ0[1 − β(T∗ − Tc)](1 − χ∗) + ρpχ

∗}g⃗ + η∇⃗⃗ ∗
2
V⃗⃗ ∗ (2)  

(ρc)f [
∂T∗

∂t∗
+ (V⃗⃗ ∗ . ∇⃗⃗ ∗)T∗] = κ∇⃗⃗ ∗

2
T∗ + (ρc)p [DB∇⃗⃗ 

∗χ∗. ∇⃗⃗ ∗T∗ + (
DT

Tc

) ∇⃗⃗ ∗T∗. ∇⃗⃗ ∗T∗] + Qs (3)  

∂χ∗

∂t∗
+ (V⃗⃗ ∗ . ∇⃗⃗ ∗)χ∗ = DB∇⃗⃗ 

∗
2
χ∗ + (

DT

Tc

) ∇⃗⃗ ∗
2
T∗ (4)  

  where ρf is the density of the base fluid , ρ0 is the fluid density at reference temperature Tc ,  ρp is the  

nanoparticle  density , β is the thermal expansion coefficient of  the base fluid ,V⃗⃗ ∗ is the velocity vector , t∗is the 

time , P∗ is the pressure , T∗ is the temperature , χ∗ is the volume fraction of nanoparticles , η  is the viscosity of 

nanofluid , κ is the thermal conductivity of nanofluid , DB is the Brownian diffusion coefficient , DT is the 

thermophoretic diffusion coefficient , (ρc)f is the heat capacity of the base fluid , (ρc)p is the heat capacity of 

the nanoparticle , (x∗, y∗, z∗) are the cartesian coordinates , ∇⃗⃗ ∗ is the vector differential operator . 

If we consider the following dimensionless variables: 

(x∗; y∗; z∗) = h(x; y; z) ;  t∗ =
h2

α
t ;  V⃗⃗ ∗ =

α

h
V⃗⃗  ;  P∗ =

ηα

h2
P ;  T∗ − Tc = (Th − Tc)T ;  χ∗ − χ0

∗ = χ0
∗χ 

Then, we can get from equations (1)-(4) the following adimensional forms: 

∇⃗⃗  . V⃗⃗ = 0 (5)  

Pr
−1 [

∂V⃗⃗ 

∂t
+ (V⃗⃗  . ∇⃗⃗ )V⃗⃗ ] = −∇⃗⃗ (P + RMz) + ∇⃗⃗ 2V⃗⃗ + [(1 − χ0

∗)RaT − RNχ − χ0
∗RaTχ]e⃗ z (6)  

∂T

∂t
+ (V⃗⃗  . ∇⃗⃗ )T = ∇⃗⃗ 2T + NBLe

−1∇⃗⃗ χ. ∇⃗⃗ T + NANBLe
−1∇⃗⃗ T. ∇⃗⃗ T + Hs (7)  

∂χ

∂t
+ (V⃗⃗  . ∇⃗⃗ )χ = Le

−1∇⃗⃗ 2χ + NALe
−1∇⃗⃗ 2T (8)  

𝐳∗        

𝟎        

T∗ = Tc ; DB  
∂χ∗

∂z∗
+

DT

Tc

 
∂T∗

∂z∗
= 0 

 

 

T∗ = Th ; DB  
∂χ∗

∂z∗
+

DT

Tc

 
∂T∗

∂z∗
= 0 
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 Where  Pr =
η

ρfα
   is the Prandtl number  ,  Le =

α

DB
   is the Lewis number  ,  Hs =

Qsh
2

κ(Th−Tc)
                   is 

the dimensionless constant heat source strength  ,  Ra =
ρ0gβh3(Th−Tc)

ηα
   is the thermal Rayleigh number  ,                  

RM =
[ρ0(1−χ0

∗ )+ρpχ0
∗ ]gh3

ηα
  is the basic density Rayleigh number , RN =

(ρp−ρ0)χ0
∗gh3

ηα
   is the concentration 

Rayleigh number  ,  NA =
DT

DBTc
(
Th−Tc

χ0
∗ )  is the modified diffusivity ratio  ,  NB =

(ρc)p

(ρc)f
χ0
∗   is the modified 

particle-density increment   ,   α =
κ

(ρc)f
   is the thermal diffusivity of nanofluid   ,   χ0

∗    is the reference value for 

nanoparticle volume fraction . 

 

2.1 Basic Solution 

The basic solution of our problem is a quiescent thermal equilibrium state, it’s assumed to be 

independent of time where the equilibrium variables are varying only in the z-direction, therefore: 

V⃗⃗ b = 0⃗  (9)  

Tb = 1    ;  
dχb

dz
+ NA

dTb

dz
= 0   at       z = 0 (10)  

Tb = 0    ;  
dχb

dz
+ NA

dTb

dz
= 0   at       z = 1 (11)  

If we introduce the precedent results into equations (6)-(8), we obtain:  

∇⃗⃗ (Pb + RMz) = [(1 − χ0
∗)RaT − RNχ − χ0

∗RaTχ]e⃗ z (12)  

d2Tb

dz2
+ NBLe

−1 (
dχb

dz

dTb

dz
) + NANBLe

−1 (
dTb

dz
)
2

= −Hs (13)  

d2χb

dz2
+ NA

d2Tb

dz2
= 0 (14)  

 After using the boundary conditions (10) and (11), we can integrate the equation (14) between 0 and z 

for obtaining: 

χb = NA(1 − Tb) + χ0 (15)  

Where  χ0 =
χ∗−χ0

∗

χ0
∗   is the relative nanoparticle volume fraction at   z = 0. 

If we take into account the expression (15), we can get after simplification of the equation (13): 

d2Tb

dz2
= −Hs (16)  

Finally, we obtain after an integrating of the equation (16) between 0 and 1: 

Tb = −
1

2
Hsz

2 + (
1

2
Hs − 1) z + 1 (17)  

χb =
1

2
NAHsz

2 − NA (
1

2
Hs − 1) z + χ0 (18)  

2.2 Stability Analysis  

For analyzing the stability of the system, we superimpose infinitesimal perturbations on the basic 

solutions as follows: 

T = Tb + T′       ;         V⃗⃗ = V⃗⃗ b + V⃗⃗ ′      ;     P = Pb + P′   ;        χ = χb + χ′ (19)  

In the framework of the Oberbeck-Boussinesq approximations, we can neglect the terms coming from 

the product of the temperature and the volumetric fraction of nanoparticles in equation (6), if we suppose also 

that we are in the case of small temperature gradients in a dilute suspension of nanoparticles, we can obtain after 

introducing the expressions (19) into equations (5)-(8) the following linearized equations: 

∇⃗⃗  . V′⃗⃗  ⃗ = 0 (20)  

Pr
−1

∂V⃗⃗ ′

∂t
= − ∇⃗⃗ P′ + (RaT

′ − RNχ′)e⃗ z + ∇⃗⃗ 2V⃗⃗ ′ (21)  

∂T′

∂t
+ f1w

′ = ∇⃗⃗ 2T′ + f2
∂T′

∂z
+ f3

∂χ′

∂z
 (22)  
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∂χ′

∂t
+ f4w

′ = NALe
−1∇⃗⃗ 2T′ + Le

−1∇⃗⃗ 2χ′ (23)  

Where  f1 = DTb   ,    f2 = NBLe
−1D(χb + 2NATb)    ,    f3 = NBLe

−1DTb   ,    f4 = Dχb    and    D = d dz⁄  . 

 After application of the curl operator twice to the equation (21) and using the equation (20), we obtain 

the following z -component of the momentum equation: 

Pr
−1 ∂  

∂t
∇⃗⃗ 2w′ = ∇⃗⃗ 4w′ + Ra∇⃗⃗ 2

2T′ − RN∇⃗⃗ 2
2χ′ (24)  

Where   ∇⃗⃗ 2
2= (

∂2

∂x2) + (
∂2

∂y2)  is the two-dimensional Laplacian operator on the horizontal plane. 

Analyzing the disturbances into normal modes, we can simplify the equations (22) - (24) by assuming 

that the perturbation quantities are of the form: 

(w′, T′, χ′) = (𝓌(z), 𝒯(z),𝒳(z))exp[i(kxx + kyy) + σt] (25)  

After introducing the expressions (25) into equations (22) - (24), we obtain: 

Pr
−1σ(D2 − k2)𝓌 = (D2 − k2)2𝓌 − k2Ra𝒯 + k2RN𝒳 (26)  

σ𝒯 + f1𝓌 = (D2 − k2)𝒯 + f2D𝒯 + f3D𝒳 (27)  

σ𝒳 + f4𝓌 = NALe
−1(D2 − k2)𝒯 + Le

−1(D2 − k2)𝒳 (28)  

 Where  σ  is the dimensionless growth rate, kx and ky are respectively the dimensionless waves 

numbers along the x and y directions and  k = √kx
2 + ky

2  is the resultant dimensionless wave number. 

In the rigid-rigid case, the equations (26) - (28) will be solved subject to the following boundary conditions: 

𝓌 = 𝐷 𝓌 = 𝒯 = 𝐷(𝒳 + 𝑁𝐴𝒯) = 0     at    𝑧 = 0; 1 (29)  

2.3 Method of Solution 

In this study we assume that the principle of exchange of stability is valid, as we are interested in a 

stationary stability study characterized by  σ = 0 , then the equations (26)-(28) become: 

(D2 − k2)2𝓌 − k2Ra𝒯 + k2RN𝒳 = 0   (30)  

f1𝓌 − (D2 − k2)𝒯 − f2D𝒯 − f3D𝒳 = 0 (31)  

f4𝓌 − NALe
−1(D2 − k2)𝒯 − Le

−1(D2 − k2)𝒳 = 0 (32)  

We can solve the equations (30) - (32) which are subjected to the conditions (29), by using a suitable 

change of variables that makes the number of variables equal to the number of boundary conditions, to obtain a 

set of eight first order ordinary differential equations which we can write it in the following form: 
d  

dz
ui(z) = aijuj(z) ;   1 ≤ i, j ≤ 8  (33)  

With: 

aij = aij(z , k , Ra, Hs , NB , Le , RN , NA) 

The solution of the system (33) in matrix notation can be written as follows: 

U = BC (34)  

Where   B = ((bij(z))1≤i≤8
1≤j≤8

)   is a square matrix of order 8 × 8 ,  U = ((ui(z))1≤i≤8
)
T

 is the unknown vector 

column of our problem, C = ((cj)1≤j≤8
)
T

is a constant vector column. 

If we assume that the matrix  B  is written in the following form: 

B = ((ui
j(z))1≤i≤8

1≤j≤8

) (35)  

 Therefore, the use of four boundary conditions at  z =  0  , allows us to write each variable  ui(z)  as a 

linear combination only for four functions  ui
j(z) , such that: 

bij(0) = ui
j(0) = δij (36)  

Where   δij  is the Kronecker delta symbol . 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDMQFjADahUKEwif54Gs88LIAhVHuBoKHRnhDuo&url=http%3A%2F%2Fwww2.imperial.ac.uk%2F~rvcras%2FM2M1%2FM2M1sheet7.pdf&usg=AFQjCNHeqTuiGntbYXQe32V9_48wEImLSg&sig2=P2C90SbOPCSUKvYFkvcP3A
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After introducing the new expressions of the variables  ui(z)  in the system (33), we will obtain the 

following equations: 
d  

dz
ui

j(z) = ailul
j(z) ;   1 ≤ i, l, j ≤ 8  (37)  

  

For each value of  j , we must solve a set of eight first order ordinary differential equations which are 

subjected to the initial conditions (36) , by approaching these variables with power series defined in the interval 

[0,1]  and truncated at the order  N ,  such that: 

ui
j(z) = ∑ dp

i ,j
zp

p=N

p=0

 (38)  

A linear combination of the solutions  ui
j(z)  satisfying the boundary conditions (29) at  z =  1  leads 

to a homogeneous algebraic system for the coefficients of the combination. A necessary condition for the 

existence of nontrivial solution is the vanishing of the determinant which can be formally written as: 

f(Ra , k , Hs , NB , Le , RN , NA) = 0 (39)  

If we give to each control parameter  (Hs , NB , Le , RN  , NA) its value, we can plot the neutral curve of 

the stationary convection by the numerical research of the smallest real positive value of the thermal Rayleigh 

number  Ra  which corresponds to a fixed wave number  k  and verifies the dispersion relation (39). After that, 

we will find a set of points (k , Ra) which help us to plot our curve and find the critical value (kc , Rac) which 

characterizes the onset of the convective stationary instability, this critical value represents the minimum value 

of the obtained curve. 

 

2.4 Validation of the Method 

To validate our method, we compared our results with those obtained by Chandrasekhar [12] and 

Dhananjay Yadav et al. [13] concerning the Rayleigh-Bénard problem for the regular fluids in the case where 

the internal heat source is absent or present. To make this careful comparison, we must take into consideration 

the restrictions  Le
−1 = RN = NA = NB = 0  in the governing equations of our problem. The convergence of our 

method is assumed when the absolute value of the difference between the critical thermal Rayleigh numbers  

Rac(N + 1)  and  Rac(N)  is of the order of  10−5  (see Table 1-Table 2), such that  Rac = Rac(N) . 

Where Rac(N) and Rac(N + 1) are respectively the critical thermal Rayleigh numbers which correspond to the 

truncation order  N   and   N + 1. 
 

Table 1 : The critical values of the Rayleigh number Rac and the corresponding wave number kc of 

Chandrasekhar [12]  ,  Dhananjay Yadav et al. [13] and our results for the regular fluids (Hs = 0) . 
 

Present study 

 

Chandrasekhar 

 

D. Yadav et all 

N kc Rac |Rac(N + 1) − Rac(N)| kc Rac kc Rac 

15 3.20999 1669.44346 55.03134 

3.117 1707.762 3.116 1707.75923 

16 3.05441 1724.47480 22.88711 

17 3.14712 1701.58769 7.83433 

18 3.10666 1709.42202 2.03222 

19 3.11906 1707.38980 0.42833 

20 3.11574 1707.81813 0.05755 

21 3.11640 1707.76058 0.00185 

22 3.11632 1707.75873 0.00444 

23 3.11631 1707.76317 0.00182 

24 3.11632 1707.76135 0.00052 

25 3.11632 1707.76187 0.00012 

26 3.11632 1707.76175 0.00003 

27 3.11632 1707.76178 0.00001 

28 3.11632 1707.76177 0 

29 3.11632 1707.76177 0 

30 3.11632 1707.76177 ----------- 



A Realistic Approach for Studying the Effect of an Internal Heat Source on the Onset of Convection…  

DOI: 10.9790/5728-11542130                                    www.iosrjournals.org                                          26 | Page 

Table 2  : The critical values of the Rayleigh number Rac and the corresponding wave number kc of  D. Yadav 

et al. [13] for the regular fluids and our results for the regular fluids and a nanofluid characterized by  NB=0.01, 

Le = 100  ,  RN = 1  and   NA = 0.1  for various values of the heat source strength  Hs. 

 

Hs 

Regular fluids 

 

Nanofluid 

D.Yadav et all 

 

Present study Present study 

kc Rac kc Rac N kc Rac N 

0 3.116 1707.75923 3.11632 1707.76175 26 3.10758 1692.02837 26 

1 3.119 1704.52398 3.11891 1704.52648 27 3.11014 1688.78226 26 

2 3.127 1694.94792 3.12656 1694.95019 31 3.11775 1679.19805 29 

10 3.304 1462.86825 3.30367 1462.86090 35 3.29363 1447.11659 34 

20 3.529 1118.45908 3.52913 1118.43009 39 3.51608 1102.72068 36 

30 3.659 878.34427 3.65933 878.30338 39 3.64263 862.61262 37 

40 3.736 717.24455 3.73587 717.19979 39 3.71530 701.51821 37 

60 3.819 521.44662 3.81895 521.40318 39 3.79041 505.72725 38 

 

According to above results, we notice that there is a very good agreement between our results and the 

previous works, hence the accuracy of the used method. Briefly, the convergence of the results depends greatly 

on the truncation order N of the power series and also of the heat source strength  Hs . Finally, to ensure the 

accuracy of our obtained critical values for the studied nanofluid, we will take as truncation order: 

N = 38 

 

III. Tables and Figures 

3.1 Tables 

Table  3  :  The stationary instability threshold of a nanofluid according to the values of parameters  NB  and Hs 

for  Le = 100  ,  RN = 1   and   NA = 0.1 . 

 

Hs 
NB = 0.001 

 

NB = 0.01 

 

NB = 0.05 

 

NB = 0.1 

kc Rac kc Rac kc Rac kc Rac 

5 3.16654 1617.17374 3.16648 1617.12214 3.16621 1616.89286 3.16586 1616.60635 

10 3.29376 1447.20290 3.29363 1447.11652 3.29307 1446.73267 3.29236 1446.25307 

20 3.51634 1102.83891 3.51608 1102.72062 3.51495 1102.19514 3.51354 1101.53864 

30 3.64300 862.74391 3.64262 862.61267 3.64095 862.02984 3.63887 861.30179 

40 3.71579 701.65629 3.71530 701.51829 3.71310 700.90555 3.71036 700.14032 

50 3.76109 588.73776 3.76048 588.59567 3.75776 587.96475 3.75437 587.17742 

60 3.79114 505.87202 3.79041 505.72725 3.78717 505.08454 3.78314 504.28275 

 

Table  4  :  The stationary instability threshold of a nanofluid according to the values of parameters  Le  and  Hs 

for  NB = 0.01  , RN = 1   and   NA = 0.1  . 

 

Hs 
Le = 100 

 

Le = 300 

 

Le = 500 

 

Le = 700 

kc Rac kc Rac kc Rac kc Rac 

5 3.16648 1617.12214 3.14808 1585.80216 3.12922 1554.32212 3.10987 1522.67493 

10 3.29363 1447.11652 3.27348 1415.90849 3.25283 1384.54569 3.23164 1353.02130 

20 3.51608 1102.72062 3.49006 1071.64358 3.46336 1040.39668 3.43593 1008.97189 

30 3.64262 862.61267 3.60935 831.57900 3.57508 800.34152 3.53976 768.88903 

40 3.71530 701.51829 3.67426 670.49059 3.63180 639.21801 3.58784 607.68471 

50 3.76048 588.59567 3.71142 557.55591 3.66042 526.22650 3.60733 494.58560 

60 3.79041 505.72725 3.73316 474.66547 3.67332 443.26673 3.61069 411.50173 
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Table   5  : The stationary instability threshold of a nanofluid according to the values of parameters  RN  and  Hs 

for  NB = 0.01  ,  Le = 100   and   NA = 0.1  . 

 

Hs 
RN = 1 

 

RN = 3 

 

RN = 5 

 

RN = 7 

kc Rac kc Rac kc Rac kc Rac 

5 3.16648 1617.12214 3.14808 1585.60216 3.12922 1553.92212 3.10987 1522.07493 

10 3.29363 1447.11652 3.27348 1415.70849 3.25283 1384.14569 3.23164 1352.42130 

20 3.51608 1102.72062 3.49006 1071.44358 3.46336 1039.99668 3.43593 1008.37189 

30 3.64262 862.61267 3.60935 831.37900 3.57508 799.94152 3.53976 768.28903 

40 3.71530 701.51829 3.67426 670.29059 3.63180 638.81801 3.58784 607.08471 

50 3.76048 588.59567 3.71142 557.35591 3.66042 525.82650 3.60733 493.98560 

60 3.79041 505.72725 3.73316 474.46547 3.66957 442.86673 3.61069 410.90173 

 

Table  6  :  The stationary instability threshold of a nanofluid according to the values of parameters  NA  and  Hs 

for  NB = 0.01  , Le = 100   and   RN = 1 . 

 

Hs 
NA = 0.1 

 

NA = 0.3 

 

NA = 0.5 

 

NA = 0.7 

kc Rac kc Rac kc Rac kc Rac 

5 3.16648 1617.12214 3.14795 1585.48847 3.12895 1553.69671 3.10946 1521.73984 

10 3.29363 1447.11652 3.27320 1415.51840 3.25227 1383.76935 3.23081 1351.86270 

20 3.51608 1102.72062 3.48950 1071.18429 3.46225 1039.48547 3.43429 1007.61653 

30 3.64262 862.61267 3.60852 831.09260 3.57346 799.37961 3.53737 767.46326 

40 3.71530 701.51829 3.67318 669.99082 3.62969 638.23298 3.58475 606.23021 

50 3.76048 588.59567 3.71009 557.04876 3.65783 525.23047 3.60356 493.12090 

60 3.79041 505.72725 3.73158 474.15409 3.67028 442.26614 3.60630 410.03694 

 

3.2 Figures 

 
 

Figure   2   :   Plot   of   Rac  as   a   function   of   Hs  for   different   values   of   NB . 
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Figure   3   :  Plot   of   Rac  as   a   function   of   Hs  for   different   values   of   Le . 

 

 

 

 

Figure   4   :  Plot   of   Rac  as   a   function   of   Hs   for   different   values   of    RN . 
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Figure   5   :  Plot   of   Rac   as   a   function   of   Hs  for different   values   of   NA  . 

  

IV. Results and Conclusion 

The reported results  in the Tables (3-6) and in their corresponding Figures (2-5) show that the 

variation in the critical thermal Rayleigh number  Rac with the heat source strength  Hs is generally a decreasing 

function whatever the value taken for each parameter nanofluid (NB, Le , RN, NA) , this result can be interpreted 

as an increase in the heat source strength Hs amounts to increase in energy supply to the system , hence 

increases the driving force which accelerates the onset of the convection. 

 The precedent tables and figures show also that an increase either in the Lewis number Le , in the 

concentration Rayleigh number RN or in the modified diffusivity ratio NA allows us to accelerate the onset of 

the convection, hence they have a destabilizing effect. 

According to Buongiorno [2], Nield and Kuznetsov [5] and I.S. Shivakumara et al. [8], we have for the 

majority of the nanofluids  NB~10−3 − 10−1 and   Le~102 − 103 . The modified particle-density increment NB 

appears only in the perturbed energy equation (22) as a product with the inverse of the Lewis number Le near 

the temperature gradient and the volume fraction gradient of nanoparticles, so the effect of this parameter on the 

onset of convection in nanofluids will be very small, this result is confirmed in Table 3 and Figure 2, such that 

an increase in the modified particle-density increment NB allows us to destabilize somewhat the nanofluids. 

In this investigation, we find that an increase in the volume fraction of nanoparticles destabilizes the 

nanofluids, because an increase in this parameter, increases the Brownian motion and the thermophoresis of the 

nanoparticles, which cause the destabilizing effect. When the temperature difference between the horizontal 

plates increases, the critical thermal Rayleigh number Rac decreases, this result can be explained by the increase 

in the buoyancy forces which destabilizes the system. To ensure the stability of the nanofluids, we can use the 

less dense nanoparticles or the ones which are having a small heat capacity. 

The used method to solve the convection problem with a new model of boundary conditions of 

nanoparticles in presence of a uniform heat source is more accurate, as it gives an absolute error of the order of 

  10−5  to the critical values characterizing the onset of the convection. 
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