On Pure PO-Ternary Γ-Ideals in Ordered Ternary Γ-Semirings

V. Syam Julius Rajendra¹, Dr. D. Madhusudhana Rao² and M. Sajani Lavanya³

¹Lecturer, Department of Mathematics, A.C. College, Guntur, A.P. India.
²Head, Department of Mathematics, V. S. R & N.V.R. College, Tenali, A.P. India.
³Lecturer, Department of Mathematics, A.C. College, Guntur, A.P. India.

Abstract: In this paper, we introduce the concepts of pure po-ternary Γ-ideal, weakly pure po-ternary Γ-ideal and purely prime po-ternary Γ-ideal in an ordered ternary Γ-semiring. We obtain some characterizations of pure po-ternary Γ-ideals and prove that the set of all purely prime po-ternary Γ-ideals is topologized. Note that the results on ternary Γ-semiring without order become then special cases.

Keywords: ternary Γ-semiring; ordered ternary Γ-semiring; weakly regular; pure po-ternary Γ-ideal; weakly pure po-ternary Γ-ideal; purely prime po-ternary Γ-ideal; topology.

I. Introduction

In [1], Ahsan and Takahashi introduced the notions of pure ideal and purely prime ideal in a semigroup. Recently, Bashir and Shabir [2] defined the concepts of pure ideal, weakly pure ideal and purely prime ideal in a ternary semigroup without order. The authors gave some characterizations of pure ideals and showed that the set of all purely prime ideals of a ternary semigroup is topologized. In this paper, we introduce the concepts of pure po-ternary Γ-ideal, weakly pure po-ternary Γ-ideal and purely prime po-ternary Γ-ideal in an ordered ternary Γ-semiring. We characterize pure po-ternary Γ-ideals and prove that the set of all purely prime po-ternary Γ-ideals of an ordered ternary Γ-semiring is topologized. Note that the results on ternary Γ-semiring without order become then special cases.

II. Preliminaries

Definition 2.1: Let T and Γ be two additive commutative semigroups. T is said to be a Ternary Γ-semiring if there exist a mapping from \(T \times T \times T \rightarrow T \) which maps \((x_1, \alpha, x_2, \beta, x_3) \rightarrow [x_1x_2\beta x_3] \) satisfying the conditions:

i) \([\alpha \beta \gamma x]d = [\alpha \beta \gamma y]d = [\alpha \beta \gamma x]d\]

ii) \((a + b)\alpha \beta d = [a\alpha \beta d] + [b\alpha \beta d]\)

iii) \([\alpha a + c]b = [\alpha a + c]b\]

iv) \([\alpha a\beta c + d] = [\alpha a\beta c] + [\alpha a\beta d]\) for all \(a, b, c, d \in T\) and \(\alpha, \beta, \gamma, \delta \in \Gamma\).

Obviously, every ternary semiring \(T\) is a ternary Γ-semiring. Let \(T\) be a ternary semiring and \(\Gamma\) be a commutative ternary semigroup. Define a mapping \(T \times \Gamma \times T \times \Gamma \rightarrow T\) by \(a\beta \gamma x = abc\) for all \(a, b, c \in T\) and \(\alpha, \beta, \gamma \in \Gamma\). Then \(T\) is a ternary Γ-semiring.

Note 2.2: (\(T, \Gamma, +, [\]\)) is a ternary Γ-semiring. For nonempty subsets \(A_1, A_2\) and \(A_3\) of \(T\), let \([\Gamma A_1 A_2]\) = \(\{x | a \in A_1, b \in A_2, c \in \Gamma, \alpha, \beta \in \Gamma\}\). For \(x \in T\), let \([x \Gamma A_1 A_2]\) = \(\{x | \Gamma A_1 A_2\}\). The other cases can be defined analogously.

Note 2.3: Let \(T\) be a ternary semiring. If \(A, B\) are two subsets of \(T\), we shall denote the set \(A + B = \{a + b : a \in A, b \in B\}\) and \(2A = \{a + a : a \in A\}\).

Definition 2.4: A ternary Γ-semiring \(T\) is called an ordered ternary Γ-semiring if there is a partial order \(\leq\) on \(T\) such that \(x \leq y\) implies that (i) \(a + c \leq b + c\) and \(c + a \leq c + b\)

(ii) \([a\alpha \beta d] \leq [a\alpha \beta d], [a\alpha \beta d] \leq [a\alpha \beta d]\) and \([a\alpha \beta d] \leq [a\alpha \beta d]\) for all \(a, b, c, d \in T\) and \(\alpha, \beta, \gamma \in \Gamma\).

Note 2.5: For the convenience we write \((x_1, \alpha, x_2, \beta, x_3)\) instead of \([x_1x_2\beta x_3]\).

III. PO-Ternary Γ-Ideals:

Definition 3.1: Let \(T\) be a PO-ternary Γ-semiring. A nonempty subset ‘\(S\)’ is said to be a PO-ternary Γ-subsemiring of \(T\) if

(i) \(S\) is an additive subsemigroup of \(T\),

(ii) \(a\alpha \beta c \in S\) for all \(a, b, c \in S, \alpha, \beta \in \Gamma\).
(iii) $\forall T, s \in S, t \leq s \Rightarrow t \in S.$

Example 3.2: Let $T = M_2(\mathbb{Z})$ and $\Gamma = M_2(\mathbb{Z})$ define the ordering as $a_{ij} \leq b_{ij}$. Then T be the PO-ternary Γ-semiring of the set of all 2×2 square matrices over \mathbb{Z}, the set of all non-positive integers. Let $S = \{\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \in \mathbb{Z}\}$. Then S is a PO-ternary Γ-subsemiring of T.

Notation 3.3: Let T be PO-ternary Γ-semiring and S be a nonempty subset of T. If H is a nonempty subset of S, we denote $\{s \in S : s \leq h$ for some $h \in H\}$ by $(H)_S$.

Notation 3.4: Let T be PO-ternary Γ-semiring and S be a nonempty subset of T. If H is a nonempty subset of S, we denote $\{s \in S : s \leq h$ for some $h \in H\}$ by $(H)_S$.

Note 3.5: $(H)_T$ and $(H)_T$ are simply denoted by (H) and $[H]$ respectively.

Note 3.6: A nonempty subset S of a PO-ternary Γ-semiring T is apo-ternary Γ-subsemiring of T if $(1)S + S \subseteq S$ $(2) STS \subseteq S, (3) S \subseteq S$.

Theorem 3.7: Let S be po-ternary Γ-semiring and $A \subseteq S, B \subseteq S$. Then (i) $A \subseteq (A), (ii) ((A)] = (A), (iii) (A][B][C] \subseteq (A\cap B\cap C)$ and $(iv) A \subseteq B \Rightarrow A \subseteq (B), (v) A \subseteq B \Rightarrow [A] \subseteq [B], (vi) (A \cap B) = (A] \cap (B]$, (vii) $(A \cup B) = (A] \cup (B]$.

Definition 3.8: A nonempty subset A of a PO-ternary Γ-semiring T is said to be left PO-ternary Γ-ideal of T if $(1) a, b \in A$ implies $a + b \in A$. (2) $b, c \in T, a, \alpha, \beta \in \Gamma$ implies $bac \beta a \in A$. (3) $t \in T, a \in A, t \leq a \Rightarrow t \in A$.

Note 3.9: A nonempty subset A of a PO-ternary Γ-semiring T is a left PO-ternary Γ-ideal of T if and only if A is additive subsemigroup of T. $T^\Gamma TA \subseteq A$ and $(A) \subseteq A$.

Note 3.10: Let T be a PO-ternary Γ-semiring.

Then the set $(T^\Gamma TA) = \{\sum_{i=1}^{n} x_i \alpha_i t_i \beta_i a_n : r, t, \alpha_i, \beta_i \in \Gamma$ and $n \in \mathbb{N}\}$.

Example 3.11: In the PO-ternary Γ-semiring $\mathbb{Z}^0, n\mathbb{Z}^0$ is a left PO-ternary Γ-ideal for any $n \in \mathbb{N}$.

Theorem 3.12: Let T be a PO-ternary Γ-semiring. Then $(T^\Gamma TA)$ is a left PO-ternary Γ-ideal of T for all $a \in T$.

Definition 3.13: A left PO-ternary Γ-ideal A of a PO-ternary Γ-semiring T is said to be the principal left PO-ternary Γ-ideal generated by a if A is a left PO-ternary Γ-ideal generated by $\{a\}$ for some $a \in T$. It is denoted by $L(a)$ or $<a>$.

Theorem 3.14: If T is a PO-ternary Γ-semiring and $a \in T$ then

$L(a) = (A)$ where $A = \left\{\sum_{r=1}^{n} r \alpha_i t_i \beta_i a_n : r, t, \alpha_i, \beta_i \in \Gamma$ and $n \in \mathbb{Z}^+$\right\}$, and \sum denotes a finite sum and \mathbb{Z}^+ is the set of all positive integer with zero.

Proof: Given that $A = \left\{\sum_{r=1}^{n} r \alpha_i t_i \beta_i a_n : r, t, \alpha_i, \beta_i \in \Gamma$ and $n \in \mathbb{Z}^+$\right\}$. Let $a, b \in A$.

$a, b \in A$. Then $a = \sum_{r=1}^{n} r \alpha_i t_i \beta_i a_n$ and $b = \sum_{r=1}^{n} r \alpha_i t_i \beta_i a_n$. For $r, t, \alpha_i, \beta_i \in \Gamma$ and $n \in \mathbb{Z}^+$.

Now $a + b = \sum_{r=1}^{n} r \alpha_i t_i \beta_i a_n + \sum_{r=1}^{n} r \alpha_i t_i \beta_i a_n \Rightarrow a + b$ is a finite sum.

Therefore $a + b \in A$ and hence A is an additive subsemigroup of T.

For $t_1, t_2 \in T$ and $a \in A$.

Then $t_1 \alpha t_2 \beta a = t_1 \alpha t_2 (\sum_{r=1}^{n} r \alpha_i t_i \beta_i t_1 t_2 a_n) = \sum_{r=1}^{n} r \alpha_i t_i \beta_i (t_1 \alpha t_2 t_1 t_2 a_n) + n(t_1 \alpha t_2 t_1 t_2 a_n) \in A$.
Therefore \(t_1a_1t_2\beta_2\alpha_2A \) and hence \(A \) is a left ternary \(\Gamma \)-ideal of \(T \). By theorem 3.18, we have \(\{ A \} \) is a left ordered ternary \(\Gamma \)-ideal of \(T \) containing \(a \). Thus \(L(a) \subseteq \{ A \} \). On the other hand, \(L(a) \) is also a left ordered \(\Gamma \)-ideal of \(T \) containing \(a \), so we have \(A \subseteq L(a) \). Thus \(\{ A \} \subseteq L(a) \) since \(\{ A \} \) is a left ordered ternary ideal of \(T \) generated by \(A \). Therefore \(L(a) = \{ A \} \), as required.

Definition 3.15: A nonempty subset of a PO-ternary \(\Gamma \)-semiring \(T \) is said to be a lateral PO-ternary ideal of \(T \) if

1. \(a, b \in A \) implies \(a + b \in A \).
2. \(b, c \in T, \alpha, \beta \in \Gamma, a \in A \) implies \(b\alpha a\beta c \in A \).
3. \(t_1T, a \in A, t \leq a \Rightarrow t \in A \).

Note 3.16: A nonempty subset \(A \) of a PO-ternary semiring \(T \) is a lateral PO-ternary \(\Gamma \)-ideal of \(T \) if and only if \(A \) is additive subsemigroup of \(T \), \(\Gamma \) \(\subseteq \) \(A \) and \(\{ A \} \subseteq \Gamma \).

Theorem 3.18: Let \(T \) be a PO-ternary \(\Gamma \)-semiring. Then \(\{ TT\Gamma\Gamma \} \) is a lateral PO-ternary \(\Gamma \)-ideal of \(T \) for all \(a \in T \).

Theorem 3.18: Let \(T \) be a PO-ternary \(\Gamma \)-semiring. Then \(\{ TT\Gamma\Gamma \} \) is a lateral PO-ternary \(\Gamma \)-ideal of \(T \) for all \(a \in T \).

Definition 3.19: A lateral PO-ternary \(\Gamma \)-ideal \(A \) of a PO-ternary \(\Gamma \)-semiring \(T \) is said to be the principal lateral PO-ternary \(\Gamma \)-ideal generated by \(a \) if \(A \) is a lateral PO-ternary \(\Gamma \)-ideal generated by \(\{ a \} \) for some \(a \in T \). It is denoted by \(M(a) \) (or) \(\langle a \rangle \).

Theorem 3.20: If \(T \) is a PO-ternary \(\Gamma \)-semiring and \(a \in T \) then

\[
M(a) = \{ A \}, \text{ where } A = \left\{ \sum_{j=1}^{n} r \alpha, a_1 \beta_1, t_1 + \sum_{j=1}^{n} u \alpha, a_2 \beta_2, t_2 : r \alpha, t_1, u \alpha, t_2 \in T, \alpha, \beta_1, \alpha_2, \beta_2 \in \Gamma \right\}
\]

\(\Sigma \) denotes a finite sum and \(z_0^+ \) is the set of all positive integer with zero.

Definition 3.21: A nonempty subset \(A \) of a PO-ternary \(\Gamma \)-semiring \(T \) is a right PO-ternary \(\Gamma \)-ideal of \(T \) if

1. \(a, b \in A \) implies \(a + b \in A \).
2. \(b, c \in T, \alpha, \beta \in \Gamma, a \in A \) implies \(a\alpha b\beta c \in A \).
3. \(t \in T, a \in A, t \leq a \Rightarrow t \in A \).

Note 3.22: A nonempty subset \(A \) of a PO-ternary \(\Gamma \)-semiring \(T \) is a right PO-ternary \(\Gamma \)-ideal of \(T \) if and only if \(A \) is additive subsemigroup of \(T \), \(\Gamma \) \(\subseteq \) \(A \) and \(\{ A \} \subseteq \Gamma \).

Definition 3.23: A right PO-ternary \(\Gamma \)-ideal \(A \) of a PO-ternary \(\Gamma \)-semiring \(T \) is said to be a principal right PO-ternary \(\Gamma \)-ideal generated by \(a \) if \(A \) is a right PO-ternary \(\Gamma \)-ideal generated by \(\{ a \} \) for some \(a \in T \). It is denoted by \(R(a) \) (or) \(\langle a \rangle \).

Theorem 3.24: If \(T \) is a po-ternary \(\Gamma \)-semiring and \(a \in T \) then

\[
R(a) = \{ A \}, \text{ where } A = \left\{ \sum_{j=1}^{n} a \alpha, r \beta_1, t_1 : r \alpha, t_1 \in T, \alpha, \beta_1 \in \Gamma \right\}
\]

\(\Sigma \) denotes a finite sum and \(z_0^+ \) is the set of all positive integer with zero.

Definition 3.25: A nonempty subset \(A \) of a PO-ternary \(\Gamma \)-semiring \(T \) is a two sided PO-ternary \(\Gamma \)-ideal of \(T \) if

1. \(a, b \in A \) implies \(a + b \in A \).
2. \(b, c \in T, \alpha, \beta \in \Gamma, a \in A \) implies \(b\alpha a\beta c \in A \).
3. \(t \in T, a \in A, t \leq a \Rightarrow t \in A \).

Note 3.26: A nonempty subset \(A \) of a PO-ternary \(\Gamma \)-semiring \(T \) is a two sided PO-ternary \(\Gamma \)-ideal of \(T \) if and only if it is both a left PO-ternary \(\Gamma \)-ideal and a right PO-ternary \(\Gamma \)-ideal of \(T \).
Definition 3.27: A two sided PO-ternary \(\Gamma \)-ideal \(A \) of a PO-ternary \(\Gamma \)-semiring \(T \) is said to be the principal two sided \(\text{PO-ternary } \Gamma \text{-ideal} \) provided \(A \) is a two sided PO-ternary \(\Gamma \)-ideal generated by \(\{ a \} \) for some \(a \in T \). It is denoted by \(T(a) \) (or \(a^{\geq} \)).

Theorem 3.28: If \(T \) is a PO-ternary \(\Gamma \)-semiring and \(a \in T \) then \(T(a) = (A), \) where

\[
A = \left\{ \alpha \sum_{i=1}^{n} r_{i} \alpha_{i} s_{i} \beta_{i} A + \sum_{i=1}^{n} a \alpha_{i} t_{i} \beta_{i} A + \sum_{i=1}^{n} l_{i} \alpha_{i} m_{i} \beta_{i} A \gamma_{i} p_{i} \delta_{i} A + na : \right. \\
\left. \sum_{i=1}^{n} r_{i} s_{i} t_{i} u_{i} l_{i} m_{i} p_{i} q_{i} \in T, \alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in \Gamma \text{ and } n \in \mathbb{Z}^{+} \right\}
\]

finite sum and \(\varepsilon \) is the set of all positive integer with zero.

Definition 3.29: A nonempty subset \(A \) of a PO-ternary \(\Gamma \)-semiring \(T \) is said to be PO-ternary \(\Gamma \)-ideal of \(T \) if

1. \(a, b \in A \) if \(a \in A \) and \(b \in A \) implies \(a + b \in A \)
2. \(b, c \in T, \alpha, \beta, \varepsilon \in \Gamma, a \in A \) implies \(b \alpha c \beta \varepsilon A, b \alpha a \beta c \varepsilon A, a \alpha a \beta c \varepsilon A \).
3. \(T \in T, A, a \in A, t \leq a \Rightarrow t \in A \).

Note 3.30: A nonempty subset \(A \) of a PO-ternary \(\Gamma \)-semiring \(T \) is aPO-ternary \(\Gamma \)-ideal of \(T \) if and only if it is left PO-ternary \(\Gamma \)-ideal, lateral PO-ternary \(\Gamma \)-ideal and right PO-ternary \(\Gamma \)-ideal of \(T \).

Definition 3.31: An element \(a \) of a PO-ternary \(\Gamma \)-semiring. \(T \) is said to be regular if there exist \(x, y \in T \) such that \(a \leq ax \beta y \gamma \delta \) for all \(\alpha, \beta, \gamma, \delta \in \Gamma \).

IV. Pure po-ternary \(\Gamma \)-ideals in ordered ternary \(\Gamma \)-semiring

In this section we define pure po-ternary \(\Gamma \)-ideals in ordered ternary \(\Gamma \)-semiring.

Definition 4.1: Let \(T \) be an ordered ternary \(\Gamma \)-semiring. A two-sided po-ternary \(\Gamma \)-ideal \(A \) of \(T \) is called a left (respectively, right) pure two-sided po-ternary \(\Gamma \)-ideal if for each \(x \in A \) there exist \(y_{i}, z_{i} \in A, \alpha_{i}, \beta_{i} \in \Gamma \) where \(i \in \Delta \) such that \(x \leq \sum_{i=1}^{n} y_{i} \alpha_{i} z_{i} \beta_{i} x \) (respectively, \(x \leq \sum_{i=1}^{n} x \alpha_{i} y_{i} z_{i} \beta_{i} \)). Apo-ternary \(\Gamma \)-ideal \(A \) of \(T \) is called left (respectively, right) pure po-ternary \(\Gamma \)-ideal if for each \(x \in A \) there exist \(y_{i}, z_{i} \in A, \alpha_{i}, \beta_{i} \in \Gamma \) where \(i \in \Delta \) such that \(x \leq \sum_{i=1}^{n} y_{i} \alpha_{i} z_{i} \beta_{i} x \) (respectively, \(x \leq \sum_{i=1}^{n} x \alpha_{i} y_{i} z_{i} \beta_{i} \)). Similarly, we define one-sided left and right pure po-ternary \(\Gamma \)-ideals.

Theorem 4.2: Let \(T \) be an ordered ternary \(\Gamma \)-semiring and \(A \) a two-sided po-ternary \(\Gamma \)-ideal of \(T \). Then \(A \) is right pure po-ternary two-sided \(\Gamma \)-ideal if and only if \(B \alpha A = ([B \Gamma A \Gamma A]) \) for all right po-ternary \(\Gamma \)-ideals \(B \) of \(T \).

Proof: Assume that \(A \) is right pure two-sided po-ternary \(\Gamma \)-ideal. Let \(B \) be a right po-ternary \(\Gamma \)-ideal of \(T \). We have \([B \Gamma A \Gamma A] \subseteq [B \Gamma T \Gamma T] \subseteq B \). Then \([B \Gamma A \Gamma A] \subseteq [B \Gamma T \Gamma T] \subseteq A \), so \([B \Gamma A \Gamma A] \subseteq [A] \subseteq A \). Hence \([B \Gamma A \Gamma A] \subseteq B \). To prove the reverse inclusion, let \(x \in B \alpha A \). By assumption, there exist \(y_{i}, z_{i} \in A, \alpha_{i}, \beta_{i} \in \Gamma \) where \(i \in \Delta \) such that \(x \leq \sum_{i=1}^{n} x \alpha_{i} y_{i} z_{i} \beta_{i} \). Since \(x \in ([x \Gamma T \Gamma T]) \alpha A \), \(x \in ([x \Gamma T \Gamma T]) \alpha ([x \Gamma T \Gamma T]) \subseteq [x \Gamma A \Gamma A] \subseteq ([x \Gamma T \Gamma T]) \alpha A \). Hence \(A \) is right pure two-sided po-ternary \(\Gamma \)-ideal of \(T \).

Definition 4.3: An ordered ternary \(\Gamma \)-semiring \(T \) is said to be right weakly regular if for any \(x \in T, x \in ([x \Gamma T \Gamma T] \Gamma [x \Gamma T \Gamma T]) \).

Note: Every regular ordered ternary \(\Gamma \)-semiring is right weakly regular.

Theorem 4.4: Let \(T \) be an ordered ternary \(\Gamma \)-semiring. The following are equivalent.

(i) \(T \) is right weakly regular.
(ii) \([A \Gamma A \Gamma A] = A \) for all right po-ternary \(\Gamma \)-ideals \(A \) of \(T \).
(iii) \(B \alpha A = ([B \Gamma A \Gamma A]) \) for all right po-ternary \(\Gamma \)-ideals \(B \) and all two-sided po-ternary \(\Gamma \)-ideals \(A \) of \(T \).
(iv) \(B \subset A = ([B \Gamma A \Gamma A]) \) for all right po-ternary \(\Gamma \)-ideals \(B \) and all po-ternary \(\Gamma \)-ideals \(A \) of \(T \).
On Pure PO-Ternary Γ-Ideals in Ordered Ternary Γ-Semirings

Proof: (i) \Rightarrow (ii). Assume that T is right weakly regular.
Let A be a right po-ternary Γ-ideal of T.
Since $[A \Gamma^A A] \subseteq [A \Gamma T T] \subseteq A$, we have $([A \Gamma^A A] \subseteq A$.
Let $x \in A$. By assumption, $x \in \{\{x \Gamma T T\} \bigcup \{x \Gamma T T\} \bigcup \{x \Gamma T T\}\}$ $\subseteq ([A \Gamma^A A]$.
Then A $\subseteq ([A \Gamma^A A]$, whence $([A \Gamma^A A] = A$.
(ii) \Rightarrow (i). Assume that $([A \Gamma^A A] = A$ for all right po-ternary Γ-ideals A of T.
Let $x \in T$. Since $\{\{x \} \bigcup \{x \Gamma T T\}\}$ is a right po-ternary Γ-ideal of T, we have
$\{\{x \} \bigcup \{x \Gamma T T\}\} = \{\{x \} \bigcup \{x \Gamma T T\}\}$ $\subseteq ([A \Gamma^A A]$.
Hence T is right weakly regular.

(iii) Assume that T is right weakly regular. Let B and A be a right po-ternary Γ-ideal and a two-sided po-
ternary Γ-ideal of T, respectively. Since $[B \Gamma^A A] \subseteq [B \Gamma T T] \subseteq B$, $([B \Gamma^A A] \subseteq B$.
Similarly, $([B \Gamma^A A] \subseteq A$. Then $([B \Gamma^A A] \subseteq B \cap A$.
Let $x \in B \cap A$. We have $\{\{x \} \bigcup \{x \Gamma T T\}\} \subseteq ([B \Gamma^A A]$.
By assumption, we get $x \in ([\Gamma T T] \bigcup \{x \Gamma T T\} \bigcup \{x \Gamma T T\}\}$, hence $x \in ([B \Gamma^A A]$.
Thus B/$\cap A \subseteq ([B \Gamma^A A]$, whence B/$\cap A = ([B \Gamma^A A]$.
That (iii) \Rightarrow (iv) is clear.
(iv) \Rightarrow (i). Assume that $B \cap A = ([B \Gamma^A A]$ for all right po-ternary Γ-ideals B and all po-ternary Γ-ideals A of T.
To prove that T is right weakly regular, let $x \in T$.
We have $\{\{x \} \bigcup \{x \Gamma T T\}\}$ and $\{\{x \} \bigcup \{x \Gamma T T\}\} \subseteq ([B \Gamma^A A]$ and ideal of T, respectively.
Then $\{\{x \} \bigcup \{x \Gamma T T\}\}$ and $\{\{x \} \bigcup \{x \Gamma T T\}\}$ are right-poternary Γ- ideal and ideal of T, respectively.

Theorem 4.5. Let T be an ordered ternary Γ-semiring. The following are equivalent.
(i) T is right weakly regular.
(ii) Every two-sided po-ternary Γ-ideal A of T is right pure.
(iii) Every po-ternary Γ-ideal A of T is right pure.
Proof: This follows from Theorems 4.2 and 4.9.

Definition 4.6: An element a of a po-ternary Γ-semigroup T is said to be zero of T provided $a b a c = a b a c = a b c b a = a$ and $a \leq b \forall \ c \in T, \ a, \ b \in \Gamma$.

Theorem 4.7. Let T be an ordered ternary Γ-semiring with zero 0.
(i) $\{0\}$ is a right pure po-ternary Γ-ideal of T.
(ii) Union of any right pure two-sided po-ternary Γ-ideals (respectively, po-ternary Γ-ideal) of T is a right pure two-sided po-ternary Γ-ideal (respectively, po-ternary Γ-ideals) of T.
(iii) Finite intersection of right pure two-sided ideals (respectively, ideal) of T is a right pure two-sided po-
ternary Γ-ideal (respectively, po-ternary Γ-ideals) of T.
Proof: (i) This is obvious.
(ii) Let $A_i, i \in I$ be right pure two-sided po-ternary Γ-ideals of T. We have $\bigcup_{i \in I} A_i$ is a
two-sided po-ternary Γ-ideal of T. Let $x \in \bigcup_{i \in I} A_i$. Then $x \in A_j$ for some $j \in I$.
Since A_j is right pure two-sided po-ternary Γ-ideal, there exist $y, z \in A_j$, $\alpha, \beta \in \Gamma$ such that
$x \leq [x y \beta z]$. Since $\gamma, \delta \in A_j \subseteq \bigcup_{i \in I} A_i$, we have $\bigcup_{i \in I} A_i$ is right pure.
(iii) Let A_1, A_2, \ldots, A_n be right pure two-sided po-ternary Γ-ideals of T.
Then $\bigcap_{i=1}^{n} A_i$ is a two-sided po-ternary Γ-ideal of T.

Let $x \in \bigcap_{i=1}^{n} A_i$. For $k \in \{1, 2, \ldots, n\}$, there exist $y_k, z_k \in A_k, \alpha, \beta \in \Gamma$ such that $x \leq [x\alpha y_k\beta z_k]$.

We have $x \leq [(x\alpha y_k\beta z_k) \ldots \ldots (y_n\alpha y_{n+1}\beta z_{n+1})]$, since $[(y_1\alpha y_2\beta y_3) \ldots \ldots (y_n\beta z_1)] \in \bigcap_{i=1}^{n} A_i$, we have $\bigcap_{i=1}^{n} A_i$ is a right pure two-sided po-ternary Γ-ideal of T.

Theorem 4.8: Let T be an ordered ternary Γ-semiring with zero 0 and A is a two-sided po-ternary Γ-ideal of T. Then A contains the largest right pure two-sided po-ternary Γ-ideal of T, denoted by $S(A)$. $S(A)$ is called the pure part of A.

Proof: Since $\{0\}$ is a right pure two-sided po-ternary ideal of T contained in A, it follows that the union of all right pure two-sided po-ternary Γ-ideals of T contained in A exists, and hence is the largest right pure two-sided po-ternary Γ-ideal of T contained in A.

Similarly, we have the following.

Theorem 4.9: Let T be an ordered ternary Γ-semiring with zero 0 and A is a po-ternary Γ-ideal of T. Then A contains the largest right pure po-ternary Γ-ideal of T.

Theorem 4.10: Let T be an ordered ternary Γ-semiring with zero 0. Let A, B, and A_0 be po-two-sided po-ternary Γ-ideals of T.

(i) $S(A \cap B) = S(A) \cap S(B)$.

(ii) $\bigcup_{i \in I} S(A_i) \subseteq S(\bigcup_{i \in I} A_i)$.

Proof: (i) Since $S(A) \subseteq A$ and $S(B) \subseteq B$, we have $S(A) \cap S(B) \subseteq A \cap B$.

Hence $S(A) \cap S(B) \subseteq S(A \cap B)$. Since $S(A \cap B) \subseteq A \cap B \subseteq S(A)$, we get $S(A \cap B) \subseteq S(A)$.

Similarly, $S(A \cap B) \subseteq S(A \cap B)$.

Hence $S(A \cap B) = S(A)$.

Similarly, $S(A \cap B) = S(B)$.

(ii) Since $S(A_i) \subseteq A_i$ for all $i \in I$, we have $\bigcup_{i \in I} S(A_i) \subseteq \bigcup_{i \in I} A_i$. Then $\bigcup_{i \in I} S(A_i) \subseteq S(\bigcup_{i \in I} A_i)$.

Definition 4.11: A right pure two-sided po-ternary Γ-ideal A of an ordered ternary Γ-semiring T is said to be purely maximal if for any proper right pure two-sided po-ternary Γ-ideal B of T, $A \subseteq B$ implies $A = B$.

Definition 4.12: A proper right pure two-sided po-ternary Γ-ideal A of an ordered ternary Γ-semiring T is said to be purely prime if for any right pure two-sided po-ternary Γ-ideals B_1, B_2 of T, $B_1 \cap B_2 \subseteq A$ implies $B_1 \subseteq A$ or $B_2 \subseteq A$.

Theorem 4.13: Every purely maximal two-sided po-ternary Γ-ideal of an ordered ternary Γ-semiring T is purely prime.

Proof: Let A be a purely maximal two-sided po-ternary Γ-ideal of T. Let B and C be right pure two-sided po-ternary Γ-ideals of T such that $B \cap C \subseteq A$ and $B \not\subseteq A$. Since $B \cup A$ is a right pure two-sided po-ternary Γ-ideal such that $A \subseteq B \cup A$, so $T = B \cup A$.

We have $C = C \cap T = C \cap (B \cup A) = (C \cap B) \cup (C \cap A) \subseteq A$. Then A is purely prime.

Theorem 4.14: The pure part of any maximal two-sided po-ternary Γ-ideal of an ordered ternary Γ-semiring T with zero is purely prime.

Proof: Let A be a maximal two-sided po-ternary Γ-ideal of T. To show that $S(A)$ is purely prime, let B, C be right pure two-sided po-ternary Γ-ideals of T such that $B \cap C \subseteq S(A)$. If $B \subseteq A$, then $B \subseteq S(A)$. Suppose that $B \not\subseteq A$.

We have $B \cup A$ is a two-side po-ternary Γ-ideal of T. By maximality of A, $T = B \cup A$, and hence $C \subseteq A$.

Thus $C \subseteq S(A)$.

Theorem 4.15: Let T be an ordered ternary Γ-semiring and A a right pure two-sided po-ternary Γ-ideal of T. If $x \in T \setminus A$, then there exists a purely prime two-sided po-ternary Γ-ideal B of T such that $A \subseteq B$ and $x \not\in B$.

Proof: Let $P = \{B \mid B$ is a right pure two-sided po-ternary Γ-ideal of $T, A \subseteq B$ and $x \not\in B\}$. Since $A \in P$, $P \neq \emptyset$.

Under the usual inclusion, P is a partially ordered set. Let $B_0, k \in K$ be a totally ordered subset of P. By Theorem 4.7, $\bigcup_{i \in K} B_i$ is a right pure two-sided po-ternary Γ-ideal of T.

Since $A \subseteq \bigcup_{i \in K} B_i$ and $x \not\in \bigcup_{i \in K} B_i$, we have $\bigcup_{i \in K} B_i \subseteq P$.

By Zorn’s Lemma, P has a maximal element, say M. Then M is a right pure two-sided po-ternary Γ-ideal, $A \subseteq M$ and $x \not\in M$. We shall show that M is purely prime. Let A_1 and A_2 be right pure two-sided po-ternary Γ-ideals of T such that $A_1 \subseteq M$ and $A_2 \subseteq M$.

Since A_1, A_2 and M are right pure two-sided po-ternary Γ-ideals of T, we obtain $A_1 \cup M$ and $A_2 \cup M$ are right pure two-sided po-ternary Γ-ideals of T such that $M \subseteq A_1 \cup M$ and

DOI: 10.9790/5728-11540513 www.iorsjournals.org 10 | Page
Let \(M \subset A_2 \cup M \). Thus \(x \in A_2 \cup M \) (\(k = 1, 2 \)). Since \(x \notin M \), \(x \notin A_2 \cap M \). Hence \(A_2 \cap M \subseteq M \). This shows that \(M \) is purely prime.

Theorem 4.16: Any proper right pure two-sided po-ternary \(\Gamma \)-ideal \(A \) of an ordered ternary \(\Gamma \)-semiring \(T \) is the intersection of all the purely prime two-sided po-ternary \(\Gamma \)-ideals of \(T \) containing \(A \).

Proof: By Theorem 4.15, there exists purely prime po-ternary \(\Gamma \)-ideals containing \(A \).

Let \(\{ B_i : i \in I \} \) be the set of all purely prime two-sided po-ternary \(\Gamma \)-ideals of \(T \) containing \(A \). We have \(A \subseteq \bigcap_{i \in I} B_i \).

To show that \(\bigcap_{i \in I} B_i \subseteq A \). Let \(x \in A \). By Theorem 4.15, there exists purely prime po-ternary \(\Gamma \)-ideal \(B_j \) such that \(A \subseteq B_j \) and \(x \notin B_j \). Hence \(x \notin \bigcap_{i \in I} B_i \).

V. Weakly pure ideals in ordered ternary po-semirings

In this section, we introduce the concept of weakly pure po-ternary \(\Gamma \)-ideal in ordered ternary \(\Gamma \)-semiring.

Definition 5.1. Let \(T \) be an ordered ternary \(\Gamma \)-semiring. A two-sided po-ternary \(\Gamma \)-ideal \(A \) of \(T \) is called left (respectively, right) weakly pure if \(A \cap B = ([\Gamma A \Gamma] B) \) (respectively, \(A \) \(\cap B = (\{ B \Gamma A \Gamma \}) \)) for all two-sided po-ternary \(\Gamma \)-ideals \(B \) of \(T \).

In an ordered ternary \(\Gamma \)-semiring, every left (right) pure two-sided po-ternary \(\Gamma \)-ideals is left(right) weakly pure.

Theorem 5.2. Let \(T \) be an ordered ternary semigroup with zero 0. If \(A \) and \(B \) are two-sided po-ternary \(\Gamma \)-ideals of \(T \), then

\[
B \Gamma A = \{ (x, y, z) \in T \mid x \in A, \alpha \beta \in \Gamma, [x \alpha \beta \in e B] \}
\]

are two-sided po-ternary \(\Gamma \)-ideals of \(T \).

Proof: We shall show that \(B \Gamma A \) is a two-sided po-ternary \(\Gamma \)-ideal of \(T \). That \(A \beta \Gamma B \) is a two-sided po-ternary \(\Gamma \)-ideal of \(T \) can be proved similarly. Clearly, \(0 \in B \Gamma A \). Let \(u, v \in T, \alpha, \beta \in \Gamma \) and \(\alpha \beta \in B \Gamma A \). To show that \([u \alpha \beta] \in B \Gamma A \), let \(y \in A \). Since \([x y \mu \nu] \in A \) for \(x, y, \mu, \nu \in A \), we have \([x y u \alpha \beta v] = [x y u \alpha \beta v] \beta \in B \Gamma A \). Thus \([u \alpha \beta] \in B \Gamma A \).

Conversely, assume that \((B \Gamma A) \cap A = A \cap B \) for all po-ternary \(\Gamma \)-ideals \(B \) of \(T \). To show that \(A \) is left weakly pure two-sided po-ternary \(\Gamma \)-ideal.

Let \(C \) be any po-ternary \(\Gamma \)-ideal of \(T \). To show that \(\Lambda \cap C = ([\Gamma A \Gamma] C) \cap A \). By assumption, \(\Lambda \cap C = \Gamma A \Gamma \cap A \). Since \([\Gamma A \Gamma] C \subseteq \Gamma A \Gamma \cap A \), \(([\Gamma A \Gamma] C) \cap A \subseteq \Gamma A \Gamma \cap A \).

Theorem 5.3. Let \(T \) be ordered ternary \(\Gamma \)-semiring and \(A \) two-sided po-ternary \(\Gamma \)-ideal of \(T \). Then \(A \) is left (right) weakly pure two-sided po-ternary \(\Gamma \)-ideal if and only if \((B \Gamma A^{-1}) \cap A = A \cap B \) for all po-ternary \(\Gamma \)-ideals \(B \) of \(T \).

Proof: Suppose that \(A \) is left weakly pure two-sided po-ternary \(\Gamma \)-ideal. Let \(B \) be a po-ternary \(\Gamma \)-ideal of \(T \). By Theorem 5.2, \(B \Gamma A^{-1} \) is a two-sided po-ternary \(\Gamma \)-ideal of \(T \), and thus \(A \cap B = ([\Gamma A \Gamma] B) \cap A \).

Conversely, assume that \((B \Gamma A^{-1}) \cap A = A \cap B \) for all po-ternary \(\Gamma \)-ideals \(B \) of \(T \). To show that \(A \) is left weakly pure two-sided po-ternary \(\Gamma \)-ideal.

Let \(C \) be any po-ternary \(\Gamma \)-ideal of \(T \). To show that \(\Lambda \cap C = ([\Gamma A \Gamma] C) \cap A \). By assumption, \(\Lambda \cap C = \Gamma A \Gamma \cap A \). Since \([\Gamma A \Gamma] C \subseteq \Gamma A \Gamma \cap A \), \(([\Gamma A \Gamma] C) \cap A \subseteq \Gamma A \Gamma \cap A \).

Theorem 5.4: Let \(T \) be an ordered ternary \(\Gamma \)-semiring. The following are equivalent.

(i) Every two-sided po-ternary \(\Gamma \)-ideal is left weakly pure two-sided po-ternary \(\Gamma \)-ideal.

(ii) For every two-sided po-ternary \(\Gamma \)-ideal \(A \) of \(T \), \([\Gamma A \Gamma] A = A \). i.e. each two-sided po-ternary \(\Gamma \)-ideal is idempotent.

(iii) Every two-sided po-ternary \(\Gamma \)-ideal is right weakly pure two-sided po-ternary \(\Gamma \)-ideal.

Proof: (i) \(\Rightarrow \) (ii) Suppose that each two-sided po-ternary \(\Gamma \)-ideal of \(T \) is left weakly pure. Let \(A \) be the two-sided po-ternary \(\Gamma \)-ideal of \(T \), then for each two-sided po-ternary \(\Gamma \)-ideal \(B \) of \(T \) we have \(A \cap B = (\Gamma A \Gamma) B \). In particular \(A = A \cap A = (\Gamma A \Gamma) A \). Therefore each two-sided po-ternary \(\Gamma \)-ideal of \(T \) is idempotent.

DOI: 10.9790/5728-11540513 www.iosrjournals.org 11 | Page
(ii) ⇒ (i) Suppose that each two-sided po-ternary \(\Gamma \)-ideal of \(T \) is idempotent. Let \(A \) be a two-sided po-ternary \(\Gamma \)-ideal of \(T \), then for any two-sided po-ternary \(\Gamma \)-ideal \(B \) of \(T \) we always have \(\Gamma \alpha_{\Gamma}B = \alpha \cap B \). On the other hand, \(A \cap B = (A \cap B) \cap (A \cap B) \cap (A \cap B) \subseteq \alpha_{\Gamma}B. \) Hence we have \(A \cap B = \alpha_{\Gamma}B \). Thus \(A \) is left weakly pure.

(ii) ⇒ (iii) Similarly as (ii) ⇒ (i)

(iii) ⇒ (ii) Suppose that each two-sided po-ternary \(\Gamma \)-ideal of \(T \) is right weakly pure two-sided po-ternary \(\Gamma \)-ideal. Let \(A \) be any two-sided po-ternary \(\Gamma \)-ideal of \(T \). Then \(A \) is right weakly pure. Therefore for each two-sided po-ternary \(\Gamma \)-ideal \(B \) of \(T \), we have \(A \cap B = B \cap A \). In particular \(A \cap A = A \cap A \). Thus each two-sided po-ternary \(\Gamma \)-ideal of \(T \) is idempotent.

6. Pure spectrum of an ordered ternary \(\Gamma \)-semiring

Notation 6.1: Let \(T \) be an ordered ternary \(\Gamma \)-semiring with zero such that \([T \cap TT] = T\). The set of all right pure po-ternary \(\Gamma \)-ideals of \(T \) and the set of all proper purely prime po-ternary \(\Gamma \)-ideals of \(T \) will be denoted by \(P(T) \) and \(P'(T) \), respectively. For \(\alpha \in P(T) \), let

\[I_{\alpha} = \{ J \in P'(T) \mid \alpha \not\subseteq J \} \quad \text{and} \quad \tau(T) = \{ I_{\alpha} \mid \alpha \in P(T) \}. \]

Theorem 6.2: \(\tau(T) \) forms a topology on \(P'(T) \).

Proof: Since \(\{ \} \) is a right pure po-ternary \(\Gamma \)-ideal of \(T \) and \(I_{\{\}} = \emptyset \), we have \(\emptyset \in \tau(T) \). Since \(T \) is a right pure po-ternary \(\Gamma \)-ideal of \(T \) such that \(I_T = P(T) \), we get \(P'(T) \in \tau(T) \).

Let \(\{ I_{\alpha_{\alpha}} \mid \alpha \in \Lambda \}\subseteq \tau(T) \). We have \(\bigcup_{\alpha \in \Lambda} I_{\alpha_{\alpha}} = \{ J \in P'(T) \mid \alpha \not\subseteq J \} \) \(\subseteq \bigcup_{\alpha \in \Lambda} I_{\alpha_{\alpha}} \). Whence \(\bigcup_{\alpha \in \Lambda} I_{\alpha_{\alpha}} \in \tau(T) \). Let \(I_{\alpha}, I_{\beta} \in \tau(T) \). We shall show that \(I_{\alpha_{\alpha}} \cap I_{\beta_{\beta}} = I_{\alpha_{\alpha} \cap \beta_{\beta}} \). Therefore let \(J \in I_{\alpha_{\alpha}} \cap I_{\beta_{\beta}} \). We have \(J \in P'(T), A \not\subseteq J \) and \(A \not\subseteq J \). Suppose that \(A \cap A \not\subseteq J \). Since \(J \) is purely prime, \(A \subseteq J \) or \(A \subseteq J \). A contradiction. Then \(J \in I_{\alpha_{\alpha}} \cap I_{\beta_{\beta}} \), hence \(I_{\alpha_{\alpha}} \cap I_{\beta_{\beta}} \subseteq I_{\alpha_{\alpha} \cap \beta_{\beta}} \). For the reverse inclusion, let \(J \in I_{\alpha_{\alpha} \cap \beta_{\beta}} \). Since \(A \cap A \not\subseteq J \), \(A \not\subseteq J \) and \(A \not\subseteq J \). This implies that \(J \in I_{\alpha_{\alpha}} \cap I_{\beta_{\beta}} \), thus \(I_{\alpha_{\alpha}} \not\subseteq I_{\alpha_{\alpha}} \). Consequently, \(I_{\alpha_{\alpha}} \cap I_{\beta_{\beta}} = I_{\alpha_{\alpha} \cap \beta_{\beta}} \), which implies \(I_{\alpha_{\alpha}} \cap I_{\beta_{\beta}} \in \tau(T) \). Therefore \(\tau(T) \) forms a topology on \(P'(T) \).

VI. Conclusion

In this paper mainly we start the study of pure po-ternary \(\Gamma \)-ideals, weakly pure po-ternary \(\Gamma \)-ideals and purely prime po-ternary \(\Gamma \)-ideals in po-ternary \(\Gamma \)-semirings. We characterize po-ternary \(\Gamma \)-semirings by the properties of pure and weakly pure po-ternary \(\Gamma \)-ideals.

Acknowledgments

The first and third authors express their warmest thanks to the University Grants Commission(UGC), India, for doing this research under Faculty Development Programme.

The authors would like to thank the experts who have contributed towards preparation and development of the paper and the referees, Chief Editor for the valuable suggestions and corrections for improvement of this paper.

References

On Pure PO-Ternary Γ-Ideals in Ordered Ternary Γ-Semirings

Authors’s Brief Biography:

1. **Mr. V. Syam Julius Rajendra**: He completed his M.Sc. from Madras Christian College, under the jurisdiction of University of Madras, Chennai, Tamil Nadu. After that he did his M.Phil. from M. K. University, Madurai, Tamil Nadu, India. He joined as lecturer in Mathematics, in the department of Mathematics, A. C. College, Guntur, Andhra Pradesh, India in the year 1998. At present he is pursuing Ph.D. under guidance of Dr. D. Mathusudhana Rao, Head, Department of Mathematics, VSR & NVR College, Tenali, Guntur(Dt), A.P. India in Acharya Nagarjuna University. His area of interests are ternary semirings, semirings and topology. He published more than 02 research papers in different International Journals to his credit. Presently he is working on Partially Ordered Ternary Γ-Semirings.

2. **Dr. D. Madhusudhana Rao**: He completed his M.Sc. from Osmania University, Hyderabad, Telangana, India. M. Phil. from M. K. University, Madurai, Tamil Nadu, India. Ph. D. from Acharya Nagarjuna University, Andhra Pradesh, India. He joined as Lecturer in Mathematics, in the department of Mathematics, VSR & NVR College, Tenali, A. P. India in the year 1997, after that he promoted as Head, Department of Mathematics, VSR & NVR College, Tenali. He helped more than 5 Ph. D’s. At present he is guiding 7 Ph. D. Scholars and 3 M. Phil., Scholars in the department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, A. P. A major part of his research work has been devoted to the use of semigroups, Gamma semigroups, duo gamma semigroups, partially ordered gamma semigroups and ternary semigroups, Gamma semirings and ternary semirings, Near rings ect. He acting as peer review member to (1) “British Journal of Mathematics & Computer Science”, (2) “International Journal of Mathematics and Computer Applications Research”, (3) “Journal of Advances in Mathematics” and Editorial Board Member of (4) “International Journal of New Technology and Research”. He is life member of (1) Andhra Pradesh Society for Mathematical Sciences, (2) Heath Awareness Research Institution Technology Association, (3) Asian Council of Science Editors, Membership No: 91.7347, (4) Council for Innovative Research for Journal of Advances in Mathematics”. He published more than 62 research papers in different International Journals to his credit in the last four academic years.

3. **Mrs. M. Sajani Lavanya**: She completed her M.Sc. from Hindu College, Guntur, under the jurisdiction of Acharya Nagarjuna University, Guntur, Andhra Pradesh, India. She joined as lecturer in Mathematics, in the department of Mathematics, A. C. College, Guntur, Andhra Pradesh, India in the year 1998. At present she is pursuing Ph.D. under guidance of Dr. D. Mathusudhana Rao, Head, Department of Mathematics, VSR & NVR College, Tenali, Guntur(Dt), A.P. India in Acharya Nagarjuna University. Her area of interests are ternary semirings, ordered ternary semirings, semirings and topology. She published more than 02 research papers in different International Journals to her credit. Presently she is working on Ternary Γ-Semirings.