# Two Square Determinant Approach for Simplex Method 

Jervin Zen Lobo<br>Department of Mathematics, St Xavier's College, Mapusa, Goa, India.


#### Abstract

Linear Programming Problems have been solved using traditional Algorithms of Simplex Methods. In this paper a modified approach to Simplex Method has been worked upon. This approach involves a determinant at every step to perform the next iteration till the optimum solution is obtained.


Keywords: Constraints, Determinant, Feasible Solution, Linear Programming Problem, optimum Solution, Pivot, Simplex Method, Slack Variables, Surplus Variables.

## I. Introduction

Linear Programming Problems deal with optimization i.e maximization or minimization of a function known as objective function. This objective function has to be optimized subject to certain constraints [1],[2],[3]. All expressions involved in the problems are linear. The constraints are determined by certain restrictive conditions such as availability, demand, supply, storage, availability, etc [4],[5]. Solutions to such type of problems are of prime importance in the field of business. A powerful tool to solve such problems is a simplex method.

## II. Main Idea Of The Proposed Algorithm

The traditional simplex method, on identifying the pivotal element, uses a chain of elementary row operations only to obtain further iterates until a optimum solution is reached. We propose an algorithm which uses a determinant at every step, to perform the next iterate, depending on the position of the pivot and the elements to be changed to obtain optimum solutions. This proposed algorithm is very efficient and time-saving. It is much simpler as compared to the already existing traditional simplex method. We shall now propose the algorithm involving constraints of "less than or equal to" type. The same algorithm works if the constraints are either "equal to" type or "greater than or equal to" type.

Algorithm for the linear programming problem
$\operatorname{Max} Z=d_{1} x_{1}+d_{2} x_{2}+\ldots+d_{n} x_{n}$
Subject to $\quad a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq l_{1}$

$$
\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\cdots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}} \leq \mathrm{l}_{2}
$$

$$
\mathrm{a}_{\mathrm{m} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{m} 2} \mathrm{x}_{2}+\cdots+\mathrm{a}_{\mathrm{mn}} \mathrm{x}_{\mathrm{n}} \leq \operatorname{lm}
$$

$$
\mathrm{x}_{\mathrm{i}} \geq 0 \text { for all } \mathrm{i} \in\{1,2, \ldots, \mathrm{n}\}
$$

Step 1: Writing the problem in standard form.
We convert the constraints above into equalities by introducing slack variables $\mathrm{s}_{11}, \mathrm{~s}_{22}, \ldots \mathrm{~s}_{\mathrm{mm}}$. The problem in standard form is expressed as
$\operatorname{Max} \mathrm{Z}=\mathrm{d}_{1} \mathrm{x}_{1}+\mathrm{d}_{2} \mathrm{x}_{2}+\ldots+\mathrm{d}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}+\mathrm{s}_{11}+\mathrm{s}_{22}+\cdots+\mathrm{s}_{m m}$
Subject to $\quad a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}+s_{11}=l_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}+s_{22}=l_{2}$

$$
\begin{aligned}
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}+s_{m m}=l m \\
& x_{i} \geq 0 \text { for all } i \in\{1,2, \ldots, n\}
\end{aligned}
$$

Step 2: Finding an initial basic feasible solution.
The method starts by assuming that the profit is zero. This is when $x_{i}=0$ for all i and $s_{i i}=l_{i}$
a) The first row indicates coefficients $c_{j}$ of variables in the objective function.
b) The first column, $C_{B}$ - column represents the coefficients of current basic variables in the objective functions. The second column known as the basis column, $y_{B}$, represents the basic variables which are the slack variables of the current solutions.
c) The body of coefficient matrix under non-basic variables $x_{i}$ represents the coefficients $a_{i j}$ of the constraints.
d) The identity matrix represents the coefficients of the slack variables of the constraints.
e) The third column will be the $x_{B}$ column which indicates the quantity of the available resources or values of the constraints or values of the basic variables $s_{i}$ in the initial basic feasible solution found earlier.

## Step 3: Optimality Test.

Compute $Z_{j}=\sum C_{B} a_{i j}$
Next compute $Z_{j}-C_{j}$
If $Z_{j}-C_{j} \geq 0$ for all j , then an optimum solution has been attained.
If for at least one $\mathrm{j}, Z_{j}-C_{j}<0$, proceed to Step 4.
Step 4: Iteration towards a Optimal Solution using Determinants:
a) Selection of the entering variable:

Select that column for which $Z_{j}-C_{j}$ is most negative. This column is called the pivotal column. If two columns have the same maximum negative value, the tie can be broken arbitrarily.

## b) Selection of leaving variable:

Compute min $\left\{\left.\frac{x_{B}}{a_{i j}} \right\rvert\, a_{i j}>0, a_{i j} \in\right.$ pivotal column $\}$. If there is a tie in the minimum values, arbitrarily break the tie. If all $a_{i j} \leq 0$, then the solution is unbounded. That $a_{i j}$ for which this ratio is minimum is called pivotal element. Let the row in which the pivotal element occurs be called the pivotal row.
c) Updating the new solution/preparation of simplex table using determinants:

Let the pivotal element be $a_{i j}$. Divide the pivotal row by the pivotal element. All the other elements in the pivotal column must be made zero. Now, we update the simplex table as follows:

Case 1: Consider an element $a_{r s}, r<i, s<j$. This element $a_{r s}$ is updated to $\operatorname{det}\left(\begin{array}{ll}a_{r s} & a_{r j} \\ a_{i s} & a_{i j}\end{array}\right)$ where det stands for determinant. The element $a_{r s}$, is now standardized by dividing it with the pivotal element.

Case 2: Consider an element $a_{p q}$ in the coefficient matrix such that $p>i, q<j$. The element $a_{p q}$ is updated to (-1). $\operatorname{det}\left(\begin{array}{cc}a_{i a} & a_{i j} \\ a_{p q} & a_{p j}\end{array}\right)$. The element $a_{p q}$, is now standardized by dividing it with the pivotal element.

Case 3: Consider an element $a_{u v}$ in the coefficient matrix such that $\mathrm{u}\langle i, v\rangle j$. The element $a_{u v}$ is updated to (-1). $\operatorname{det}\left(\begin{array}{ll}a_{u j} & a_{u v} \\ a_{i j} & a_{i v}\end{array}\right)$. The element $a_{u v}$, is now standardized by dividing it with the pivotal element.

Case 4: Consider an element $a_{g h}$ in the coefficient matrix such that $g>i, h>j$. The element $a_{g h}$ is updated to $\operatorname{det}\left(\begin{array}{ll}a_{i j} & a_{i h} \\ a_{g j} & a_{g h}\end{array}\right)$. The element $a_{g h}$, is now standardized by dividing it with the pivotal element. Step 5: Go to Step 3.

## III. Application of the Algorithm

We apply the determinantal approach to simplex method to solve the linear programming problem.
Maximize $Z=4 y_{1}+3 y_{2}+6 y_{3}$
subject to $2 y_{1}+3 y_{2}+2 y_{3} \leq 440$,
$4 y_{1}+3 y_{3} \leq 470$
$2 y_{1}+5 y_{2} \leq 430$
$y_{i} \geq 0, \quad \mathrm{i}=1,2,3$
Solution: We first write the problem in standard form by introducing slack variables $s_{i}, i=1,2,3$
Maximize $Z=4 y_{1}+3 y_{2}+6 y_{3}+s_{1}+s_{2}+s_{3}$
subject to $2 y_{1}+3 y_{2}+2 y_{3}+s_{1}=440$,
$4 y_{1}+3 y_{3}+s_{2}=470$
$2 y_{1}+5 y_{2}+s_{3}=430$
$y_{i}, s_{i} \geq 0, \mathrm{i}=1,2,3$
We know find an initial basic feasible solution by setting $y_{i}=0$

|  |  | $C_{j}$ | 4 | 3 | 6 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $C_{B}$ | $y_{B}$ | $x_{B}$ | $y_{1}$ | $y_{2}$ | $y_{3}$ | $s_{1}$ | $s_{2}$ | $s_{3}$ |
| 0 | $s_{1}$ | 440 | 2 | 3 | 2 | 1 | 0 | 0 |
| 0 | $s_{2}$ | 470 | 4 | 0 | 3 | 0 | 1 | 0 |
| 0 | $s_{3}$ | 430 | 2 | 5 | 0 | 0 | 0 | 1 |
|  |  | $Z_{j}-C_{j}$ | -4 | -3 | -6 | 0 | 0 | 0 |

The pivotal column is $y_{3}$ as it has most negative $Z_{j}-C_{j}$ value. (By step 4a) of the algorithm)
By step 4 b) of the algorithm since $\min \left\{\frac{440}{2}, \frac{470}{3}\right\}=\frac{470}{3}, s_{2}$ is outgoing.
By step 4c) of the algorithm we divide outgoing row by 3 , the pivot and make all entries above and below 3 as 0
By determinant technique the entry below $y_{1}$ is modified to $\operatorname{det}\left(\begin{array}{ll}2 & 2 \\ 4 & 3\end{array}\right)=-2$
The entry is standardized by dividing it with the pivot, 3 , to become $\frac{-2}{3}$
The entry below $y_{2}$ is modified to $\operatorname{det}\left(\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right)=9$
The entry is standardized by dividing it with the pivot, 3 , to become 3
The entry below $s_{1}$ is modified to $(-1) \cdot \operatorname{det}\left(\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right)=3$
The entry is standardized by dividing it with the pivot, 3 , to become 1
The entry below $s_{2}$ is modified to $(-1) \cdot \operatorname{det}\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right)=-2$
The entry is standardized by dividing it with the pivot, 3 , to become $\frac{-2}{3}$
The entry below $s_{3}$ is modified to $(-1) \cdot \operatorname{det}\left(\begin{array}{ll}2 & 0 \\ 3 & 0\end{array}\right)=0$
The entry is standardized by dividing it with the pivot, 3 , to become 0
The entry in the third row of the coefficient matrix below $y_{1}$ is modified to $(-1) \cdot \operatorname{det}\left(\begin{array}{ll}4 & 3 \\ 2 & 0\end{array}\right)=6$
The entry is standardized by dividing it with the pivot, 3 , to become 2
The entry in the third row of the coefficient matrix below $y_{2}$ is modified to $(-1) \cdot \operatorname{det}\left(\begin{array}{ll}0 & 3 \\ 5 & 0\end{array}\right)=15$
The entry is standardized by dividing it with the pivot, 3 , to become 5
The entry in the third row of the coefficient matrix below $s_{1}$ is modified to $\operatorname{det}\left(\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right)=0$
The entry is standardized by dividing it with the pivot, 3 , to become 0
The entry in the third row of the coefficient matrix below $s_{2}$ is modified to $\operatorname{det}\left(\begin{array}{ll}3 & 1 \\ 0 & 0\end{array}\right)=0$
The entry is standardized by dividing it with the pivot, 3 , to become 0
The entry in the third row of the coefficient matrix below $s_{3}$ is modified to $\operatorname{det}\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)=3$
The entry is standardized by dividing it with the pivot, 3 , to become 1
The first entry in the column of the coefficient matrix below $x_{B}$ is modified to $\operatorname{det}\left(\begin{array}{ll}440 & 2 \\ 470 & 3\end{array}\right)=380$

The entry is standardized by dividing it with the pivot, 3 , to become $\frac{380}{3}$.
The third entry in the column of the coefficient matrix below $x_{B}$ is modified to $(-1) \cdot \operatorname{det}\left(\begin{array}{ll}470 & 3 \\ 430 & 0\end{array}\right)=1290$
The entry is standardized by dividing it with the pivot, 3 , to become 430 .
With these modifications we get the next iterated table

|  |  | $\mathrm{C}_{\mathrm{j}}$ | 4 | 3 | 6 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{C}_{\mathrm{B}}$ | $\mathrm{y}_{\mathrm{B}}$ | $\mathrm{x}_{\mathrm{B}}$ | $\mathrm{y}_{1}$ | $\mathrm{y}_{2}$ |  | $\mathrm{y}_{3}$ |  |
| 0 | $\mathrm{~s}_{1}$ | $380 / 3$ | $-2 / 3$ | 3 | 0 | 1 | $\mathrm{~s}_{1}$ | $\mathrm{~s}_{2}$ |
| $\mathrm{~s}_{3}$ |  |  |  |  |  |  |  |  |
| 6 | $\mathrm{y}_{3}$ | $470 / 3$ | $4 / 3$ | 0 | 1 | 0 | $-2 / 3$ | 0 |
| 0 | $\mathrm{~s}_{3}$ | 430 | 2 | 5 | 0 | 0 | $1 / 3$ | 0 |
|  |  | $\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}$ | 4 | -3 | 0 | 0 | 0 | 1 |

The next pivotal column is $y_{2}$ and $s_{1}$ leaves the basis. 3 is the next pivot.
Repeating step 4 of the algorithm we get

|  |  | $\mathrm{C}_{\mathrm{j}}$ | 4 | 3 | 6 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{C}_{\mathrm{B}}$ | $\mathrm{y}_{\mathrm{B}}$ | $\mathrm{x}_{\mathrm{B}}$ | $\mathrm{y}_{1}$ | $\mathrm{y}_{2}$ |  | $\mathrm{y}_{3}$ | $\mathrm{~s}_{1}$ |
| 3 | $\mathrm{y}_{2}$ | $380 / 9$ | $-2 / 9$ | 1 | 0 | $1 / 3$ | $\mathrm{~s}_{2}$ | $\mathrm{~s}_{3}$ |
| 6 | $\mathrm{y}_{3}$ | $470 / 3$ | $4 / 3$ | 0 | 1 | 0 | $-2 / 9$ | 0 |
| 0 | $\mathrm{~S}_{3}$ | $1970 / 9$ | $28 / 9$ | 0 | 0 | $-5 / 3$ | $1 / 3$ | 0 |
|  |  | $\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}$ | $10 / 3$ |  | 0 | 0 | 1 | 1 |

Since all the values of $\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}} \geq 0$, we stop
We have an optimum solution given by
Maximum $Z=3200 / 3$
When $\mathrm{y}_{1}=0, \mathrm{y}_{2}=\frac{380}{9}, \mathrm{y}_{3}=\frac{470}{3}$

## IV. Conclusion.

The determinant approach to simplex method is much more efficient and time-saving than the previous traditional approach to the simplex method which involves row transformations. This is because at each step, we need to compute only a $2 \times 2$ determinant which can even be done mentally.

The algorithm can also be used for cases where we encounter an unbounded, alternate or non feasible solution. It can also be used to perform the two-phase simplex method.

## References

[1]. Klee V, Minty G.J, How Good is the Simplex Algorithm? In: Shisha O, editor Inequalities III, New York Academic Press, 1972, 158-172.
[2]. Stojkovic N.V, Stanimirovic P.S, Two Direct Methods in Linear Programming, European Journal of Operations Research, 2001: 417-439.
[3]. Arsham H, Damage T, Grael J, An Algorithm for Simplex Tableau Reductions; The Push to Pull Solutions Strategy, Applied Mathematics and Computation, 2003, 525-547.
[4]. Prem Kumar Gupta, D S Hira, Operations Research (S. Chand and Co Ltd., 2008)
[5]. Taha Hamdy. A, Operations Research, (Dorling Kindersley, India Pvt. Ltd., Licences of Pearson Education in South Asia)
[6]. Helcio Vieira Junior, Marcos Pereira, Estellita Lins, An Imrpved Initial Basis for Simplex Algorithm Computers and Operations Research 32 (2009). 1984-1993.
[7]. J. A. Nelder, R. Mead, A Simplex Method for Function Minimization, Oxford Journals 308-313.
[8]. M.B. Subramaniam, An Extension of Simplex Method to Consgtrainted Non Linear Optimiztion, Journal of Optimization Theory and Applications, August 1989. Vol. 62, Issue 2, 311-319.
[9]. T. Kithara and S. Mizuno; Klee, Minty's Linear Programming and Upper Bounds for Dantzig's Simplex method, Operations Research Letters, Vol. 39, No.2, (2011), 88-91.
[10]. T. Kithara and S. Mizuno; New Evaluation of Computational Amount of Simplex M ethod, Japanese Technical Report August 2011, 2011-2018.
[11]. S.H. Nasseri and Avdil, Simplex Method for Fuzzy Variable Linear Programming International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering. Vol. 3 No. 10, 2009, 487-491.

