On Q*g closed sets in Supra Topological Spaces

C.R.Parvathy1 and U.Remya2

Assistant professor, Department of mathematics, PSGR Krishnammal college for women, Coimbatore-641004.
Research Scholar, Department of mathematics, PSGR Krishnammal college for women, Coimbatore-641004.

Abstract: The aim of this paper is to introduce and study some properties of supra topological spaces. We introduce the concepts of supra Q*g closed sets, Supra Q*g open sets, Supra Q*closed sets and supra Q*open sets.

Keywords: supra Q*g closed sets, supra Q*g open sets, supra Q*closed sets, supra Q* open sets.

I. Introduction

II. Preliminaries

Definition 2.1 : [2] A topological Space (X, τ) is said to be generalized closed (briefly g-closed) set if cl(A) ⊆ U whenever A ⊆ U and U is open (X, τ).

Definition 2.2 : [8] A topological space (X, τ) is said to be generalized star closed (briefly g* - closed) set if cl(A) ⊆ U whenever A ⊆ U and U is g-open(X, τ).

Definition 2.3 : [7] A topological space (X, τ) is said to be generalized star star closed (briefly g**-closed) set if cl(A) ⊆ U whenever A ⊆ U and U is g*-open(X, τ).

Definition 2.4 : [2] Let X be a non empty set. The subfamily μ ⊆ 𝒫(X) where 𝒫(X) is the power set of X is said to be a supra topology on X if X ∈ μ and μ is closed under arbitrary unions. The pair (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ). Complements of supra open sets are called supra closed sets.

Definition 2.5 : [9] Let A be a subset of (X, μ). Then the supra closure of A is denoted by clμ(A) = ∩ { B / B is a supra closed set and A ⊆ B }.

Definition 2.6 : [9] Let A be a subset of (X, μ). Then the supra interior of A is denoted by intμ(A)= ∪ { B / B is a supra open set and A ⊇ B }.

Definition 2.7 : [1] Let (X, μ) be a topological space and μ be a supra topology on X. μ is supra topology associated with τ if τ ⊆ μ.

III. On Q*G Closed Sets In Supra Topological Spaces

Definition 3.1 : A subset A of a supra topological space (X, μ) is called
(1) a supra Q* - closed if intμ(A) = ∅ and A is closed.
(2) a supra Q* - open if clμ(A) = X and A is open.

Definition 3.2 : A subset A of supra topological space (X, μ) is called a supra Q*g closed if clμ(A) ⊆ U. whenever A ⊆ U and U is Q* - open in (X, μ). The complement of a supra Q*g closed set is called supra Q*g open set.

Theorem 3.3 : Every supra closed set is supra Q*g closed.

DOI: 10.9790/5728-11530607 www.iosrjournals.org 6 | Page
Therefore A is supra closed.

Converse part: Every supra Q^*g closed set is not supra closed.

Proof:
Let A be supra Q^*g closed set. Since $\text{cl}^p(A) \subseteq U$, whenever $A \subseteq U$. And U is Q^*-open in (X, μ). Since the elements of μ are called supra open in (X, μ). Therefore every supra Q^*g closed set is not supra closed.

Remark 3.3: The converse of the theorem is not true as shown in the following example.

Example 3.4: Let $X = \{a, b, c, d, e\}$, $\mu = \{\emptyset, X, \{a, b\}, \{a, b, d\}, \{b, c, d\}, \{c, d, e\}\}$

$A = \{a, b, c\}$ is supra Q^*g closed but not supra closed.

Corollary 3.5: Every closed set is supra Q^*g closed.

Proof: Every closed set is supra closed. By the theorem “Every Supra closed set is supra Q^*g closed”.

Theorem 3.6: A subset A of X is supra Q^*g closed if and only if $\text{cl}^p(A) \setminus A$ contains no non-empty supra Q^*-closed set.

Proof:

Necessity: Let F be a supra Q^* closed set of $\text{cl}^p(A) \setminus A$ that is $F \subseteq \text{cl}^p(A) \setminus A$.
Now $A \subseteq F^c$. Where F^c is supra Q^* open. Since A is supra Q^*g closed, $\text{cl}^p(A) \subseteq F^c \Rightarrow F \subseteq [\text{cl}^p(A)]^c$.
Therefore $F \subseteq \text{cl}^p(A) \cap [\text{cl}^p(A)]^c = \emptyset$.
Hence F^c is supra Q^* open, $\text{cl}^p(A) = X$ and A is open. Therefore $F^c \neq \emptyset$.

Sufficiency: Suppose $A \subseteq U$ and U is supra Q^* open. Suppose $\text{cl}^p(A) \not\subseteq U$. Then $\text{cl}^p(A) \cap U$ is supra Q^* closed subset of $\text{cl}^p(A) \setminus A$.
Hence $\text{cl}^p(A) \cap U = \emptyset$. And hence $\text{cl}^p(A) \subseteq U$.
Therefore A is supra Q^*g closed.

Corollary 3.7: A supra Q^*g closed set A of X is supra closed if and only if $\text{cl}^p(A) \setminus A$ is supra Q^* closed.

Proof:
The supra Q^*g closed set A is supra closed.
Then $\text{cl}^p(A) = A$, and hence $\text{cl}^p(A) \setminus A = \emptyset$ is supra Q^* closed.

Conversely: Suppose that $\text{cl}^p(A) \setminus A$ is supra Q^* closed.
Since A is supra Q^*g closed $\text{cl}^p(A) \setminus A$ does not contain any non-empty Q^* closed set.
But since $\text{cl}^p(A) \setminus A$ is itself supra Q^* closed,$\text{cl}^p(A) \setminus A = \emptyset$. Which implies $\text{cl}^p(A) = A$.
Therefore A is supra closed.

References

DOI: 10.9790/5728-11530607 www.iosrjournals.org 7 | Page