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 Abstract: Let G = (V (G),E(G)) and G1= (V (G1),E(G1)) be graphs. In this paper werepresent a 

homomorphism f :G → G1as a pair f = ( f *
, ) where f *

: V (G) → V (G1)and : E(G) → E(G1) are 

maps such that (x,y) = ( f *
(x), f *

(y)) for all edges(x,y) in G. With this representation we characterize some 

specialmorphisms likemonomorphism, epimorphism, coretraction, retraction etc in terms of set 

functions.Finally we show that the Category of Graphs is not balanced. 
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I. Introduction 
Category theory provides a general idea that has proved fruitful in subjects as diverse as geometry, 

topology and foundational mathematics. In this paper, the basic notions and lemma involving finite diagram are 

given. These notions are injective, coretraction, monomorphism and duals of these as studied by various authors 

[1, 2, 3, 4]. Also we undertake the necessary task of introducing some of the basic notations for graphs and as 

studied earlier by various authors [5, 6] discussed mapping between graphs as homomorphism. In the last 

section, we concluded that the category of graphs is not balanced [7, 8]. 

 

Defnition1.1A graph G consists of a vertex set V (G) and an edge set E(G) where E(G) is a set of unordered 

pairs of distinct elements in V(G). The above graph G is denoted as G = (V (G), E (G)) or simply as (V, E) 

whenever the context is clear [5]. 

The graphs as we have defined above are called simple graphs. The elements in V (G) are called 
vertices and those in E(G) are called edges. In all our discussions, V(G) is taken to be a finite set. 

If e= (u, v) E (G) (i.e. an edge in G) then we say that u and v are adjacent in G or that v is a neighbor of u and 

denote this u ~ v. Moreover u and v are said to be incident with e and e is said to be incident to both u and v. 

If v is a vertex in a graph G then the degree or valency of v, denoted as d(v) is the number of edges incident with 

v. A vertex v in G is said to be an isolated vertex if d(v) = 0 and an end vertex if d(v) = 1. 

A graph G is said to be a null graph if V (G) = , the empty set. In this case E (G) is also empty. If V (G)    

but E (G) =   then G is called an empty graph. 

By a graph we always mean a simple non-null graph only[6]. 

 

Definition 1.2 Homomorphism between graphs 

Let G and G1    be graphs. Then a function 

)()(: 1GVGV   

is called a homomorphism from G into G1  if   (u) and  (v) are adjacent in G1 

whenever  u and v are adjacent in G. Thus   induces a function say 

 

Such that   

.))(,)(()),((~ vuvu    

Thus the above homomorphism from G into G1   can be represented by a pair )~,(   where   

)()(: 1GVGV   

and 

)()(:~
1GEGE   

are functions such that ))(,)(()),((~ vuvu   for all edges (u, v) E (G). 

Conversely given any pair of function (h, k) where  )()(: 1GVGVh   and )()(: 1GEGEk   are such 

that ))(,)(()),(( vhuhvuk  for all edges (u, v) E (G). 

Then the above pair of functions induces a homomorphism from G into G1[5]. 
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This observation enables us to represent a homomorphism between graphs by a pair of functions subject to some 

conditions. 

 

Definition 1.3 

Let G and G1   be graphs. A homomorphism f: G G1 is a pair where 

)()(: 1GVGVf 
and )()(:

~
1GEGEf   are functions such that  

))(,)(()),((
~

vfufvuf  for all u, v   V(G). In the following discussions, unless stated 

otherwise, if f, g etc are homomorphisms between graphs then we represent )
~

,( fff  , )~,( ggg  … 

and so on. Moreover for convenience, if (u, v) E (G) then  

)),(( vuf 
is denoted simply by ),( vuf 

. 

 

Definition 1.4 Category of graphs: 

Let G , G1  and G2 be graphs and  )
~

,( fff  : G   G1 and  )~,( ggg   : G1  G2 

Be homomorphisms( or simply morphisms) of graphs with the usual meaning. Then their composition 

(gf) = ((gf)
*

, (gf )
~

)definedas follows. (gf )* =g* f * :V (G)®V (G2 ) 

Moreover for all (u, v) E (G) 

 

so that  
~

)(gf = fg
~

.~  . Thus )
~~,( fgfggf   is a homomorphism from G into G2.This defines the 

composition of homomorphism of graphs[1] 
 

Existence of Identity 

Let G = (V(G) , E(G)) be a given graph. Let 1 V(G) :V(G) V(G)  and  

1 E(G) :E(G) E(G)  be the respective identity functions. Let 1G = ( 1V(G) ,  1E(G) ) be the homomorphism  

fromG   G. 

Then it is easy to verify that for all g: G   G1 and h: G2  G, 1G .h = h andg . 1G = g 

And hence 1Gis the identity homomorphism in G . 

Thus we have a category ɡ called category of graphs, whose objects are graphs and morphisms are 

homomorphism of graphs[1]. 

Note: This category of graphs is identically the same as the category of graphs usually defined, except for the 

“representation” of homomorphism. 
 

Definition 1.5: 

Let f, g : G   G1 be a homomorphism of graphs. Then we say thatf = g if and only if 
  gf andf = g  

Lemma 1.6: Let f, g : G → G1 be a homomorphism of graphs. Then f = g if and only if 
  gf

.
 

Proof:f = gimplies that
  gf by definition. 

Conversely if  
  gf , then for all ( u , v )E (G) 

),(~
))(,)(())(,)(()),((

~

vug

vgugvfufvuf



 

 

Implies that .~~
gf  Hence f = g. 

As in any category we wish to define some special morphisms in the category of graphs and characterize them 

in terms of (set) functions. 
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Definition 1.7: 

Let G and G1 be graphs. A homomorphism f: G G1 , is called a coretraction (left invertible) if there 

is a homomorphism g: G1  G such that gf = 1G. 

Dually a homomorphism f: G G1 , is called a retraction if there is a homomorphism g: G1  G such that fg 

= 1G1.(right invertible). 

A morphismf: G   G1 is said to be an isomorphism if it is both a coretraction and a retraction[1] . 

Note: A coretraction is also called as a section [4]. 

 

Remark 1.8:  

Let us denote the empty set as well as the empty morphisms by the symbol   .Suppose G and G1 are 

graphs if E (G)   and E (G)  , then there exists no homomorphism from G into G1. In particular for 

homomorphism f: G   G1 and g: G1  G to exist, it is necessary that both E(G) and E(G1) are empty or both 

E(G) and E(G1) are nonempty. We denote the identiy function from     also as 1 . Now we proceed to 

characterize some of the special morphisms in the category of graphs by set functions. 

Proposition 1.9:Let )
~

,( fff  : G   G1be a homomorphism of graphs. Then f is a coretraction if and only 

if 

i) )()(: 1GVGVf 
is injective , and  

ii) For all )())(,)((,)(, 1GEvfufGVvu  
implies that .)(),( GEvu   

Proof:Suppose f is a coretraction. Then there exists a homomorphism  

)~,( ggg   : G1  Gsuch that ).1,1()
~~,(..1 )()( GEGVG fgfgeifg  

 

Hence 
 fg  = )(1 GV and , the respective identity functions which are bijections.  

Therefore  )()(: 1GVGVf 
 and )()(:

~
1GEGEf  are injective. 

 
Conversely assume conditions (i) and (ii) as stated above. 

 

Case 1: Suppose both E (G) and E (G1) are empty. Then )()(:
~

1GEGEf  is the empty function which is 

also denoted as . 

We define functions )()(: 1 GVGVh  and )()(: 1 GEGEk  as follows. ,k  

The empty function …….(1). 

there exists a unique 

element )(GVu  such that 
f .)( vu  So define a function )()(: 1 GVGVh   

by




 





otherwiseu

vufifu
vh

0

)(
)(  

From the construction it follows that )()(: 1 GVGVh   and )()(: 1 GEGEk   are functions such that 

.1
~

1 )()( GEGV fkandhf   If we denote  hg 
 and  gk ~ then )~,( ggg   : G1  G is a 

homomorphism such that .1.)1,1()
~~( )()( GGEGV fgeifgfg 

Thus f is a coretraction. 

Case2: Suppose both E(G) and E(G1) are nonempty; we define functions, )()(: 1 GVGVh   and 

)()(: 1 GEGEk  such that , for all )(, 1GVwv 
,
 

))(,)((),( whvhwvk  so that the pair ( h , k ) represents a homomorphism from  
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G1 into G. We have various cases to consider. First let us fix a vertex )(0 GVu  and an edge 

.)()",'( GEuu   

 

Case 2a: Suppose )( 1GVv  and v is incident with an edge say v2 such that  fagevv
~

Im),( 21  .  Let 

21 ,uu be unique elements (since 
f is injective) in V (G) such that 

f 11 )( vu      and 

f .22 )( vu    Then )()(,)((),( 12121 GEufufvv  
implies that )(),( 21 GEuu  by 

condition (ii). In this case define )(),(),( 12121 GEuuvvk    ……. (1). 

 

Case 2b:  Suppose 2v  is incident with a vertex say IfGVv .)( 13
 fv Im3 then this reduces to case 

2a. So assume that .Im3

 fv Then define .)( 13 uvh   In this case let us define 

k (v 2 ,v 3 )=(u1,u2 )(seeFigure1).
 

 

 
Figure 1 

 

Case 2c: Suppose )(' 1GVv  and is incident with an edge )(" 1GVv  i.e.  

)()",'( 1GEvv  such that 'v and "v does not belong toImf*. Then define 

.)",'()",'(")"(,')'( uuvvkanduvhuvh   

 

Case 2d: Suppose   vufandGVv  )( 1 and v is not incident with an edge in E(G1). 

Define h (v) = u.  

 

Case 2e:Suppose )(4 GVv  is an isolated vertex and v does not belongs toImage f*, define 

h(v4 )=u0. (SeeFigure2)
 

 

 
Figure 2 

 

Then we have functions )()(: 1 GVGVh   and )()(: 1 GEGEk   such that for all edges  

).)"(,)'(()",'(,)()",'( 1 vhvhvvkGEvv  Moreover from the construction it follows that 

.1
~

1 )()( GEGV fkandhf 
By taking ,~ kgandhg   we have a homomorphism 

)~,( ggg   : G1  G such that Gfg 1 .  Thus f is a coretraction. 

 



A Study on Category of Graphs 

DOI: 10.9790/5728-11453846                                      www.iosrjournals.org                                            42 | Page 

Remark: 1.10we observe that 1: GGf  is a homomorphism of graphs such that  

)()(: 1GVGVf 
is injective , then )()(:

~
1GEGEf  is also injective. For if (u, v) and  

(u1 ,  v 1) belongs to E(G) such thatf  u, v =  f  u1 , v1 . This implies that  

))(,)(( vfuf 
= ))(,)(( 11 vfuf 

so that
 

.)()()()()()()()( 1111 ufvfandvfuforvfvfandufuf  
 

In  either case .),(),( 11 vuedgevuedge  Hence  f
~

 is also injective. 

 

Remark 1.11:  Again condition (ii) in the proposition is also necessary. For if f: G   G1  

is a Coretraction with a homomorphism g: G1  G such that Gfg 1 .  Now if (u ,v)Ï E (G) but 

)(),(.)( GEvueiGEtobelongs  which is a contradiction. Therefore ( f * (u) , f * (v) Î E(G1)  

implies that  
)(),( GEvu  . 

Remark 1.12:Let 1: GGf 
 be a coretraction. Then f ∗and f are injective. Moreover, since f is a  

 

)()(:) 1GVGVfi 
isinjective and 

.)())(,)(()(),() 1GEvfufifonlyandifGEvuii  
 

Remark 1.13: f is a coretraction does not imply that )()(:
~

1GEGEf  is surjective. For consider the 

homomorphism 1: GGf   given by the following diagram (See Figure 3). 

 

Then f is a coretraction but f
~

is not surjective. 

Proposition 1.14: Let 1: GGf   be a retraction. Then both )()(: 1GVGVf 

 

and )()(:
~

1GEGEf   are surjective. 

Proof: 1: GGf   is a retraction implies that there exists a homomorphism  GGg 1: such that 

Ggf 1 . Hence .1~~
1 )()( 11 GEGV gfandgf 

This shows that both f * and f
~

are surjective. 

Remark 1.15: The converse of the above result is not true. For consider the following diagram of a 

homomorphism 1: GGf  (See Figure 4). 

 

 

Both )()(: 1GVGVf 
 and )()(:

~
1GEGEf   are surjective. However there is no homomorphism 

GGg 1: such that Ggf 1 , since the preimage of v2   is not unique and 

)(,)((),( 4232 ufufvv  ) is an edge in G1 but (u2, u4 )is not an edge in G . 

(Since  u4  u1). 
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However we have the following proposition. 

 

Proposition 1.16: Let 1: GGf   be a homomorphism of graphs such that  

i) both )()(: 1GVGVf 
 and )()(:

~
1GEGEf   are surjective, and  

  

Proof: We construct functions )()(: 1 GVGVh   and )()(: 1 GEGEk 
 

 such that  ))(,)((),( 2121 vhvhvvk  and  such that  .1
~

1 )()( 11 GEGV kfandhf 
 

 

Case1:Suppose E(G) and E(G1) are both empty. Since )()(:)( 11
GVGVfandGV   is surjective, for 

each )( 1GVv fix a vertex say  such that .)( vuf 
Then define asGVGVh )()(: 1 

.)( uvh 
 

)()()( 1GVvallforvufvhfThen  

 
 

so   that .1 )( 1GVhf 
 Further since E(G)=  = E(G1) )()(:

~
1GEGEf   is the  empty function  . Take 

k ∶ E G → E(G1)as the empty function. Trivially  

.1 )( 1GEkf 
( also the empty function). Take .~ kgandhg  Then     

.1~~
1 )()( 11 GEGV gfandgf 

So that 

Ggf 1
1i.ef  is a retraction . 

Case 2: Assume that both E(G) and E(G1) are nonempty. 

 

Case 2a: Let .)( 11 GVv  Suppose .)(),( 121 GEvv   Since f
~

is surjective, there exists an edge 

)(),( 121 GEuu  such that ),(),(
~

2121 vvuuf  i.e. such that ).,())(,)(( 2121 vvufuf 
 

Choose and fix one such u1  , u2  ∈ E G . 

Define .))(,)((),(),()()( 2122212211 vhvhuuvvkanduvkanduvh   

 

Case 2b: Suppose v2is also adjacent to a vertex say .)( 13 GVv  since f * is surjective, there exists say 

)(3 GVu  such that .)( 33 vuf 
Fix one such )(3 GVu  . Then  v2  , v3 = ( f ∗ u2 , f ∗ u3  ∈ E G1 )  

and so by assumption  u2 , u3 ∈ E G . Defineh v3 =  u3and .))(,)((),(),( 323232 vhvhuuvvk   

 

Case 2c:Suppose )( 14 GVv  and 4v is adjacent to say )( 15 GVv  such that neither v4norv5is adjacent to 

any other vertex in G1. Since f
~

is surjective , choose and fix an edge u4  , u5 ∈ E G ,such that  

f
~

),(),( 5454 vvuu  .i.e. ).,())(,)(( 5454 vvufuf 
 

Define  .))(,)((),(),()()( 5454545544 vhvhuuvvkanduvhanduvh   

 

Case 2d: Suppose )( 1GVv is an isolated vertex. Since f * is surjective choose and fix       

)(GVu   Such that .)( vuf 
Define uvh )( .  Then it is clear that the pair  

GGkh 1:),( is a homomorphism of graphs. Denoting kgandhg  ~
 

We have a homomorphism  

.:)~,( 1 GGggg  
Moreover from the construction it follows that )(1 GVhfgf  

 

and
11

11
~~~

)( GGE fgThuskfgf   so that f is a retraction. 
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Remark 1.17: We have seen earlier that if 1: GGf  is  a homomorphism of graphs then f*  is injective 

imples that f
~

 is injective. However if  f *  is surjective then f
~

 need not be surjective.
 

Consider the homomorphism of graphs 1: GGf   

Given by the diagram. (See Figure 5) 

 

 
Figure 5 

 

Clearly f *  is surjective. However   )(:
~

1GEf is not surjective[8]. 

Remark 1.18: As mentioned earlier, condition (ii) is equivalent to saying that )(),( GEvu 
 

If and only if .)()(,)(( 1GEvfuf 
Howeverf * and f

~
 are surjective does not imply condition (ii) as 

shown by the following example (See Figure 6). 

 

 
Figure 6 

 

Here both f * and f
~

 are surjective  v2  , v3 = ( f u3 , f u4 )
 

belongs to E(G1) but there is no edge in G joining u3 and u4. 

 

Definition 1.18:Let 1: GGf   be a homomorphism of graphs. Then f is said to be a monomorphism if for all 

morphism .:, 221 GGgg  2121 ggthatimpliesgfgf  (left cancellation). 

Dually f is said to be an epmorphism if for all morphisms fgfgGGgg 212121 .:,  implies that 

21 gg  (right cancellation). 

 

Proposition 1.19:Let 1: GGf  be a homomorphism of graphs. Then f is a monomorphism if and only if 

f * is injective. 

Proof:Let 1: GGf  be a monomorphism. Suppose f * is not injective. Then there exists 

.)()()(,)(, 212121 sayvufufbutuuGVuu  
Consider the empty graph G2with

.)(}{)( 22  GEandwGV  Define homomorphisms

.)()(:, 2111221 uwganduwgasGGgg 


 Clearly .2121 ggsoandgg 


 However 

vufwgfandvufwgf   )()()()( 2211  and  hence 

  )()(.., 2121 fgfgeigfgf  and hence .)6.1( 2121 ggbutlemmabyfgfg  Hence f 

cannot be a monomorphism.  
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Conversely let f * be injective. Suppose GGgg 221 :, are homomorphisms such that 

  21212121 ...)()(. ggthatimpliesThisgfgfeifgfgThengfgf since f * is 

injective. Therefore .21 gg  (by lemma 1.6). 

 

Proposition 1.20:A homomorphism 1: GGf  is an epimorphism if and only if )()(: 1GVGVf 
 is 

surjective. 

 

Proof: Suppose f * is surjective. Let 2121 :, GGgg  be graph homomorphisms such that fgfg 21  . 

Then .
~~~~

2121
fgfgandfgfg  

This implies that 


 21 gg since f * is surjective. Hence 

)2(~~
21 bygg  and .21 gg   

Conversely suppose f * is not surjective. Then there exists an element )( 10 GVv  such that 0v  has no 

preimage under f *. Fix such a )( 10 GVv  . Choose an element Z0 such that  

Z0 .)( 1GV Let G2 be the graph where  )()( 12 GVGV {Z0}. E(G2) is defined as follows.  

1vIf Z0and 2v Z0then  

Also ,(v Z0) )( 2GE if and only if  .)(),( 10 GEvv   

Define homomorphisms 2121 :, GGgg  as follows. 

vvg 


)(1 for all )( 1GVv and ).(),(),(),(~
11 GEvuallforvuvug  Then 211 : GGg   is a 

homomorphism of graphs. Similarly define GGg 12 :  as follows )()(: 212 GVGVg 


 is defined as  



 


 andvvifv

vg
0

2 )(  Z0 0vvif   

),(~
2 vug ={ (u , v)  if 00 vvandvuif   

                           (u, Z0 )  if  (u , v0) )( 1GE  

Then clearly g: G1→G2 is also a graph homomorphism. From the construction it follows that fgfg 21 
 

but 21 gg  . Thus f is not an epimorphsm. This completes the proof. 

 

Proposition 1.21:Let 1: GGf  be a homomorphism of graphs. Then f is an isomorphism if and only if  

f * and f
~

 are bijections. 

 

Proof:Let fbe an isomorphism. Then f is a coretraction and a retraction. f  is a coretraction implies that f * and 

(hence f
~

) are injective and ))(,)(( vfuf 
is an edge in G1 if and only if 

 (u , v) is an edge in G ……..(A). 

f is a retraction implies that  f *  and f
~

 

are surjective ……(B) . (A) and (B) together implies that f *  and f
~

 
are bijections. 

Conversely if f * and f
~

are bijections thenf * is injective and condition ii) of (Proposition 1.9) is true so that f 

is a coretraction. Again if f *and  fandfthenbijectionsaref
~~ 

 
are surjective and condition ii) of  (proposition 1.16   )  is true and so f is a retraction. Thus f  is an isomorphism.     

 

Remark 1.22: From the above proposition it follows that f is an isomorphism if and only if  

i) f* is a bijection and  
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ii) (u, v) is an edge in G if and only if (f* (u) , f*( v)) is an edge in G1 which is the usual definition given in 
texts. 

 

Theorem 1.23: The category of graphs is not balanced [7, 8]. 

Proof:   We  recall that a category C   is said to be balanced if every morphism which is both a monomorphism 

and an epimorphism is an isomorphism. However the category G  of graphs is not balanced as seem from the 

following example(See Figure 7). 

 

 
Figure 7

 
 

f * is injective implies that f is a monomorphism (by proposition 1.9) f * is surjective implies that f is 

an epimorphism ( by 1.16). 

However f is not an isomorphism, since 
))(*,)(*(),( 4
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is an edge in G1 but (u3 , u4) is not an edge in G.
 

 
 

II. Conclusion 
Hence with this representation we characterize some special morphisms likemonomorphism, 

epimorphism, coretraction, retraction etc in terms of set functions.Also, Finally we show that the Category of 

Graphs is not balanced 
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