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Abstract: This study investigates the effect of the nano particle effect on magnetohydrodynamic boundary layer 

flow over a stretching surface with the effect of viscous dissipation. The governing partial differential equations 

are transformed to a system of ordinary differential equations and solved numerically using fifth order Runge-

Kutta method integration scheme and Matlab bvp4c solver. The effects of the Non-Newtonian Williamson 

parameter, Prandtl number, Lewis number, the diffusivity ratio parameter, heat capacities ratio parameter, 
Eckert number, Schmidt number on the fluid properties as well as on the skin friction and Nusselt number 

coefficients are determined and shown graphically. 
Keywords: MHD, nanoparticle, viscous dissipation, Williamson fluid model, heat transfer. 
 

I. Introduction 
Nanoparticles have one dimension that measures 100 nanometers or less. The properties of a lot of 

conventional materials change when formed from nanoparticles. This is typically because nanoparticles contain 

a greater surface area per weight than larger particles which causes them to be more reactive to some other 

molecules. Choi [1] investigated the theoretical learn of the thermal conductivity of nanofluids with Copper 
nanophase meterials and he estimated the potential profit of the fluids and also he shown that one of the benefits 

of nanofluids will be dramatic reductions in heat exchanger pumping power. The characteristic feature of 

nanofluids is thermal conductivity enhancement, a phenomenon observed by Masuda et al. [2]. This 

phenomenon suggests the opportunity of using nanofluids in advanced nuclear systems [3]. A comprehensive 

survey of convective transport in nanofluids was made by Buongiorno [4], who says that a satisfactory 

explanation for the abnormal increase of the thermal conductivity and viscosity is yet to be found. He focused 

on added heat transfer enhancement observed in convective situations. Kuznetsov and Nield [5] have examined 

the influence of nanoparticles on natural convection boundary-layer flow past a vertical plate using a model in 

which Brownian motion and thermophoresis are accounted for. The authors have assumed the simplest possible 

boundary conditions, namely those in which both the temperature and the nanoparticle fraction are constant 

along the wall. Furthermore, Nield and Kuznetsov [6, 7] have studied the Cheng and Minkowycz [8] problem of 

natural convection past a vertical plate in a porous medium saturated by a nanofluid and used for the nanofluid 
incorporates the effects of Brownian motion and thermophoresis for the porous medium.  

The problem of viscous flow and heat transfer over a stretching sheet has important industrial 

applications, for example, in metallurgical processes, such as drawing of continuous filaments through quiescent 

fluids, annealing and tinning of copper wires, glass blowing, manufacturing of plastic and rubber sheets, crystal 

growing, and continuous cooling and fiber spinning, in addition to wide-ranging applications in many 

engineering processes, such as polymer extrusion, wire drawing, continuous casting, manufacturing of foods and 

paper, glass fiber production, stretching of plastic films, and many others. During the manufacture of these 

sheets, the melt issues from a slit and is subsequently stretched to achieve the desired thickness. The final 

product with the desired characteristics strictly depends upon the stretching rate, the rate of cooling in the 

process, and the process of stretching. In view of these applications, Sakiadis [9, 10] investigated the boundary 

layer on a moving continuous flat surface and a moving continuous cylindrical surface, for both laminar and 
turbulent flow in the boundary layer. Syahira Mansur and Anuar Ishak [11] found that the local Nusselt number 

and the local Sherwood number as well as the temperature and concentration profiles for some values of the 

convective parameter, stretching/shrinking parameter, Brownian motion parameter, and thermophoresis 

parameter. Nadeem and Hussain [12] analyze the nano particle effect on boundary layer flow of Williamson 

fluid over a stretching surface. 

Dissipation is the process of converting mechanical energy of downward-flowing water into thermal 

and acoustical energy. Viscous dissipation is of interest for many applications. Significant temperature rises are 

observed in polymer processing flows such as injection modelling or extrusion at high rates. Aerodynamic 

heating in the thin boundary layer around high speed aircraft raises the temperature of the skin. In a completely 
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different application, the dissipation function is used to characterize the viscosity of dilute suspensions Einstein 

[13]. Viscous dissipation for a fluid with suspended particles is equated to the viscous dissipation in a pure 

Newtonian fluid, both being in the same flow (same macroscopic velocity gradient). Vajravelu and 
Hadjinicolaou [14] studied the heat transfer characteristics over a stretching surface with viscous dissipation in 

the presence of internal heat generation or absorption. Recently, Yohannes et al [15] analyzes the thermal 

boundary layer thickness increases with increasing the values of Eckert number. More recently, Zaimi et al. [16] 

presents a similarity solution of the boundary layer flow and heat transfer over a nonlinearly stretching/shrinking 

sheet immersed in a nanofluid with suction effect. 

However, the interactions of magnetohydrodynamic boundary layer flow on heat transfer of 

Williamson nano fluid flow with viscous dissipation. The governing boundary layer equations have been 

transformed to a two-point boundary value problem in similarity variables and the resultant problem is solved 

numerically using the fourth order Runge-Kutta method along with shooting technique. The effects of various 

governing parameters on the fluid velocity, temperature, nanoparticle volume friction, reduced Nusselt number 

and nanoparticle volume friction gradient are shown in figures and analyzed in detail.  
 

II. Mathematical Formulation 
Let us consider the two-dimensional steady flow of an incompressible, viscous dissipative nano 

Williamson fluid over a stretching surface. The plate is stretched along x-axis with a velocity Bx, where B>0 is 

stretching parameter. The fluid velocity, temperature and nanoparticle concentration near surface are assumed to 

be Uw, Tw and Cw, respectively.  

For Williamson fluid model is defined in (Dapra [17]) as 

 0

0 1

1

 
 







 
   
  

              (2.1) 

where   is extra stress tensor, 0  is limiting viscosity at zero shear rate and   is limiting viscosity at 

infinite shear rate, 0  is a time constant, 1  is the first Rivlin–Erickson tensor and 


 is defined as follows: 

1
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Here we considered the case for which 0   
and 1



  . Thus Eq. (2.1) can be written as 
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or by using binomial expansion we get 
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               (2.5)

 
The above model reduces to Newtonian for 0   

The equations governing the flow are  

Continuity equation 

0
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x y
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                                                                         (2.6) 

Momentum equation 
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Energy equation 
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Volumetric species equation  

 

2 2

2 2

T
B

C C C D T
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   
  
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             (2.9) 

The boundary conditions are   

, , ,w w w wu U v v T T C C           at    0y          

0, ,u T T C C           as   y       (2.10) 

Since the surface is stretched with velocity Bx, thus Uw = Bx and u and v are horizontal and vertical components 

of velocity,  is kinematic viscosity, wv  is the suction or injuction velocity with 0wv   for suction and 

0wv   for injection.   is the nanofluid thermal diffusivity.   is nanofluid density, c and p pc  are heat 

capacities of nanofluid and nanoparticles, respectively, T is temperature, k is nanofluid thermal conductivity, DB 

is Brownian diffusion coefficient, C is nanoparticle volumetric fraction, DT is thermophoretic diffusion 

coefficient and T is the ambient fluid temperature. 

 
In order to transform the equations (2.6) to (2.10) into a set of ordinary differential equations, the following 

similarity transformations and dimensionless variables are introduced. 
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                           (2.11) 

where ( )f  is the dimensionless stream function, θ - the dimensionless temperature,   - the dimensionless 

nanoparticle volume fraction, η - the similarity variable,  - the Non-Newtonian williamson parameter, Le  - 

the Lewis number,
 
Nc  - the heat capacities ratio, Nt - the diffusivity ratio, Ec-the Eckert number,  Pr - the 

Prandtl number, Sc - the Schmidt number. 

In view of the equation (2.11), the equations (2.7) to (2.10) transform into  
2''' '' ' '' ''' 0f ff f f f                                     (2.12) 

2 2" Pr ' ' ' ' '' 0
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f Ecf
Le LeNt

                         (2.13)  

1
" ' '' 0Scf

Nt
                                                                       (2.15) 

The transformed boundary conditions can be written as 

, ' 1, 1, 1f S f                   at           0                         

' 0, 0, 0f                                  as                   (2.16) 

 

 Where the constant parameter /wS v B   corresponds to the suction (S>0) and injection (S<0) 

or the withdrawal of the fluid, respectively. 

If we put 0  , our problem reduces to the one for Newtonian nano and for DB = DT = 0 in Eq. (2.8) our heat 

equation reduce to the classical boundary layer heat equation in the absence of viscous dissipation. Physical 

quantities of interest are Local skin friction coefficient fC , Local Nusselt number Nu  and Local Sherwood 

number Sh .  
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or by introducing the transformations (15), we have 
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Where 

2

Re
Bx


  is the local Reynolds number. 

 

III. Solution Of The Problem 
The set of non-linear coupled differential Eqs. (2.12)-(2.15) subject to the boundary conditions Eq. 

(2.16) constitute a two-point boundary value problem. In order to solve these equations numerically we follow 

most efficient numerical shooting technique with fifth-order Runge-Kutta-integration scheme. In this method it 

is most important to choose the appropriate finite values of  . To select 
we begin with some initial 

guess value and solve the problem with some particular set of parameters to obtain '', 'f  and ' . The solution 

process is repeated with another large value of 
 until two successive values of '', 'f  and '  differ only 

after desired digit signifying the limit of the boundary along  . The last value of 
 is chosen as appropriate 

value of the limit   for that particular set of parameters. The four ordinary differential Eqs. (2.12)-(2.15) 

were first formulated as a set of seven first-order simultaneous equations of seven unknowns following the 

method of superposition [18]. Thus, we set 
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Eqs. (2.12)-(2.15) then reduced into a system of ordinary differential equations, i.e., where 1 2,   and 

3  are determined such that it satisfies    2 40, 0y y    and  6 0y   . The shooting method is 

used to guess 1 2,   and 
3  until the boundary conditions    2 40, 0y y    and  6 0y   are 

satisfied. Then the resulting differential equations can be integrated by fourth-order Runge-Kutta scheme. The 

above procedure is repeated until we get the results up to the desired degree of accuracy, 610

 
 

IV. Results And Discussion 
In order to get a clear insight of the physical problem, the velocity, temperature and nanoparticle 

volume friction have been discussed by assigning numerical values to the governing parameters encountered in 

the problem.   Numerical computations are shown from figs.1-13. 



Effect of Viscous dissipation on Heat Transfer of Magneto-Williamson Nanofluid 

DOI: 10.9790/5728-11452537                                      www.iosrjournals.org                                            29 | Page 

Figs. 1(a)-(c) shows the effect of the Non-Newtonian Williamson parameter on the velocity, 

temperature and mass volume fraction profiles. It is observed that the velocity of the fluid decreases with an 

increase the Non-Newtonian Williamson parameter and temperature of the fluid as well as mass volume friction 
of the fluid increases the Non-Newtonian Williamson parameter. Figs. 2(a)-(c) shows the effect of the suction 

parameter on the velocity, temperature and mass volume fraction profiles. It is observed that the velocity of the 

fluid decreases with an increase the suction parameter and temperature of the fluid as well as mass volume 

friction of the fluid increases the suction parameter. The effect of viscous dissipation on temperature and mass 

volume friction is shown in figs. 3(a)&(b). Increases in Ec the temperature of the fluid is decreases as well as 

opposite results were found in mass volume friction. 

The effect of Nc on temperature and mass volume friction is shown in figs. 4(a)&(b). An increase in Nc 

the temperature of the fluid is increases as well as opposite results were found in mass volume friction. From 

fig. 5(a) & 5(b) show that the effect of Lewis number (Le) on temperature and mass volume friction. Since 

Lewis number is the ratio of nanoparticle thermal diffusivity to Brownian diffusivity. It is observe that the 

temperature of the fluid decreases where as mass volume friction increases with an increase in the Lewis 
number. The effect of the Prandtl number (Pr) on temperature is shown in fig.6. Since the Prandtl number is the 

ratio of momentum diffusivity to the nanofluid thermal diffusivity. It is noticed that temperature of the fluid 

increases with an increases the Prandtl number. The variation of mass volume friction verses diffusivity ratio 

parameter (Nt) is plotted in fig. 7.  Since the diffusivity ratio is the ratio of Brownian diffusivity to the 

thermophoretic diffusivity. It is seen that as Nt increases the mass volume friction of the fluid decreases. From 

fig.8 show that the variation of the Schmidt number (Sc) to the nanoparticle volume friction. Since Schmidt 

number is the ratio of the momentum diffusivity to Brownian diffusivity. It is seen that nanoparticle volume 

friction decreases with increases the Schmidt number. 

Fig.9 shows the effects of S and λ on skin friction. From fig.9 it is seen that the skin friction increases 

with an increase S or λ. The variations of Ec and λ on reduced Nusselt number is shown in fig.10. It is observed 

that the reduced Nusselt number increases with an increase the parameter Ec and decrease with an increasing the 

parameter λ.  The effect of Ec and λ on Sherwood number is shown in fig.11. it is found that the Sherwood 
number reduces with an increase in the parameters Ec or λ. Fig.12 shows the effects of Nt and Nc on local 

Nusselt number. From fig.12 it is seen that the local Nusselt number increases with an increase Nt whereas 

decreases with the influence of Nc. The variations of Nt and Nc on reduced Sherwood number is shown in 

fig.13. It is observed that the reduced Sherwood number increases with an increase the parameter Nt or Nc. 

Table 1 is shows to compare our results for the viscous case in the absence of nanoparticles and viscous 

dissipation. These results are found to be in good agreement. 

 

V. Conclusions 
In this paper numerically investigated the nanoparticle effect on magnetohydrodynamic boundary layer 

flow of Williamson fluid over a stretching surface in the presence of viscous dissipation.  The important 

findings of the paper are: 

 The velocity of the fluid decreases with an increase of the Non-Newtonian Williamson parameter. 

 The fluid temperature and mass volume friction increases with the influence of Non-Newtonian Williamson 

parameter. 

 The nanoparticle volume friction enhances the viscous dissipation. 

 The influence of heat capacities ratio parameter or viscous dissipation reduces the heat transfer coefficient. 

 nanoparticle volume friction gradient enhances the diffusivity ratio parameter and heat capacities ratio 

parameter. 
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Fig.1(a) Velocity for different values of λ 

 
Fig.1(b) Temperature for different values of λ 

 
Fig.1(c) Nanoparticle volume fraction for different values of λ 
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             Fig.2 (a) Velocity for different values of S 

 
Fig.2(b) Temperature for different values of S 

 
Fig.2(c) Nanoparticle volume fraction for different values of S 
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Fig.3(a) Temperature for different values of Ec 

 
Fig.3(b) Nanoparticle volume fraction for different values of Ec 

 
Fig.4(a) Temperature for different values of Nc 
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Fig.4(b) Nanoparticle volume fraction for different values of Nc 

 
Fig.5(a) Temperature for different values of Le 

 
Fig.5(b) Nanoparticle volume fraction for different values of Le 
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          Fig.6 Temperature for different values of Pr 

 
Fig.7 Nanoparticle volume fraction for different values of Nt      

 
Fig.8 Nanoparticle volume fraction for different values of Sc 
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               Fig.9 Effect of λ and S on the reduced skin friction 

 
                     Fig.10 Effect of λ and Ec on the reduced Nusselt number  

 
       Fig.11 Effect of λ and Ec on the local Sherwood number  
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Fig.12 Effect of Nt and Nc on the reduced Nusselt number 

 
Fig.13 Effect of Nt and Nc on the local Sherwood number 

 

Table 1 Comparison for viscous case '(0) with Pr for λ =Nc=Nt=Le=Ec=Sc=0 

Pr '(0)  

Present results Nadeem  and 

Hussain [12] 

Khan and Pop 

[19] 

Golra and 

Sidawi [20] 

Wang [21] 

RKF5 bvp4c 

0.07 

0.2 

0.7 

2.0 

0.066 

0.169522 

0.453916 

0.911358 

0.0723 

0.1695 

0.4539 

0.9114 

0.066 

0.169 

0.454 

0.911 

0.066 

0.169 

0.454 

0.911 

0.066 

0.169 

0.454 

0.911 

0.066 

0.169 

0.454 

0.911 
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