First Edge Wiener Index of Link of Graphs

K.Thilakam¹, R.Bhuvaneswari²
¹(PG and Research Department of Mathematics, SeethalakshmiRamaswami College, Thiruchirappalli -2, India)

Abstract: One of the most widely known topological descriptors is the Wiener index or (Wiener number) named after American chemist Harold Wiener in 1947. Wiener number of a connected graph G is defined as the sum of the distances between distinct pairs of vertices of G. It correlates between physico-chemical and structural properties. Recently an edge version of Wiener Index was introduced by Ali Iranmanesh. In this paper, we have determined Wiener numbers of link of graphs.

Keywords: distance sum, edge Wiener index, link of graph, topological indices.

I. Introduction

A Graph G is formally defined to be a pair [V(G),E(G)] where V(G) is a non empty finite set of elements called vertices and E(G) is a finite set of unordered pairs of elements of V(G) called edges. Molecular graphs represent the constitution of molecules[1]. They are generated using the following rule: Vertices stand for atoms and edges for bonds. A graph theoretical distance d(u,v) between the vertices u and v of the graph G is equal to the length of the shortest path that connects u and v. An invariant of a graph G is a number associated with G that has the same value for any graph isomorphic to G. If G is a molecular graph then the corresponding invariants are called molecular descriptor or topological indices and they are used in theoretical chemistry for the design of so called Quantitative Structure Property Relations (QSPR) and Quantitative Structure Activity Relations (QSAR). One of the oldest topological index is Wiener index and is defined as the half of the sum of all the distances between every pair of vertices of G.[2] i.e

\[ W(G) = \frac{1}{2} \sum_{u,v} d(u,v) \]  

Equations (1) is called vertex version of Wiener Index and its chemical and mathematical applications are well documented in [3-6] the edge versions of Wiener index were introduced by Iranmanesh etc., in 2008 as follow [7] and is defined as follows.

The first edge-Wiener number is

\[ W_{e0}(G) = \frac{1}{2} \sum_{e \neq f \in E(G)} d_0(e,f) \]  

Where

\[ d_0(e,f) = \begin{cases} d_1(e,f) + 1 & e \neq f \\ 0 & e = f \end{cases} \]

\[ d_1(e,f) = \min\{d(x,u), d(x,v), d(y,u), d(y,v)\} \] such that e = xy and f = uv and W_{e0} = W(L(G)).

The second edge-Wiener number is

\[ W_{e2}(G) = \frac{1}{2} \sum_{e \neq f \in E(G)} d_2(e,f) \]  

Where

\[ d_2(e,f) = \begin{cases} d_4(e,f) & e \neq f \\ 0 & e = f \end{cases} \]

\[ d_4(e,f) = \max\{d(x,u), d(x,v), d(y,u), d(y,v)\} \] such that e = xy and f = uv.

Since all these topological indices depends on distance between every pair of vertices of a given graph G. Let G₁ and G₂ be two simple and connected graph with disjoint vertex sets. For given vertices x₁\in V(G₁) and y₁\in V(G₂), a link of two graphs G₁ and G₂ is defined as the graph G₁ \sim G₂(x₁, y₁) obtained by joining x₁ and y₁ by an edge. For simply we show the link of G₁ and G₂ by G₁\sim G₂. The link of graphs G₁,G₂,…….,Gₙ is G₁ \sim G₂ \sim …… \sim Gₙ. Furthermore if G₁ = G₂ = …… = Gₙ = G we use of the notation G \sim^n G. Balakrishnan [8] compute the Wiener index of a graph with exactly n cut-edges. In this paper we have determined first edge Wiener index of link of graph.
Some Known Results:

For $K_n$
1. $W(K_n) = \frac{n(n-1)}{2}$
2. $W'(K_n) = \frac{n^2(n-1)}{2}$
3. $W_{e0}(K_n) = \frac{n(n-1)^2(n-2)}{8}$
4. $WW_{e0}(K_n) = \frac{n(n-1)(n-2)(3n-5)}{8}$
5. $W_{e4}(K_n) = \frac{n(n-1)(n-2)(n+1)}{4}$
6. $WW_{e4}(K_n) = \frac{n(n-1)(n-2)(n+1)}{4}$

For $K_{n,m}$
1. $W(K_{n,m}) = (m+n)^2 - (m+n)-mn$
2. $WW(K_{n,m}) = 3(m+n)^2 - 3(m+n)-4mn$
3. $W_{e0}(K_{n,m}) = \frac{mn}{2} - (2mn-n-m)$
4. $WW_{e0}(K_{n,m}) = mn(3mn - 2n - 2m + 1)$
5. $W_{e4}(K_{n,m}) = mn(mn - 1)$
6. $WW_{e4}(K_{n,m}) = 3mn(mn - 1)$

II. Main results

Theorem 2.1
$W_{e0}(G_1 \sim G_2) = W_{e0}(G_1) + W_{e0}(G_2) + (m_2 + 1)(D_0)G_1(e_2) + (m_1 + 1)(D_0)G_2(e_1)$

Proof:
Let $E(G_1) = \{e_1(i) \mid i = 1 \text{ to } m_1\}$
$E(G_2) = \{e_2(i) \mid i = 1 \text{ to } m_2\}$
and $E(G_1 \sim G_2) = E(G_1) \cup E(G_2) \cup \{e_1, e_2\}$

Hence $|E(G_1 \sim G_2)| = m_1 + m_2 + 1$. In General

$W_{e0}(G_1 \sim G_2) = \sum_{f \in E(G)} d_0(e,f)$

\[ W_{e0}(G_1 \sim G_2) = \sum_{i \neq j} d_0(e_1(i), e_1(j)) + \sum_{i \neq j} d_0(e_2(i), e_2(j)) + \sum_{i \neq j} d_0(e_1(i), e_2(j)) + \sum_{i \neq j} d_0(e_2(i), e_1(j)) \]

Therefore

$W_{e0}(G_1 \sim G_2) = W_{e0}(G_1) + W_{e0}(G_2) + (m_2 + 1)(D_0)G_1(e_2) + (m_1 + 1)(D_0)G_2(e_1)$

Theorem 2.2
$W_{e0}(G_1 \sim G_2 \sim G_3) = W_{e0}(G_1) + W_{e0}(G_2) + W_{e0}(G_3) + (m_2 + m_3 + 2)(D_0)G_1(e_3) + (m_1 + 1)(D_0)G_2(e_4) + (m_3 + 1)(D_0)G_3(e_5)$

+ $(m_1 + 1)(D_0)G_4(e_6) + (m_2 + m_3 + 2)(D_0)G_5(e_7) + (m_3 + m_4 + 2)(D_0)G_6(e_8)$
Proof:

\[ W_{e_0}(G_1 \sim G_2 \sim G_3) = W_{e_0}(G_1 \sim G_2) + W_{e_0}(G_2 \sim G_3) = W_{e_0}(G_1) + W_{e_0}(G_2) + (m_3 + 1)(D_{e_0} G_1) + (m_2 + 2)(D_{e_0} G_2) + (m_1 + m_2 + 2)(D_{e_0} G_3) \]

By using previous Theorem

\[ W_{e_0}(G_2 \sim G_2 \sim G_2) = W_{e_0}(G_2) + W_{e_0}(G_3) + (m_3 + 1)(D_{e_0} G_2) + (m_1 + m_2 + 2)(D_{e_0} G_3) \]

Consider

\[ (D_{e_0} G_1 \sim e_1) = \sum_{i=1}^{m_1} d_{e_0}(e_1, e_1) + \sum_{i=1}^{m_2} d_{e_0}(e_2, e_2) + \sum_{i=1}^{m_3} d_{e_0}(e_3, e_3) \]

(3)

Theorem 2.3

Proof: Let us use induction method on \( n \) to prove this result. By previous Theorems result is true for \( n=2 \) and \( 3 \). Assume that result is true for \( n=k \).

\[ W_{e_0}(G_1 \sim G_2 \cdots \sim G_k) = \sum_{i=1}^{k} W_{e_0}(G_i) + \sum_{j=1}^{k-1} (D_{e_0} G_j e_j) \sum_{i=j+1}^{k} (m_i + 1) + (D_{e_0} G_k) (m_{k-1} + m_k + \cdots) \]

(4)

Substitute (3) in (4) and simplify we get

\[ W_{e_0}(G_1 \sim G_2 \sim G_3) = W_{e_0}(G_1) + W_{e_0}(G_2) + W_{e_0}(G_3) + (m_3 + m_2 + 2)(D_{e_0} G_1) + (m_1 + m_2 + 2)(D_{e_0} G_2) + (m_1 + m_2 + 1)(D_{e_0} G_3) \]

DOI: 10.9790/5728-11446165 www.iosrjournals.org 63 | Page
Therefore

\[ W_{e_0}(G_1 \sim \ldots \sim G_{k+1}) = \sum_{i=1}^{k+1} W_{e_0}(G_i) + \sum_{j=1}^{k+1} \left[ (D_0)_{G_j}(e_j) \left( \sum_{i=j+1}^{k+1} (m_i + 1) \right) \right] + (m_1 + m_2 + \ldots + m_k + k)(D_0)_{G_{k+1}}(e_k) + \sum_{j=1}^{k+1} \left[ (D_0)_{G_{j+1}}(e_j) + d_0(e_j, e_{j+1}) \left( \sum_{i=j+2}^{k+1} (m_i + 1) \right) \right] \left( \sum_{i=j+1}^{k+1} (m_i + 1) \right) \]

Hence the result is true for \( n=k+1 \). Therefore by induction. Hypothesis result is true for all positive integers \( n \).

**Corollary 1**

If \( G_1 = G_2 = \ldots = G_n = G \) then

\[ \sum_{i=1}^{n} (m_i + 1) = (b - a + 1)(m + 1) \]

\[ W_{e_0}(G \sqcup \ldots \sqcup G) = n W_{e_0}(G) + (m + 1) \sum_{j=1}^{n-1} \left[ (D_0)_{G \sqcup \ldots \sqcup G}(e_j)(m - j) + (D_0)_{G \sqcup \ldots \sqcup G}(e_j)(j) \right] \]

\[ + (m + 1)^2 \sum_{j=1}^{n-2} d_0(e_j, e_{j+1})(n - j - 1)j \]

Where \( G^{(j)} \) is \( j^{th} \) image of \( G \)

**Corollary 2**

If \( G_1 = G_2 = \ldots = G_n = C_m \) then

\[(D_0)_{G_1 \cup \ldots \cup G_n}(e_j) = \begin{cases} \frac{2W_{e_0}(G_0)(e_j)}{m} + \frac{m+1}{2} & \text{if } m \text{ is odd} \\ \frac{2W_{e_0}(G_0)(e_j)}{m} + \frac{m+1}{2} & \text{if } m \text{ is even} \end{cases} \]

\[(D_0^2)_{G_1 \cup \ldots \cup G_n}(e_j) = \begin{cases} \frac{4W_{e_0}(G_0)(e_j)}{m} + \frac{m+1}{2} & \text{if } m \text{ is odd} \\ \frac{4W_{e_0}(G_0)(e_j)}{m} + \frac{m+1}{2} & \text{if } m \text{ is even} \end{cases} \]

Hence

\[ W_{e_0}(C_m \cup \ldots \cup C_m) = \frac{n(n+1)}{8} \left( m(m - 1) + 2(m + 1)^2(n - 1) \right) + (m + 1)^2(S_0) \text{ if } m \text{ is odd} \]

Where

\[ S_0 = \sum_{j=1}^{n-2} d_0(e_j, e_{j+1})(n - j - 1)j \]
Corollary 3
In \( \left( C_n, C_m \right) \) if \( d_k(e_i, e_{i+1}) = k \) for all \( i \) then

\[
S_e = \sum_{j=1}^{n-1} d_0 (e_j, e_{j+1}) (n - j - 1)j = \frac{3n}{6} \sum_{j=1}^{n-2} (n - j - 1)j = \frac{3n(n-2)(n-1)}{6}
\]

\[
S_1 = \sum_{j=1}^{n-2} d_1^2 (e_j, e_{j+1}) (n - j - 1)j = \frac{3n^2(n-2)(n-1)}{6}
\]

\[
S_2 = \sum_{i=1}^{n-1} d_0 (e_i, e_{i+1}) \sum_{j=1}^{n-2} d_0 (e_j, e_{j+1}) (n - j - 1)j = \frac{3n^2(n-3)(n-2)n(n-1)}{24}
\]

Hence

\[
W_e(C_n, C_m) = \frac{n(n+1)}{8} \left[ 3m(n+1) + 6m + 1^2(n - 1) + 4(m+1)k(n-1)(n-2) \right] \text{ if } m \text{ is odd}
\]

\[
W_e(C_n, C_m) = \frac{nm^2}{8} + \frac{(m+1)(n-1)}{12} \left[ 3m(m+2) + 2(m+1)k(n-2) \right] \text{ if } m \text{ is even}
\]

III. Conclusion
Using this link relation we can fine the edge Wiener index of some dentrimer molecules.

References