A Note on [5,3] Error Correcting Codes over GF(7)

Partha Pratim Dey *, A. K. M. Toyarak Rian **
* Department of Mathematics \& Physics
** Department of Electrical \& Computer Engineering
North South University, Bangladesh

Abstract

In this paper we investigate the existence, equivalence and some other features of [5,3] error correcting codes over $G F(7)$.

Key-Words: Linear code, generator matrix, equivalent code.

I. Introduction

Let F be the $G F(q)$, the Galois field with q elements. An $[n, k]$ linear code over $G F(q)$ is a k - dimensional subspace of F^{n}, the space of all n-tuples with components from F. Since a linear code is a vector sub-space it can be given by a basis. The matrix whose rows are the basis vectors is called a generator matrix. For an acquaintance with coding theory at a basic level the reader may please consult $[1,2,3]$.
A very important concept in coding is the weight of a vector v. By definition, this is the number of non-zero components v has and is denoted by $w t(v)$. The minimum weight of a code, denoted by d, is the weight of a non-zero vector of smallest weight in the code. A
well-known theorem says that if d is the minimum weight of a code C, then C can correct $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ or fewer errors, and conversely. An $[n, k]$ linear code with minimum weight d is often called an $[n, k, d]$ code.

Two linear codes over $G F(q)$ are called equivalent if one can be obtained from the other by a combination of operations of the following types.
(a) permutation of the positions of the code;
(b) multiplication of the symbols appearing in a fixed position by a non-zero scalar.

It is well known [2] that two $k \times n$ matrices generate equivalent linear [$n, k]$ codes over $G F(q)$ if one matrix can be obtained from the other by a sequence of operations of the following types.
(1) permutation of the rows;
(2) multiplication of a row by a non-zero scalar;
(3) addition of a scalar multiple of one row to another;
(4) permutation of the columns;
(5) multiplication of any column by a non-zero scalar.

It is also worth knowing [2] that if G is a generator matrix of an $[n, k]$ code, then by performing operations of types (1), (2), (3), (4) and (5), G can be transformed to standard form $\left[I_{k} \mid A\right]$,
where I_{k} is the $k \times k$ identity matrix, A is the $k \times(n-k)$ matrix

II. Existence of a [5, 3] Error Correcting Linear Code over $G F(q)$ if $q \geq 4$

We begin with an existence theorem.
Theorem (2.1). Let $G F(q)$ be a field of order q where $q \geq 4$. Then there do always exist an one error correcting [5,3] code over $G F(q)$.
Proof. Let
$M=\left[\begin{array}{lllll}1 & 0 & 0 & a_{11} & a_{12} \\ 0 & 1 & 0 & a_{21} & a_{13} \\ 0 & 0 & 1 & a_{31} & a_{14}\end{array}\right]$
be a generator matrix of a $[5,3]$ code over $G F(q), q \geq 4$ where $a_{i j} \in G F(q)$ for each i and $j, 1 \leq i \leq 3,1 \leq j \leq 2$ and $a_{i j} \neq 0$.
One then obtains the following equivalence diagram where r_{i} and c_{i} denote the $i^{\text {th }}$ row and $i^{\text {th }}$ column respectively.
$M=\left[\begin{array}{lllll}1 & 0 & 0 & a_{11} & a_{12} \\ 0 & 1 & 0 & a_{21} & a_{13} \\ 0 & 0 & 1 & a_{31} & a_{14}\end{array}\right] \xrightarrow{a_{11}^{-1} r_{1}, a_{2}^{-1} r_{2}, a_{3}^{-1} r_{3}}\left[\begin{array}{ccccc}a_{11}^{-1} & 0 & 0 & 1 & a_{11}^{-1} a_{12} \\ 0 & a_{21}^{-1} & 0 & 1 & a_{21}^{-1} a_{13} \\ 0 & 0 & a_{31}^{-1} & 1 & a_{31}^{-1} a_{14}\end{array}\right] \xrightarrow{a_{1} c_{1}, a_{2}, c_{2}, a_{3}, c_{3}}$
$\left[\begin{array}{lllll}1 & 0 & 0 & 1 & a_{11}^{-1} a_{12} \\ 0 & 1 & 0 & 1 & a_{21}^{-1} a_{13} \\ 0 & 0 & 1 & 1 & a_{31}^{-1} a_{14}\end{array}\right] \xrightarrow{a=a_{1}^{-1} a_{12}, b=a_{2}^{-1} a_{13}, c=a-a_{3}^{-1} a_{14}}\left[\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right]$
$\xrightarrow{x=a^{-1} b, y=a^{-1} c}\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & x \\ 0 & 0 & 1 & 1 & y\end{array}\right]=G$.
Since $q \geq 4$, exist nonzero $x, y \in G F(q)$ such that $1, x$ and y are all distinct. Then no two columns of the parity check matrix
$H=\left[\begin{array}{llll}-1-1-1 & 1 & 0 \\ -1-x-y & 0 & 1\end{array}\right]$
are dependent and exist 3 columns of H
$\left[\begin{array}{l}-1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
which are dependent. Hence by a well known theorem [2] the minimum weight of the code generated by G or M is 3 .
Thus there exists an one error correcting [5,3] linear code over $G F(7)$.

III. Equivalence of One Error Correcting [5,3] Linear Codes over GF(7)

Let
$M=\left[\begin{array}{lllll}1 & 0 & 0 & a_{11} & a_{12} \\ 0 & 1 & 0 & a_{21} & a_{13} \\ 0 & 0 & 1 & a_{31} & a_{14}\end{array}\right]$
be the generator matrix of a $[5,3]$ linear code over $G F(7)$. If the code is to be error correcting, the minimum weight d should be at least 3 . Hence $a_{i j} \neq 0$ for each i and $j, 1 \leq i \leq 3,1 \leq j \leq 2$. Then as in Theorem (2.1) above, M can be shown to be equivalent to
$G=\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & x \\ 0 & 0 & 1 & 1 & y\end{array}\right]$

Notice that x in G above can't be 1 , as in that case the first two rows of G if subtracted will produce a codeword of weight 2 and the code generated by G will not be error-correcting. On the other hand x and y can't be same, as then the last two rows of G if subtracted will give a codeword of weight 2 . Moreover the diagram below
$A=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & x \\ 0 & 0 & 1 & 1 & y\end{array}\right] \xrightarrow{\operatorname{swap}\left(r_{21}, r_{3}\right)}\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & y \\ 0 & 1 & 0 & 1 & x\end{array}\right] \xrightarrow{\operatorname{swap}\left(c_{2}, c_{3}\right)}\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & y \\ 0 & 0 & 1 & 1 & x\end{array}\right]=B$
Shows that the codes generated by
$A=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & x \\ 0 & 0 & 1 & 1 & y\end{array}\right]$ and $B=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & y \\ 0 & 0 & 1 & 1 & x\end{array}\right]$
are equivalent. Thus from among the 36 possible choices for $\binom{x}{y}$ below:
$\binom{1}{1},\binom{1}{2},\binom{1}{3},\binom{1}{4},\binom{1}{5},\binom{1}{6} ;\binom{2}{1},\binom{2}{2},\binom{2}{3},\binom{2}{4},\binom{2}{5},\binom{2}{6} ;\binom{3}{1},\binom{3}{2},\binom{3}{3},\binom{3}{4},\binom{3}{5},\binom{3}{6} ;$
$\binom{4}{1},\binom{4}{2},\binom{4}{3},\binom{4}{4},\binom{4}{5},\binom{4}{6} ;\binom{5}{1},\binom{5}{2},\binom{5}{3},\binom{5}{4},\binom{5}{5},\binom{5}{6} ;\binom{6}{1},\binom{6}{2},\binom{6}{3},\binom{6}{4},\binom{6}{5},\binom{6}{6}$
for $\binom{x}{y}$ in G, we have only ten choices, namely,
$\binom{2}{3},\binom{2}{4},\binom{2}{5},\binom{2}{6} ;\binom{3}{4},\binom{3}{5},\binom{3}{6},\binom{4}{5},\binom{4}{6}$ and $\binom{5}{6}$ which could yield ten generator matrices
$G_{1}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 3\end{array}\right], G_{2}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 4\end{array}\right], G_{3}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 5\end{array}\right], G_{4}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 6\end{array}\right], G_{5}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 & 4\end{array}\right]$,
$G_{6}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 & 5\end{array}\right]$,
$G_{7}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 1 & 1 & 6\end{array}\right], G_{8}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 4 \\ 0 & 0 & 1 & 1 & 5\end{array}\right], G_{9}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 4 \\ 0 & 0 & 1 & 1 & 6\end{array}\right]$
and
$G_{10}=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 5 \\ 0 & 0 & 1 & 1 & 6\end{array}\right]$
producing ten in-equivalent codes.
Next we will show that contrary to our expectation the codes generated by $G_{1}, G_{2}, \ldots, G_{10}$ are all equivalent.

The diagram below shows a few cases of equivalence:

$$
\begin{aligned}
& G_{1}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 3
\end{array}\right] \xrightarrow{s_{c_{5}}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 5 \\
0 & 1 & 0 & 1 & 3 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \xrightarrow{\text { swap }\left(r_{1}, r_{3}\right)}\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 3 \\
1 & 0 & 0 & 1 & 5
\end{array}\right] \\
& \xrightarrow{\text { swap }\left(c_{1}, c_{3}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 3 \\
0 & 0 & 1 & 1 & 5
\end{array}\right]=G_{6}
\end{aligned}
$$

$$
G_{1}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 3
\end{array}\right] \xrightarrow{4 c_{5}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 4 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 5
\end{array}\right] \xrightarrow{\text { swapp } \left.r_{1}, r_{3}\right)}\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 4 \\
0 & 0 & 1 & 1 & 5
\end{array}\right] \xrightarrow{\operatorname{swap}\left(c_{1}, c_{2}\right)}
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 4 \\
0 & 0 & 1 & 1 & 5
\end{array}\right]=G_{8}
$$

$$
G_{3}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 5
\end{array}\right] \xrightarrow{4 c_{5}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 4 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 6
\end{array}\right] \xrightarrow{\operatorname{swap(}\left(r_{1}, r_{2}\right)}\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 4 \\
0 & 0 & 1 & 1 & 6
\end{array}\right] \xrightarrow{\operatorname{swap}\left(c_{1}, c_{2}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 4 \\
0 & 0 & 1 & 1 & 6
\end{array}\right]
$$

$$
=G_{9}
$$

$$
G_{3}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 5
\end{array}\right] \xrightarrow{3 c_{5}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 3 \\
0 & 1 & 0 & 1 & 6 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \xrightarrow{\text { swap }\left(r_{1}, r_{3}\right)}\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 6 \\
1 & 0 & 0 & 1 & 3
\end{array}\right] \xrightarrow{\text { swap }\left(r_{2}, r_{3}\right)}
$$

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 3 \\
0 & 1 & 0 & 1 & 6
\end{array}\right] \xrightarrow{\operatorname{swap}\left(c_{2}, c_{3}\right)}\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 3 \\
0 & 0 & 1 & 1 & 6
\end{array}\right] \xrightarrow{\operatorname{swap}\left(c_{1}, c_{2}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 3 \\
0 & 0 & 1 & 1 & 6
\end{array}\right]=G_{7} .
$$

$$
G_{4}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 6
\end{array}\right] \xrightarrow{4 c_{5}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 4 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 3
\end{array}\right] \xrightarrow{\text { swap(} \left.r_{1}, r_{2}\right)}\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 4 \\
0 & 0 & 1 & 1 & 3
\end{array}\right] \xrightarrow{\text { swap }\left(r_{2}, r_{3}\right)}
$$

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 3 \\
1 & 0 & 0 & 1 & 4
\end{array}\right] \xrightarrow{s w a p\left(c_{1}, c_{2}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 3 \\
0 & 1 & 0 & 1 & 4
\end{array}\right] \xrightarrow{\text { swap }\left(c_{2}, c_{3}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 3 \\
0 & 0 & 1 & 1 & 4
\end{array}\right]=G_{5} .
$$

$$
G_{4}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 6
\end{array}\right] \xrightarrow{6 c_{5}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 6 \\
0 & 0 & 1 & 1 & 5 \\
0 & 1 & 0 & 1 & 1
\end{array}\right] \xrightarrow{\text { swap }\left(r_{1}, r_{3}\right)}\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 5 \\
1 & 0 & 0 & 1 & 6
\end{array}\right] \xrightarrow{\text { swap }\left(c_{1}, c_{2}\right)}
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 5 \\
0 & 1 & 0 & 1 & 6
\end{array}\right] \xrightarrow{\text { swap }\left(c_{2}, c_{3}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 5 \\
0 & 0 & 1 & 1 & 6
\end{array}\right]=G_{10}
$$

Now we will show that G_{1}, G_{2}, G_{3} and G_{4} are equivalent.

$$
\begin{aligned}
& G_{1}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 3
\end{array}\right] \xrightarrow{r_{2}=r_{2}+5 r_{1}, r_{3}=r_{3}+4 r_{1}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
5 & 1 & 0 & 6 & 0 \\
4 & 0 & 1 & 5 & 0
\end{array}\right] \xrightarrow{\operatorname{swap}\left(c_{1}, c_{5}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 6 & 5 \\
0 & 0 & 1 & 5 & 4
\end{array}\right] \\
& \xrightarrow{r_{2}=6 r_{2}, r_{3}=3 r_{3}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 6 & 0 & 1 & 2 \\
0 & 0 & 3 & 1 & 5
\end{array}\right] \xrightarrow{c_{2}=6 c_{2}, c_{3}=5 c_{3}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 5
\end{array}\right]=G_{3} .
\end{aligned}
$$

$$
G_{4}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 6
\end{array}\right] \xrightarrow{\operatorname{swap}\left(c_{5}, c_{6}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 2 & 1 \\
0 & 0 & 1 & 6 & 1
\end{array}\right] \xrightarrow{r_{2}=4 r_{2}, r_{3}=6 r_{3}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 4 & 0 & 1 & 4 \\
0 & 0 & 6 & 1 & 6
\end{array}\right] \xrightarrow{r_{1}=r_{1}+r_{3}, r_{2}=r_{2}+4 r_{3}}
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 6 & 2 & 0 \\
0 & 4 & 3 & 5 & 0 \\
0 & 0 & 6 & 1 & 6
\end{array}\right] \xrightarrow{\left.\operatorname{swap(} c_{3}, c_{6}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 2 & 6 \\
0 & 4 & 0 & 5 & 3 \\
0 & 0 & 6 & 1 & 6
\end{array}\right] \xrightarrow{r_{1}=4 r_{1}, r_{2}=3 r_{2}}\left[\begin{array}{lllll}
4 & 0 & 0 & 1 & 3 \\
0 & 5 & 0 & 1 & 2 \\
0 & 0 & 6 & 1 & 6
\end{array}\right] \xrightarrow{2 c_{1}, 3 c_{2}, 6 c_{3}, 5 c_{5}}
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 3 \\
0 & 0 & 1 & 1 & 2
\end{array}\right] \xrightarrow{\operatorname{swap}\left(r_{2}, r_{3}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 1 & 0 & 1 & 3
\end{array}\right] \xrightarrow{\operatorname{swap(}\left(c_{2}, c_{3}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 3
\end{array}\right]=G_{1}
$$

$$
G_{2}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 4
\end{array}\right] \xrightarrow{r_{1}=r_{1}+5 r_{1}, r_{2}=r_{2}+3 r_{3}}\left[\begin{array}{lllll}
1 & 0 & 5 & 6 & 0 \\
0 & 1 & 3 & 4 & 0 \\
0 & 0 & 1 & 1 & 4
\end{array}\right] \xrightarrow{\text { swap }\left(c_{3}, c_{5}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 6 & 5 \\
0 & 1 & 0 & 4 & 3 \\
0 & 0 & 4 & 1 & 1
\end{array}\right] \xrightarrow{2 c_{3}}
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 6 & 5 \\
0 & 1 & 0 & 4 & 3 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \xrightarrow{r_{1}=6 r_{1}, r_{2}=2 r_{2}}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 & 6 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \xrightarrow{\operatorname{swap}\left(r_{2}, r_{3}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 6
\end{array}\right] \xrightarrow{\operatorname{swap(}\left(r_{1}, r_{2}\right)}
$$

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 & 6
\end{array}\right] \xrightarrow{\operatorname{swap(}\left(c_{2}, c_{3}\right)}\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 6
\end{array}\right] \xrightarrow{\operatorname{swap}\left(c_{1}, c_{2}\right)}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 6
\end{array}\right]=G_{4}
$$

Thus we have obtained the following theorem.
Theorem(3.1) An 1 - error correcting [5,3] code over $G F(7)$ is equivalent to the code with the following generator matrix G_{1} where

$$
G_{1}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 3
\end{array}\right] .
$$

IV. Weight Distribution of a [5, 3] Linear Code over GF(7)

We begin with the following theorem [3].
Theorem (4.1) Let C be a $[n, k, d]$ MDS code over $G F(q)$ with $d=n-k+1$. Then
$A_{0}=1, A_{i}=0,1 \leq i<d$ and
$A_{i}=\binom{n}{i} \sum_{j=0}^{i-d}(-1)^{j}\binom{i}{j}\left(q^{i+1-d-j}-1\right), d \leq i \leq n$.

Applying this theorem on a $[5,3,3]$ code C we obtain, $A_{0}=1, A_{1}=A_{2}=0$,

$$
\begin{aligned}
& A_{3}=\binom{5}{3}(-1)^{0}\binom{3}{0}(7-1)=60 \\
& A_{4}=\binom{5}{4} \sum_{j=0}^{1}(-1)^{j}\binom{4}{j}\left(7^{2-j}-1\right)=5\left[(-1)^{0}\binom{4}{0}(48)+(-1)^{1}\binom{4}{1}(6)\right]=5(48-24)=120
\end{aligned}
$$

and

$$
A_{5}=\binom{5}{5} \sum_{j=0}^{2}(-1)^{j}\binom{5}{j}\left(7^{3-j}-1\right)=\left(7^{3}-1\right)-5\left(7^{2}-1\right)+10(7-1)=162 .
$$

It is well-known [1] that if C is an MDS code, so is C^{\perp}. Hence the minimum distance of C^{\perp} is $5-2+1=4$. Then by Theorem (3.1) above, $A_{0}=1, A_{1}=A_{2}=A_{3}=0$,

$$
\begin{aligned}
& A_{4}=\binom{5}{4}(-1)^{0}\binom{4}{0}(7-1)=30 \text { and } \\
& A_{5}=\binom{5}{5} \sum_{j=0}^{1}(-1)^{j}\binom{5}{j}\left(7^{2-j}-1\right)=\left(7^{2}-1\right)-5(7-1)=48-30=18 .
\end{aligned}
$$

Thus we have the following theorem.
Theorem(4.2). A $[5,3,3]$ code C over $G F(7)$ has the following weight distribution.

Weight	Number of Words
0	1
3	60
4	120
5	162

On the other hand, a $[5,2,4]$ code C^{\perp} has the following weight distribution.

Weight	Number of Words
0	1
4	30
5	18

References

[1]. Pless, V. (2003) Introduction to the Theory of Error Correcting Codes, Wiley Student Edition, John Wiley \& Sons (Asia) Pte. Ltd., Singapore.
[2]. Hill, R. (1986) A First Course in Coding Theory, The Oxford University Press, Oxford, UK.
[3]. Huffman,W.C. and Pless,V. (2003) Fundamentals of Error Correcting Codes, Cambridge University Press, New York.

