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I. Introduction 
The concept of stability for functional equations arises when we replace the functional equation by an 

inequality which acts as a perturbation of the equation. In 1940, S. M. Ulam [11] asked the question concerning 

the stability of group homomorphisms. Next year Hyers [12] gave the first positive answer to the question of 
Ulam for Banach spaces. In 1978 Th.M. Rassias [13] provided a generalization of the Hyers theorem which 

allows the Cauchy difference to be unbounded. After this result many of mathematicians were attracted and 

motivated to investigate the stability problems of functional equations. In particular, the Stability probelems of 

different functional equations have been investigated in various spaces. 

Recently C.Park and D.Y.Shin[1] presented Hyers-Ulam Stability of a class of Quadratic, Cubic and 

Quartic functional equations in paranormed spaces. 

The functional equation  

)(16)()()3()3( xfyxfyxfyxfyxf    (1.1) 

is a quadratic functional equation and every solution of the quadratic functional equation is said to be a 
quadratic function. 

 The Functional equation 

  )(80)(15)(15)3()3(3 yfyxfyxfyxfyxf   (1.2) 

is a cubic functional equation and every solution of the cubic functional equation is said to be a cubic function. 

 In this paper, we investigate the Hyers-Ulam Stability of the Quadratic Equation (1.1) and Cubic 

equation (1.2) in Paranormed spaces. This paper is organized as follows: In Section 3, we prove the Hyers-Ulam 

stability of quadratic functional equation (1.1) in paranormed space. In Section 4, we prove the Hyers-Ulam 

stability of cubic functional equation (1.2) in paranormed space. 

 

II. Preliminaries 

Throughout this paper, we assume that  PX ,  is a Frechet space and that  ,Y  is a Banach Space. 

Definition 2.1 A Normed Space over K is a pair  ,V , where V is a vector space over K and 
 RV: , 

such that 

(i) 00  xiffx  

(ii) VvandKallforxx    

(iii) Vyxallforyxyx  ,  

 

Definition 2.2[1] Let X be a vector space. A paranorm ),0[: XP is a function on X such that  

(i) 0)0( P  

(ii) )()( xPxP   

(iii) )()()()( InequalityTriangleyPxPyxP   

(iv)       thenxxPwithXxandttwithscalarofsequenceaistIf nnnn ,0

  0 txxtP nn  holds. Then the pair ),( PX  is called a paranormed space. 
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Definition 2.3  

The Paranorm is called total if in addition we have P(x) = 0 implies x = 0  

 

Definition 2.4  

 The Frechet space is total and complete paranormed space. 

 

III. Hyers - ulam stability of quadratic functional equations 
In this section, we deal with the stability problem for the following quadratic functional equation in 

paranormed spaces. 

)(16)()()3()3( xfyxfyxfyxfyxf   

Theorem 3.1 

Let ,r be positive real numbers with 2r , and let XYf : be a mapping satisfying f(0) = 0 

and  

   rr
yxxfyxfyxfyxfyxfP  )(16)()()3()3(    (3.1) 

for all ., Yyx   Then there exists a unique quadratic mapping XYQ :2 such that  

  r

r
xxQxfP 

164

4
)()( 2


                  (3.2) 

for all .Yx  

Proof: 

Putting y = x in (3.1), we get 
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for all nonnegative integers m and l with m > l and for all .Yx  It follows from (3.3) that the sequence 

















n

n x
f

4
16 is a Cauchy sequence for all .Yx  Since x is complete, the sequence 

















n

n x
f

4
16 converges. So one can define the mapping XYQ :2 by 
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x
fxQ

4
16lim:)(2   (3.4) 

for all .Yx  

Moreover, letting l = 0 and passing the limit m in (3.3), we get (3.2). 
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It follows from (3.1) that 

 )(16)()()3()3( 22222 xQyxQyxQyxQyxQP   
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for all ., Yyx    

Hence 

)(16)()()3()3( 22222 xQyxQyxQyxQyxQ   

for all ., Yyx   and so the mapping XYQ :2 is quadratic. Now let XYT : be another quadratic 

mapping satisfying (3.2). Then we have 
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which tends to zero as n for all .Yx  So we can conclude that )()(2 xTxQ  for all .Yx  This 

proves the uniqueness of 2Q . Thus the mapping XYQ :2 is a unique quadratic mapping satisfying (3.2). 

Theorem 3.2 

 Let r be a real positive number with 2r , and let YXf : be a mapping satisfying f(0) = 0 and  

rr yPxPxfyxfyxfyxfyxf )()()(16)()()3()3(     (3.5) 

for all Xyx , . Then there exists a unique quadratic mapping YXQ :2 such that  

r

r
xPxQxf )(

416

4
)()( 2


                  (3.6) 

for all Xx  

Proof 
Letting y = x in (3.5), we get 

rxPxfxf )(2)(16)4(   

and so  
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  rxPxfxf )(
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for all .Xx  Similarly     
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for all nonnegative integers m and l with m > l and for all Xx . It follows from (3.6) that the sequence 
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for all .Xx  

Moreover, letting l = 0 and passing the limit m in (3.7), we get (3.6). 

It follows from (3.5) that 
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for all ., Xyx    

Thus 

)(16)()()3()3( 22222 xQyxQyxQyxQyxQ   

for all Xyx , and so the mapping YXQ :2 is quadratic. Now let YXT : be another quadratic 

mapping satisfying (3.6). Then we have 
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which tends to zero as n for all .Xx  So we can conclude that )()(2 xTxQ  for all Xx . This 

proves the uniqueness of 2Q . Thus the mapping YXQ :2 is a unique quadratic mapping satisfying (3.5). 

 

IV. Hyers – ulam stability of cubic functional equation 
In this section we prove the Hyers – Ulam stability of the following cubic functional equation in 

paranormed spaces. 

)(80)(15)(15)3()3(3 yfyxfyxfyxfyxf   

Theorem 4.1 

Let ,r be positive real numbers with 3r , and let XYf : be a mapping such that 

   rr
yxyfyxfyxfyxfyxfP  )(80)(15)(15)3()3(3        (4.1) 

for all ., Yyx   Then there exists a unique cubic mapping XYC : such that  

  r

r
xxCxfP 

3

1
)()(                   (4.2) 

for all .Yx  

PROOF: 

Putting y = 0 in (4.1), we get 
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for all nonnegative integers m and l with m > l and for all .Yx  It follows from (4.3) that the sequence 
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Moreover, letting l = 0 and passing the limit m in (4.3), we get (4.2). 

It follows from (4.1) that 
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Hence 

)(80)(15)(15)3()3(3 yCyxCyxCyxCyxC   

for all Yyx , and so the mapping XYC : is cubic. Now let XYT : be another quadratic mapping 

satisfying (4.2). Then we have 
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which tends to zero as n for all .Yx  So we can conclude that )()( xTxC  for all .Yx  

This proves the uniqueness of C . Thus the mapping XYC : is a unique cubic mapping satisfying (4.2). 

 

Theorem 4.2 

 Let r be a real positive number with 3r , and let YXf : be a mapping such that  

rr yPxPyfyxfyxfyxfyxf )()()(80)(15)(15)3()3(3    (4.4) 

for all ., Xyx   Then there exists a unique quadratic mapping YXC : such that  

r

r
xPxCxf )(

327

1
)()(


                  (4.5) 

for all Xx . 

Proof 
Letting y = 0 in (4.4), we get 

rxPxfxf )()(27)3(   

for all Xx and so  
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for all .Xx  Hence  
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for all nonnegative integers m and l with m > l and for all Xx . It follows from (4.6) that the sequence 
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is a Cauchy sequence for all .Xx  Since Y is complete, the sequence 
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Moreover, letting l = 0 and passing the limit m in (4.6), we get (4.5). 

It follows from (4.4) that 
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Thus 
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for all Xyx , and so the mapping YXC : is cubic. Now let YXT : be another quadratic mapping 

satisfying (4.5). Then we have 
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which tends to zero as n for all .Xx  So we can conclude that )()( xTxC  for all Xx . This 

proves the uniqueness of C . Thus the mapping YXC : is a unique cubic mapping satisfying (4.5). 
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