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Some Studies on Control Theory InvolvingSchrodinger Group 
 

Himani Garg, Kishore Chandra Pati 
 

Abstract: In this project we tried to cover the possible aspects of mathematical control theory, especially Left 

invariant optimal control on the very important physical Group \"Schrodinger Lie Group\". Here we tried to 

restrict our-selves only in the mathematical aspects, as a result we concluded thestability factors of 

Schrodinger Lie Group at various equilibrium states. However this group is related to many physical 

phenomenon, which are interesting to physicist .We hope our study will be lead to a small step towards such 

type of investigation. 

 

I. Introduction 
1 Some Terms Associated With Control Theory  

The theme of this chapter is to introduce some basic concepts and results related to Control theory 

which will be required latter. The rest two sections deals with control theory on a vector space .The particular 

sec-tion contains some de notions and results for control systems on a vector space. Whereas the last section 

provides an preface of geometric control theory. A description of control theory on a manifold is given. The 

chapter ends with some well-known results of control theory on Lie groups. A general exposition is given and 

some results without proofs are presented. Further details can be found in the cited references. 

 

1.1 Control System  

Let V be an n-dimensional vector space, called the state space, and let (xV) be a state vector. A control system 

on V is defined by 

 

 (1) 

Where the control functions u belongs to a class Uof admissible controls with values in a subset of R
m
 and f is 

continuously differentiable.It isprovided that sufficiently smooth control function (u U), is a solution of the 

system termed as a trajectory, and is determined. Such type of solution can be explained using the transition 

function. Specifically (t, t0, x0, u) denotes the state that results at time t if the system was in state x0 at time t0 

and the control u was applied. 

 

Definition the state z can bereached fromthe state x if and only ifthere is a trajectory of whose initial 

state is x and whose final state is z,that is , if there exist uϵU such that (𝑡𝑓  , 0 , 𝑥 , 𝑢)  =  𝑧. One can also say 

that x can be controlled to z. The controllable set at 𝑡1 is the set of initialstates that can be controlled to the 

origin in time 𝑡1 using an admissible control, that is, 

 

For some u. 
The controllable set C is the set of states that can be controlled to the origin in any finite time i.e, 

 

𝐶 = 𝑢𝑡1≥0𝐶(𝑡1) 

 

The system is called controllable at x if z can be controlled to x for all z V .Thereforeσ, is controllable at the 

origin if and only if C=V. 

If all initial states can be controlled to x for all x ∈ V , then the system is controllable. 

 

1.2 Linear Control Systems  

A linear control system is defined as 

 

Where𝐴(𝑛, 𝑛)𝑎𝑛𝑑 𝐵(𝑛, 𝑚)scalar matrices and the dimension of the state space are is n and the control u ∈ U, 

where U is the class of integrable functions of 𝑡. 
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We can de ne the exponential of a matrix by the using the definition ofinfinite series 

 

𝒆𝒙𝒑 𝑨 =
 𝑨𝒌 

𝒌
 

It follows that 𝑥0 ∈  𝐶(𝑡1) if and only if there is an admissible control 𝑢 ∈  𝑈. 

The following lemma shows some controllability equivalences for a linear system. 

 

Lemma 1.  If  σis a linear control system , then 

 

(i) State space(x) is controllable to another State space (z) iff  the origin 0 is controllable to 𝑧 −  𝑒𝑥𝑝(𝐴𝑡)𝑥. 
(ii) The Control system is controllable iff  the origin is controllable to 𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 𝑅𝑚 .  

 

Proof . (i) Note that x can be controlled to z that implies there exist an admissible control u U such that 

 

𝑧 =  exp(𝐴𝑡)(𝑥 + 𝑧  exp(𝐴𝑡)𝑥  
=  𝑒𝑥𝑝(𝐴𝑡)(𝑒𝑥𝑝( −𝐴) 

 

the origin can be controlled to 𝑧 −  𝑒𝑥𝑝(𝐴𝑡)𝑥by definition. 

 

Proposition:   𝐶(𝑡1)𝑎𝑛𝑑 𝐶 are both symmetric and convex. 

 

Example:  Consider the linear system given by the following state equations 

𝑥1  =  𝑥1  +  𝑢 , 𝑥2  =  𝑥2  +  𝑢  

where 𝑢 ∈  𝑈 and the matrices 𝐴 𝑎𝑛𝑑 𝐵 are given by 

 

    ,      

 

 

so we have that 𝑥 = (𝑥1 , 𝑥2) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐶(𝑡1) if  

 

  

  

 

. 

 

Therefore, 𝐶(𝑡1) is the closed diagonal segment  

 

 
and C is the open diagonal segment  

 

 
 

In general, it would be impossible to control both components simultaneously with identical controls. To 

control both components using the same control, the initial deviation of the component must be equal. 

 

To get controllability there are two necessary conditions on the controllable set, namely it must have full 

dimension and be bounded. 

 

2.2 Relation between Lie group and its Lie algebra  

In the general theory it has been shown that the structure (vector space) of the Lie algebra of a Lie 

group is isomorphic to the tangent space at the identity element of the Lie group. Consider in 𝐺𝐿 (𝑛, 𝐶) a 
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subset ofoperators depends onto a real parameter t and satisfies𝐴(0)  =  1, where 1 is the identity operator on 

the given vector space V. Now we can consider the tangent vector at 𝑡 =  0 with the aid of Taylor's expansion 

of 𝐴(𝑡) upto first order term. 

𝐴(𝑡)  =  𝐴(0)  +  𝑁(𝑡)  +  𝑂(𝑡2) 

 

Where N determines the derivative of 𝐴(𝑡) 𝑎𝑡 𝑡 = 0. 
 

Hence these linear operators N obtained by this way are the elements of Lie algebra 𝑜𝑓 𝐺𝐿(𝑛, 𝐶). With the 

help of the basis elements 𝑘1;  𝑘2; ∶: : ;  𝑘𝑛  these operators can be represented by 𝑛 ×  𝑛 matrices say 𝑛𝑖𝑗  .On 

consideration of all possible smooth curves through the unit element of the group, we will be having a vector 

space of the Lie algebras whose dimension will be 𝑛2 consisting of 𝑛 × 𝑛 matrices. Now in order to obtain the 

Lie bracket of the elements i.e. for( 𝑀, 𝑁)   ∈  𝑁(𝑛;  𝐶), assume the group commutator: 

𝐶(𝑡)  =  𝐴 𝑡 𝐵 𝑡 𝐴−1 𝑡 𝐵−1(𝑡) 

 

 

Here 𝐴  0 = 𝑀 and 𝐴  0 = 𝑁represents the tangent vectors of 𝐶(𝑡).After a very simple calculation we will 

be having the following result: 

 

 𝑀, 𝑁 =  𝑀𝑁 −   𝑁𝑀 

 

It can be easily seen they both can be easily achieved by using exponential mapping. 

 

II. Schrodinger Group 
The Schrodinger group for one dimensional particle is given by : 

 

 

where the particle has to be described by the wave function which is given by as it satisfies the 

above equation. 

It ha s already proven that the Schrodinger equation is invariant under conformal coordinate transformations 

 

 

 
 

Hence as a result it forms a group known as Schrodinger group, whose basis elements are given by: 

 

 
 

Now using the Exponential mapping we can obtain the Schrodinger Lie Algebra from the group. Also it can 

be very easily seen that the basis elements for this Schrodinger Group also satisfies all the properties of Lie 

Bracket. Hence they form a algebra. The commutation table for the elements of Schrodinger Lie algebra is 

given by:   
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III. Left-Invariant Control Problem on the Schrodinger Group 
In this section we are considering the left invariant control affine system on Schrodinger Lie Group. 

Here we are showing that any left invariant control problem can be lifted to a Hamiltonian system on the dual 

of Schrodinger lie algebra. Also here we are deriving the reduced Hamiltonian equations associated with 

extremal curves obtained by describing Lie-Poisson structure on dual space of Schrodinger Lie algebra. 

 

Theorem: The constants of structure of the Schrodinger Lie algebra aregiven by: where 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6 

is the canonical basis of Schrodinger Lie algebra, i.e.: 

 

Then we have successively: 

 

[𝐴1 , 𝐴1]  =  𝑐11
𝑘 𝐴𝑘  

 
𝑐11

1  =  𝑐11
2  =  𝑐11

3 =  𝑐11
4  =  𝑐11

5  =  𝑐11
6  =  0 

 

[𝐴1, 𝐴2]  =  𝑐12
𝑘 𝐴𝑘  

 
𝑐12

1 =  𝑐12
2  =  𝑐12

3  =  𝑐 12 
4  =  𝑐12

5  =  𝑐12
6  =   2 

 

[𝐴1;  𝐴3]  =  𝑐13
𝑘 𝐴𝑘  

 
𝑐13

1  =  𝑐13
2  =  𝑐13

3  =  𝑐13
4  =  𝑐13

5  =  𝑐13
6  =  1 

[𝐴1, 𝐴4]  =  𝑐14
𝑘 𝐴𝑘  

 
𝑐14

1 =  𝑐14
2  =  𝑐14

3  =  𝑐14
4  =  𝑐14

5  =  𝑐14
6  =  0 

 
[𝐴1, 𝐴5]  =  𝑐15

𝑘 𝐴𝑘  
 

𝑐15
1  =  𝑐15

2 =  𝑐15
3  =  𝑐15

4  =  𝑐15
5  =  𝑐15

6  =  1 
 

[𝐴1, 𝐴6]  =  𝑐16
𝑘 𝐴𝑘  

 
𝑐16

1  =  𝑐16
2  =  𝑐16

3  =  𝑐16
4  =  𝑐16

5  =  𝑐16
6  =  0 

 
[𝐴2, 𝐴2]  =  𝑐22

𝑘 𝐴𝑘  
 

𝑐22
1  =  𝑐22

2  =  𝑐22
3  =  𝑐22

4  =  𝑐22
5  =  𝑐22

6  =  0 

 

[𝐴2, 𝐴3]  =  𝑐23
𝑘 𝐴𝑘  

 

𝑐23
1  =  𝑐23

2  =  𝑐23
3  =  𝑐23

4  =  𝑐23
5  =  𝑐23

6  =   2 
 

 𝐴2, 𝐴4  =  𝑐24
𝑘 𝐴𝑘  

𝑐24
1  =  𝑐24

2  =  𝑐24
3  =  𝑐24

4  =  𝑐24
5  =  𝑐24

6  =  1 
 

[𝐴2, 𝐴5]  =  𝑐25
𝑘 𝐴𝑘  

 
𝑐25

1  =  𝑐25
2  =  𝑐25

3  =  𝑐25
4  =  𝑐25

5  =  𝑐25
6  =   1 
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[𝐴2, 𝐴6]  =  𝑐26

𝑘 𝐴𝑘  
 

𝑐26
1  =  𝑐26

2  =  𝑐26
3  =  𝑐26

4  =  𝑐26
5  =  𝑐26

6  =  0 
 

[𝐴3, 𝐴3]  =  𝑐33
𝑘 𝐴𝑘  

 
𝑐33

1 =  𝑐33
2  =  𝑐33

3  =  𝑐33
4  =  𝑐33

5  =  𝑐33
6  =  0 

 
[𝐴3, 𝐴4]  =  𝑐34

𝑘 𝐴𝑘  
 

𝑐34
1 =  𝑐34

2  =  𝑐34
3  =  𝑐34

4  =  𝑐34
5  =  𝑐34

6  =  1 
 

[𝐴3, 𝐴5]  =  𝑐35
𝑘 𝐴𝑘  

 
𝑐35

1 =  𝑐35
2  =  𝑐35

3  =  𝑐35
4  =  𝑐35

5  =  𝑐35
6  =  0 

 
[𝐴3, 𝐴6]  =  𝑐36

𝑘 𝐴𝑘  
 

𝑐36
1  =  𝑐36

2  =  𝑐36
3  =  𝑐36

4  =  𝑐36
5  =  𝑐36

6  =  0 
 

[𝐴4, 𝐴4]  =  𝑐44
𝑘 𝐴𝑘  

 
𝑐44

1  =  𝑐44
2  =  𝑐44

3  =  𝑐44
4 =  𝑐44

5  =  𝑐44
6  =  0 

 
[𝐴4, 𝐴5]  =  𝑐45

𝑘 𝐴𝑘  
 

𝑐45
1 =  𝑐45

2  =  𝑐45
3 =  𝑐45

4 =  𝑐45
5  =  𝑐45

6  =  1 
 

[𝐴4, 𝐴6]  =  𝑐46
𝑘 𝐴𝑘  

 
𝑐46

1  =  𝑐46
2  =  𝑐46

3  =  𝑐46
4  =  𝑐46

5  =  𝑐46
6  =  0 

 
[𝐴5, 𝐴5]  =  𝑐55

𝑘 𝐴𝑘  
 

𝑐55
1 =  𝑐55

2  =  𝑐55
3  =  𝑐55

4  =  𝑐55
5  =  𝑐55

6  =  0 
 

[𝐴5, 𝐴6]  =  𝑐56
𝑘 𝐴𝑘  

 

𝑐56
1 =  𝑐56

2  =  𝑐56
3  =  𝑐56

4  =  𝑐56
5  =  𝑐56

6  =  0 

 

 

[𝐴6, 𝐴6]  =  𝑐66
𝑘 𝐴𝑘  

 
𝑐66

1  =  𝑐66
2  =  𝑐66

3  =  𝑐66
4 =  𝑐66

5  =  𝑐66
6  =  0 

 
As a consequence we obtain: 

 

Theorem:  The minus Lie-Poisson structure on dual of Schrodinger Lie algebra is given by the matrix: 
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Remark .  It is easy to see that the function C given by 

 

𝐶(𝑃1;  𝑃2;  𝑃3;  𝑃4;  𝑃5;  𝑃6)  =  𝑃1𝑃2𝑃3𝑃4𝑃5𝑃6  

 

is a Casimir of our configuration   : 

 
 

Theorem : There exist the following two types of controllable drift-free leftinvariant systems on Schrodinger 

Lie Group, namely 

 
𝑋  =  𝑋. (𝐴1𝑢1  +  𝐴2𝑢2  +  𝐴3𝑢3  +  𝐴4𝑢4  +  𝐴5𝑢5  +  𝐴6𝑢6) 

𝑎𝑛𝑑 
𝑋  =  𝑋. (𝐴1𝑢1  +  𝐴2𝑢2  +  𝐴3𝑢3  +  𝐴4𝑢4  +  𝐴5𝑢5) 

 

 

Proof : 

The proof is a consequence of the Table 1 and Chow's theorem. 

 

IV. An optimal control problem on Schrodinger Lie Group 
 

Let  

(𝑐1;  𝑐2;  𝑐3;  𝑐4;  𝑐5;  𝑐6 >  0) be the cost function. Then the problem which we intend to solve is the following: 

𝑓𝑖𝑛𝑑 𝑢1;  𝑢2;  𝑢3;  𝑢4;  𝑢5;  𝑢6 that minimize J and steer the above system from  =  0 𝑎𝑡 𝑡 =  0 𝑡𝑜 𝑋 =
 𝑋𝑓  𝑎𝑡 𝑡 =  𝑡𝑓  . We have the following results: 

 

Theorem : The optimal controls of the above problem for our system aregiven by 

𝑢1  =
𝑃1

𝑐1
,𝑢2  =

𝑃2

𝑐2
,𝑢3  =

𝑃3

𝑐3
,𝑢4  =

𝑃4

𝑐4
,𝑢5  =

𝑃5

𝑐5
, 𝑢6  =

𝑃6

𝑐6
 

 

 

Where𝑝𝑖
′𝑠 are the solution given by: 

 

 
 

Proof. 
 

Let us take the extended Hamiltonian H given by: 

 

𝐻 =  𝑃1𝑢1  +  𝑃2𝑢2  +  𝑃3𝑢3  +  1\2 (𝑐1𝑢1
2  +  𝑐2𝑢2

2  +  𝑐3𝑢3
2  +  𝑐4𝑢4

2  +  𝑐5𝑢5
2  +  𝑐6𝑢6

2) 
 

Then using the maximum principle, we have the conditions: 
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which lead us to: 

 

 
 

and so the reduced Hamiltonian (or the optimal Hamiltonian) is given by: 

 

 
 

It follows that the reduced Hamilton equations have the following expressions: 

 

 
 

as required. It is easy to see that the reduced Hamilton's equations can be put in the equivalent form: 

 
 

Theorem :. The controls𝑢1;  𝑢2; … . 𝑢𝑛are given by sinusoidal s, more exactly 

 

 
 

Proof: 

Let us assume that 
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On substituting these values in Reduced Hamiltonian system of equation, the equation becomes: 

 

 

 
 

For the convenience of the proof let us assume 

 

 
 

such that we have: 

 

 
 

now on simplifying we have:  

 

 
 

as a result we obtain the solutions given by : 
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V. Stability associated with Lie Groups 
 

Stability associated with Schrodinger Lie Algebra  
 

We investigate the stability nature of the dynamical system shown above,the equilibrium states are 

 

 
 

here, 𝑀 ∈ 𝑅(0) and the origin (0, 0, 0,0,0,0). 
 

Proposition 
 

The equilibrium state 𝑃𝑀1
𝑒  =  (𝑀;  0;  0;  0;  0;  0) has the following behavior: 

1. If k(constant) is positive, then state is non linearly stable.  

2. If k(constant) is negative, the state is not stable. For all 𝑐1 , 𝑐2, 𝑐3 , 𝑐4, 𝑐5 , 𝑐6 the equilibrium state is unstable:  

 

Proof: For calculating the Eigen values of the derived dynamical system we have to obtain the linearization 

matrix which is actually the Jacobian matrix of the dynamics of the system. That is, we have 𝑷 = 𝑭(𝑷) , so 

matrix of the linearization is the Jacobian of F is given by : 

 

 

 

 

Thus The matrix of the linearization of the system at Pe
M

 1 is 

 

 
 

Hence by using the various properties of stability and energy Casmir functions the above results have been 

proved. 

Similarly for another equilibrium states following results have been obtained. 

 

Proposition. The equilibrium 𝑠𝑡𝑎𝑡𝑒𝑃𝑒
𝑀2  =  (0;  𝑀; 0; 0; 0; 0) has the following behavior: 

1. If 𝑐1𝑐3 ≤ 𝑐2
2 , then state is not linearly stable.  

 

2. if 𝑐1𝑐3 ≥ 𝑐2
2 , the state is non linearly stable.  
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Proposition. The equilibrium 𝑠𝑡𝑎𝑡𝑒 𝑃𝑒
𝑀3  =   0; 0;  𝑀; 0; 0; 0 , 𝑃𝑒

𝑀4  =   0; 0; 0;  𝑀; 0; 0 𝑎𝑛𝑑 𝑃𝑒
𝑀5  =

 (0;  0;  0;  0;  𝑀;  0) are non linearly stable.
 

 

VI. Conclusion 
In this project we tried to cover the possible aspects of mathematical control theory, especially Left 

invariant optimal control on the very important physical Group "Schrodinger Lie Group". Here we tried to 

restrict our-selves only in the mathematical aspects, as a result we concluded the stability factors of 

Schrodinger Lie Group at various equilibrium states. However this group is related to many physical 

phenomenon, which are interesting to physicist .We hope our study will be lead to a small step towards such 

type of investigation. 
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