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Abstract:. In this paper, we introduce a dual purely Rickart modules as a dual concept of purely Rickart 

modules and a proper generalization to dual Rickart modules. Some characterizations are studied. It's shown 

that a ring R is dual purely Rickart if and only if R is von Neumann regular ring if and only if R is d-Rickart 

ring. Also, a ring R is a dual purely Rickart ring if and only all R-modules are dual purely Rickart module. In 

principal right ideal ring R, a ring R is a field if and only if all R-modules are dual purely Rickart. 

Furthermore, we give a counter example to show that the endomorphism ring of the dual purely Rickart module 

is not necessarily dual purely Rickart ring. More than, the relation among known modules and dual purely 

Rickart modules are investigated.   
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I. Introduction 
A. Hattori, in [4], introduced the right PP (equiv., Rickart[7]) if every principle right ideal is projective 

(the right annihilator in R of every single element in R is generated by idempotent element). G. Lee, S. T. Rizvi 

and C.Roman in [5] studied the Rickart modules. A module M is Rickart if the right annihilator in M of each 

single element in S is generated by idempotent element of S. The same authors in [6], introduced dual Rickart 

modules. A module M is dual Rickart if the image in M of any single element α of S = EndR(M) is generated by 

an idempotent of S.  
A ring R is von Neumann regular if and only if every principle right ideal is pure [3] (An ideal I of a 

ring R is right (left) pure in R if for each element a∈I there is b ∈ I such that a= ab(ba)[2]). Following [3], a 

submodule N a module M is pure if and only if the sequence 0→ N⨂E → M⨂E is exact for all left R-modules 

E [3]. From the same, a module is Von Neumann regular module if every submodule of M is pure. The authors 

in [1], introduced purely Rickart module. A module M is purely Rickart if the right annihilator in M of every 

single element of S = EndR(M) is pure in M. In this work, we introduce the concept of dual purely Rickart 

module as a dual concept to purely Rickart modules and as a proper generalization to dual Rickart modules. A 

module is called dual purely Rickart (shortly, d-purely Rickart) if the image of each single element α of S = 

EndR(M), is pure in M. Also, we will introduce a relatively d-purely Rickart and using it to get useful properties 

of d-purely Rickart modules. Finally, recall that a module M satisfies the C2 (respectively D2)-condition if for 

any submodule A of M with A ≅ L≤⨁M (resp. 
M

A
≅ L ≤⨁ M), then A ≤⨁M [8]. We give a purely C2 as a 

generalization to this concept. A module M satisfies the purely C2 condition if A ≅ L≤⨁M, then A≤p  M. It's 
clear that, every d- purely Rickart module satisfies the purely C2.  

Throughout this paper, R will denotes associative ring with identity and all modules will be unitary 

right R-modules with S= EndR(M) is the ring of all endomorphism of M. Then M is right R- left S-module. The 

samples ≤, ⊴, ≤⨁, ⊴⨁, ≤e  and ◘ refer to submodule, fully invariant submodule,direct summand, fully invariant 
direct summand, essential submodule and end the proof.         

 

II. Dual purely Rickart modules 
We introduce the following definition:  

Definition 2.1. Let M be a right R-module and S = EndR(M). Then M is said to be dual-purely Rickart (shortly, 

d-purely Rickart) module if the image in M of any single element of S is pure in M (in sense of Cohn). That is 

for each α ∈ S, Imα ≤p  M. A ring R is right (left) d-purely Rickart if RR (RR) is d-purely Rickart module. 
 

Remarks and examples 2.2. 

1. Every von Neumann regular module and hence semisimple module is d-purely Rickart module. Note that 

the Z-module Q is d-purely Rickart (where EndR(Q) is a division ring) which is neither semisimple nor 

regular module, where Z is neither direct summand nor pure submodule in Q.  

2.  Zp as Z-module for each prime integer p is d-purely Rickart module while in general, the Z-module Zpn  is 

not d-purely Rickart module for each prime integer p and n∈ ℕ (ℕ is a Neutral numbers). In particular, the 

Z-module Z4 is not d-purely Rickart. In fact, there is a homomorphism α ∈ S = EndR(Z4) such that α(0 ) = 
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α(2 ) = 0  and α(1 ) = α(3 ) = 2 . It's well known that α is well define and homomorphism. So Imα =  0 , 2   is 

not pure submodule in Z4. Also, the Z-module Z is principle ideal ring of the form nZ, but for each 0 ≠ n ∈ 

Z, nZ is not pure in Z. Hence the Z-module Z is not d-purely Rickart (see Proposition (2.3)).   

3. Every d-Rickart module is d-purely Rickart modules. But the converse is not true in general. In fact, the 

ring R =  Z2
∞
n=1  is von Neumann regular [6, Example 2.28] and so R is d-purely Rickart ring (see 

Corollary (2.4)). Hence   the module M = R(R) is d-purely Rickart module (see Proposition 3.9). But M is 

not d-Rickart module [6, Example 3.9].   

4. If M ≅ N with M is a d-purely Rickart module, then so is the module N. 

Proof. Suppose that M ≅ N with M is a d-purely Rickart module. Let S = EndR(M) and H = EndR(N). 

Hence there is an isomorphism ψ : S → H such that ψ(λ) = αλα-1 where α : M → N is an isomorphism  and 

λ∈ S. Now, let β be an arbitrary element in H. Then β(N) = ψ(μ)(N) for some μ ∈ S. Then β(N) = (αμα-

1)(N) = α(μ(M)). But μ(M) ≤p M where M is d-purely Rickart, hence β(N) = α(μ(M)) ≤p N where α is an 
isomorphism. ◘  

Firstly, the next result gives a new characterization to d-purely Rickart ring  

 

Proposition 2.3. A ring R is right (left) d-purely Rickart if and only if every principle right (left) ideal is pure in  

R if and only if every principle right (left) ideal is a direct summand of R.  

 

Proof. Let I = aR be a principle right ideal in a right d-purely Rickart ring R. Then there is an epimorphism α : 

R→R such that α(r) = ar for each r ∈ R. So, aR = Imα ≤pR. Conversely, for all a ∈ R, aR is principle right 

ideal. By hypothesis, aR is a pure right ideal in R. Hence R is regular ring and so R is d- Rickart[6]. Therefore R 

is purely Rickart ring. The last statement follows from ([3, Theorem (2.1), Ch.3]). ◘ 

     It's known that a ring R is von Neumann regular if and only if every principle right (left) ideal is pure [3, 
Theorem 2.1, Ch.3]. Following [6, Remark 2.2], RR is d-Rickart module if and only if R is a von Neumann 

regular ring. From this fact and as a corollary to Proposition (2.3)), the following corollary is an obvious. 

 

Corollary 2.4.  The following conditions are equivalent for a ring R: 

a. R is a d-purely Rickart ring; 

b. R is a von Neumann regular ring; 

c. R is a d-Rickart ring. 

 

      In general, the purely Rickart modules and d-purely Rickart modules are different. In fact the Z-module Z is 

purely Rickart which is not d-purely Rickart while ZP∞  is d-purely Rickart Z-module which is not purely 

Rickart Z-module. It's well known that every regular ring is Rickart and hence is purely Rickart ring, so we 
have the following remark 

 

Remark 2.5. Every d-purely Rickart ring is purely Rickart but not conversely. In fact, the ring of integers Z is 

purely Rickart [1] which is not d-purely Rickart.   

     We mention that every semisimple ring is d-purely Rickart but the converse is not true in general. Here we 

give a condition under which semisimple and d-purely Rickart rings are equivalent. Before that, a ring R is 

principle right ideal (simply, pri) if every right ideal in R is principle.  

 

Corollary 2.6. A ring R is right semisimple if and only R is a d-purely Rickart and pri ring. 

⟹) Let I be a right ideal in R, by hypothesis, I = eR for some e2 = e ∈ R. Hence R is pri and I ≤pR . Thus by 
Proposition (2.3), R is right d-purely Rickart ring and pri. 

⟸) Let I be a right ideal in I. By hypothesis and Proposition (2.3), R is a right semisimple ring. ◘    

 

      Recall that a right R-module M is an epi-retractable if every submodule of M is a homomorphic image of M 

[3]. Indeed, the Z-module Z is epi-retractable which is not regular module. We assert that every regular module 

is d-purely Rickart but the converse is not true in general. The following result answer when the converse is 

true. 

 

Proposition 2.7. Let M be an epi-retractable module. Then M is d-purely Rickart module if and only if M is 

von Neumann regular module   

 
Proof. Suppose that M is a d-purely Rickart module and N ≤ M. Since M is an epi-retractable module, then N = 

α(M) for some α ∈ S = EndR(M). By hypothesis, M is a d-purely Rickart module, then N = α(M) ≤pM. 

Therefore, M is a von Neumann regular module. Conversely, follows from the Remarks and examples (2.2(1)).  

◘ 
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        The Z-module Q is d-purely Rickart which is not epi-retractable module(since HomZ(Q, Z) = 0) 
and not regular module(since Z is not pure submodule of Q). 

        The proof of the following corollary follows from Proposition (2.7) and [1, Remarks and examples 

(2.2(4))] 

 

Corollary 2.8. If a module M is an epi-retractable and d-purely Rickart then M is purely Rickart module. 

       Recall that an exact sequence of right R-modules 0 → N → M → F→ 0 is pure if and only if for every left 

R-module D, the sequence 0 → N⨂D →M⨂D → F⨂D → 0 is an exact [3]. 
 

Proposition 2.9. A module M is d-purely Rickart if and only if the short exact sequence  

₤: 0 → Imα → M → 
M

Im α
 → 0 

is pure for each α ∈ S = EndR(M) . 

 

Proof. The short exact sequence ₤ is pure if and only if Imα ≤p  M for each α ∈ S and hence if and only if M is 

d-purely Rickart module. ◘ 

 

Corollary 2.10. A module M is d-purely Rickart if and only if 
M

Im α
 is a flat submodule of M for each α ∈ S = 

EndR(M). 

 

Proof. ⇐) Following [3, Ch.1, Theorem 1.7] and Proposition (2.9). 

⇒) Following [3, Ch.1, Corollary p.13] and Proposition (2.9).  ◘  

 
Corollary 2.11.  In a regular ring, every R-module is d-purely Rickart. 

 

Proof. For each α ∈ S = EndR(M), since 
𝑀

𝐼𝑚𝛼
 can be considered as an R-module, then  

𝑀

𝐼𝑚𝛼
 is flat R-module since 

R is a regular ring [3, Ch.3, p.58]. Hence Imα ≤𝑝M [3, Ch.1, Theorem 1.7]. ◘  

     Recall that a module M is morphic if 
𝑀

𝐼𝑚𝛼
≅ kerα for each α ∈ S = EndR(M) [9]. From the fact, every module 

isomorphic to a flat module is a flat, the proof of the following corollary is clear.  
 

Corollary 2.12. Let M be a morphic module. Then M is a d-purely Rickart module if and only if kerα is flat in 

M for each α ∈ S = EndR(M). 

       From [3, Ch.3, Theorem 4.2] in an exact sequence 0 → P → Q → F → 0 with P finitely generated and Q 

projective , P is pure if and only if P is a direct summand. We have the following lemma 

 

Lemma 2.13. Let M be a noetherian and projective module, then the short exact sequences ₤: 0 →Imα →M → 
𝑀

𝐼𝑚𝛼
→ 0 for each α ∈ S = EndR(M), is pure if and only if ₤ splits. 

Proof. Since M is noetherian module, then Imα is finitely generated submodule of M [5, Proposition 1.16]. So, 

Imα ≤𝑝  M if and only if Imα ≤⨁M [3, Ch.3, Theorem 4.2]. Therefore ₤ is a pure exact sequence if and only if ₤ 
splits. ◘ 

 

Corollary 2.14. Let M be a noetherian and projective module. Then M is a d-purely Rickart if and only if M is 

a d-Rickart module.  

      Recall that an R-module N is pure-injective if and only if any pure exact sequence 0 →N → M splits [2]. 

The following proposition shows that the properties of d-purely Rickart and d- Rickart module M are equivalent 

if Imα is a pure-injective submodule of M for each α ∈S = EndR(M). 

 

Proposition 2.15. Let M be a module and S = EndR(M). If Imα is pure-injective submodule of M, then M is d-

purely Rickart module if and only if M is d-Rickart module. 

 

Examples 2.16.  

1. The Z-module Zn is d-purely Rickart if and only if its d-Rickart for each n ∈ N. In particular, Z4 and Z12 are 

not d-purely Rickart. 

Proof. Zn as Z-module is pure injective since every finite module is pure injective, and then Imα for each 

α∈S is pure injective for each n∈N. By Proposition (2.15), the proof is complete.   
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2. It's well known that 𝑍𝑃∞ is injective as Z-module and hence is pure-injective. Furthermore, for each α ∈ S 

= EndR(𝑍𝑃∞), Imα = α(𝑍𝑃∞) = 𝑍𝑃∞ is pure- injective, hence 𝑍𝑃∞ satisfies the Proposition (2.15). 
 

      Recall that a module M is a pure simple if the only pure submodules of M are the trivial submodules [3]. A 

module M is pure split if every pure submodule of M is a direct summand [2]. 

 

Proposition 2.17. Let M be a pure simple (resp. pure split) module. Then, the module M is a d-purely Rickart if  

We can summarize the conditions under which the concepts of d-purely Rickart modules and d-Rickart modules 

are equivalent. 

Proposition 2.18. A module M is d-Rickart if and only if M is d-purely Rickart such that one of the following 

conditions holds: 

1. 
𝑀

𝐼𝑚𝛼
 is a flat submodule of M for each α ∈ S = EndR(M); 

2. M is a noetherian and projective module; 

3. M is a pure simple (resp. pure split) module; 

4. Imα is a pure-injective submodule of M for each α ∈ S = EndR(M). 
 

Proposition 2.19. A module M is d-purely Rickart and pure simple if and only if every nonzero endomorphism 

α ∈ S = EndR(M) is an epimorphism and M is pure split. 

Proof. It's well known that every pure simple is pure split. Now, Let (0 ≠)α ∈ S = EndR(M). By hypotheses, M is 

d-purely Rickart module, then Imα ≤𝑝  M. But M is a pure simple, so Imα = α(M) = M. Hence α is an 

epimorphism.  Conversely, let α ∈ S, so α(M) = M. Hence Imα ≤𝑝M and then M is d-purely Rickart module. 

Furthermore, if (0≠) N ≤𝑝  M, then N ≤⨁ M. Hence (0≠) jρ ∈ S is an epimorphism, where ρ: M → N is the 
projection and j: N→M is the injection. But M = jρ(M) = N. Therefore, M is pure simple. ◘ 

 

Remarks 2.20.  
1. From the proof of Proposition (2.19), one can show that the condition "pure split" is not necessary to prove 

M is d-purely Rickart module. For example, M=𝑍𝑃∞  as Z-module is d-purely Rickart which is not pure 

split but every nonzero endomorphism of S = EndR(M) is an epimorphism.  

2. There is a d-purely Rickart module not pure simple has a nonzero endomorphism which is not 

epimorphism. In fact, the Z-module Z6 is semisimple module and hence is d-purely Rickart module but 

there is a homomorphism (0≠) α: Z6 →Z6 such that α(Z6) ={0 , 2 , 4 } is not epimorphism. 

      Endomorphism ring of d-purely Rickart module needed not domain. In fact, the Z-module 
𝑄

𝑍
≅ ⨁𝑍𝑃∞ . Now, 

𝑄

𝑍
 is d-purely Rickart module since it is d-Rickart [6, Example 2.3]. But EndZ(⨁𝑍𝑃∞ ) has an infinite set of 

nonzero orthogonal idempotent elements, so EndZ(⨁𝑍𝑃∞ ) is not indecomposable ring. Hence EndZ(⨁𝑍𝑃∞ ) is 
not domain. 

Endomorphism ring of d-Rickart module is domain if M is an indecomposable [6, Proposition (4.4)]. Here we 

prove that 

 

Corollary 2.21. If M is a d-purely Rickart module and pure simple then S = EndR(M) is a domain. 

Proof. Suppose that αβ = 0 for each α and β ∈ S. If β = 0, then there is nothing to prove. Suppose β ≠0, then by 

Proposition (2.19), β(M) = M. That is 0= αβ(M) = α(M). Thus α = 0. Therefore S is a domain. ◘ 

 

Corollary 2.22. Let M be an epi-retractable module. If M is a d-purely Rickart and pure simple module then S 

= EndR(M) is a division ring. 

 
Proof. From Proposition (2.19), every nonzero endomorphism of M is an epimorphism. But M is an epi-

retractable module, so by [3, Corollary 3.6] S is a division ring.   

         The converse of Corollary (2.21) is not true in general. In fact, the ring of integers Z is domain and hence 

is pure simple but by (Remarks and examples (2.1(2)), Z is not d-purely Rickart. Also, the Z-module Z is epi-

retractable and pure simple which is not d-purely Rickart. One can easily show that EndR(Z) ≅ Z is not division 

ring. Indeed, Zp⨁ Zp  is d-purely Rickart since its semisimple Z-module. But EndZ(Zp⨁ Zp) is not division 

ring[6].  

          Recall that a module M is faithful if and only if annR(M) = 0 and M is divisible module if M = rM for 

each right nonzero-divisor element r ∈ R [12, p.32]. In a domain R, a module M is torsion free whenever mr = 0 

then r = 0 for each m ∈ M and r ∈ R [12, p.34]. 
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Corollary 2.23. Let M be a faithful and pure simple module. If M is a d-purely Rickart module, then M is a 

divisible. 
 

Proof. Let (0≠) a ∈ R and α: M → M defined by α(x) = xa for all x ∈ M. So, α is a homomorphism since M 

faithful, then α is well-defined. It's clear that Imα = Ma. By Proposition (2.19), α is an epimorphism and hence 

Ma = Imα = M. Therefore M is divisible. ◘ 

 

Corollary 2.24. Let M be an indecomposable faithful module. If M is a d-Rickart module, then M is divisible. 

It's well known that if a module M is divisible and torsion free over commutative domain then M is an injective 

module [12, Proposition 2.7, p.34], from this fact and Proposition (2.19),one can prove the following corollary.  

Corollary 2.25. Let M be a pure simple and torsion free over commutative domain R. If M is a d-purely Rickart 

module, then M is an injective module.  

             Note that the Z-module Z is pure simple and torsion free over commutative domain Z but Z is not d-
purely Rickart and not injective module, while the Z-module Q is pure simple and torsion free and d-purely 

Rickart over commutative domain Z, hence it is injective.  

The authors in [1] defined the following condition (let us called purely D2) for each N ≤ M if  
𝑀

𝑁
 ≌ L≤⨁ M then 

N ≤𝑝M. Every purely Rickart module satisfies the purely D2 condition [1]. Here we will introduce purely C2 

condition which can be considered as a dual concept to purely D2 condition. 

 

Definition 2.26. A module M is said to be satisfying the purely C2 condition if for any submodule B ≅ A≤⨁M 

then B ≤𝑝  M. 

 

Remark 2.27. 

1. The class of all modules satisfies the C2-condition contained in the class of the modules which satisfies the 

purely C2-condition. 
2. Every regular modules satisfies the purely C2-condition. 

3. The Z-module Z does not satisfy the purely C2 condition. In fact, the Z-submodule 2Z ≅ Z ≤⨁ Z but 2Z is 

not pure in Z. 
The following proposition is dual to [1, Proposition 2.12]. 

 

Proposition 2.28. Every d-purely Rickart module satisfies the purely C2 condition. The converse is true if Imα 

≅ A ≤⨁M for each α ∈ S = EndR(M). 
 

Proof. Let M be a module and A and B are submodules of M. Let α : A → B be an isomorphism and A≤⨁M. 
Then α can be extended to jαρ: M → M where ρ: M → A be the projection and j: B → M be the injection. So 

Im(jαρ) ≤p M since M is a d-purely Rickart module. But Im(jαα) = jαρ(M) = α(A) = B ≤pM. So, M satisfies the 

purely C2-condition. The converse is an obvious since every direct summand submodule is pure and by putting 

Imα = B for each α ∈ S = EndR(M), the proof is complete. ◘ 

  Consider the condition (*): for any N≤M if  
M

N
 ≌ L≤p  M. If a module M satisfies the condition (*), then 

N≤pM.  Then M satisfies the purely D2 condition. 

 

Proposition 2.29. Let M be a module and S= EndR(M). Then the following conditions hold:  
1. If M is a d-purely Rickart module satisfies the condition (*), then M is purely Rickart module. 

2. If M is a d-Rickart module satisfies the purely D2, then M is purely Rickart module. 

3. If M is a Rickart module satisfies the purely C2, then M is d-purely Rickart module. 

 

Proof. 1. Let α ∈ S, since M is d-purely Rickart module, then Imα ≤pM. But  
M

ker α
 ≅ Imα ≤pM, so by (*)-

condition, kerα≤p  M. Hence M is purely Rickart module. 

 

3. Similar to proof (1). 

4. Let β ∈ S, since M is a Rickart module, then kerβ ≤⨁ M. Now, Imβ ≅
M

ker α
 ≅ L≤⨁ M, so by purely C2 

condition, Imβ≤pM. Therefore, M is d-purely Rickart module. ◘          

At the end of this section, recall that the endomorphism ring of Rickart module is right Rickart [5] and 

the endomorphism ring of d- Rickart module is left Rickart [6]. Here we give a counter example to show that 

the endomorphism ring of d-purely Rickart module needed not d-purely Rickart. 
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Remark 2.30. The endomorphism ring of d-purely Rickart needed not be d-purely Rickart. 

 

Example 2.31. The Z-module ZP∞  is d-purely Rickart while the S = EndZ(ZP∞ ) is not. In fact, S is the p-adic 

domain and so is pure simple, if S is d-purely Rickart ring then S is a d-Rickart(Proposition (2.17)). But S is a 

domain, and hence S is an indecomposable. So S is co-hopfian [6], contradiction, where S= EndZ(ZP∞ ) is not 

co-hopfian. Therefore S is not d-purely Rickart ring.     

 

III. Direct summand and Direct sums of d-purely Rickart Modules 
A submodule of d-purely Rickart module may be not d-purely Rickart in general. The Z-submodule Z 

of the Z-module Q is not d-purely Rickart while Q is d-purely Rickart module. The following proposition shows 

that the direct summand of d-purely Rickart module is inherited this property.  

 

Proposition 3.1. Every direct summand of d-purely Rickart module is d-purely Rickart module. 

 

Proof. Let M =N⨁K be a d-purely Rickart module. Let α ∈ EndR(N) , then α can be extending into β = α ⨁{0} 

and Imβ = Im(α⨁{0}) = Imα⨁{0} ≤p M = N⨁K. So Imα≤pN [3, Ch.1, Proposition 1.5]. Therefore N is a d-

purely Rickart module. ◘ 

 

Corollary 3.2. If R is a d-purely Rickart ring, then eR is a d-purely Rickart module for any idempotent element 

e ∈ R. 

    The Z-module M = Z2⨁Z2 is d-purely Rickart module, since M is a semisimple module. In general, the Z-

module Zp⨁Zp is semisimple for each prime integer p and hence is d-purely Rickart module. But in general, we 

don’t know whether if the direct sums of d-purely Rickart module is a d-purely Rickart. The following 

proposition gives the condition under which the direct sums of d-purely Rickart module is d-purely Rickart. 

 

Proposition 3.3. Let M = ⨁i∈IMi for arbitrary index set I, i ∈ I. If Mi ⊴ M, then M is d-purely Rickart if and 

only if Mi is d-purely Rickart for all i∈I. 
 

Proof. ⇒) Following (Proposition (3.1)). 

⇐) Let α ∈ S = EndR(M). So α = ⨁i,j∈Iαij where αij: Mj→ Mi. Since each of Mi is d-purely Rickart submodule of 

M, then Imαi = αi(Mi) ≤pMi for each i∈I. Now, by hypothesis, Mi ⊴ M for each i∈I. Then, HomR(Mi, Mj) = 0 

for each i ≠ j, i and j ∈I [11]. So, αji = 0 for i≠j, i, j ∈I. Thus α(M) = ⨁i∈Iαii(Mi) ≤p ⨁i∈IMi = M [3, Ch.1, 

Proposition 1.5]. Therefore M is a d-purely Rickart module. ◘ 

 

Proposition 3.4. Let  Rα α∈I be a family of rings where I be an arbitrary index set. Then R = ⨁α∈IRα is a d-

purely Rickart if and only if Rα is a d-purely Rickart ring. 

 

Proof. Let a = (aα ) ∈ R = ⨁α∈IRα where aα ∈ Rα for each α ∈ I, then aR is a principle right ideal in R. Since Rα 

is d-purely Rickart, then the principle right ideal aαRα ≤
p  Rα for each α∈I (Proposition 2.3). Since aR = 

⨁α∈IaαRα , then by [3,Ch.1, Proposition 1.5] aR = ⨁α∈IaαRα ≤p ⨁α∈IRα= R. Therefore R is a d-purely Rickart 

ring. The converse follows (Proposition (3.1)).  

 

Definition 3.5. Let M and N be modules. Then M is said to be N-d-purely Rickart (relatively d-purely Rickart 

to N) if for every homomorphism α: M→N, Imα ≤pN. 

 

Remarks and examples 3.6.  
1. A module M is d-purely Rickart if and only if M relatively d-purely Rickart to itself. 

2. If N is von Neumann regular module, then M is N-d-purely Rickart for any right R- module M. 

3. If N is Z-simple module, then M is N-d-purely Rickart for any right R-module M. In particular, ZP∞  and 

ZPn  are Zp-d-purely Rickart module for all prime integer p and n ∈  while Zp is not ZP∞  -d-purely Rickart 

module. 

4. Z4 is not d-purely Rickart module (Remarks and examples 2.2), but Z4 (= Z22) is Z3-d-purely Rickart 

module.  

5. For any modules M and N, if rH(M) = H then M is N-d-purely Rickart, where H = HomR(M, N). For that: if 

α ∈ H, then α ∈ rH(M). So α(M) = 0. Therefore Imα ≤p  M. Since α is arbitrary, then M is N-d-purely 

Rickart module. In particular, its well known that HomR(Q, Z) = HomR(Q, Zn) = 0 for each n ∈ ℕ, then Q as 

Z-module is Z-d-purely Rickart and Zn-d-purely Rickart.   
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Proposition 3.7. If M = M1⨁M2 is a d-purely Rickart and M2 is pure simple where M1 and M2 are submodules 

of M. Then either HomR(M1, M2) = 0 or for each nonzero homomorphism α : M1 → M2 is an epimorphism.  

Proof. Let (0≠) α : M1→ M2 be a homomorphism, then jαρ(M) = α(M1) ≤p  M where ρ: M→ M1 be the 

projection and j: M2 → M injection. But α(M1) ≤ M2 , so α(M1) ≤
p  M2[3, Ch.1, Proposition (1.2)]. But M2 is 

pure simple, and α is not zero, then α(M1) = M2. Hence α is an epimorphism. ◘ 

 

Corollary3.8.  If M = M1⨁M2 is a d-purely Rickart and M2 is pure simple. Then M1 is  M2-d-purely Rickart. 

Proof.  Let M = M1⨁M2 be a d-purely Rickart module with M2 pure simple and α: M1 → M2 be any 

homomorphism, then by (Proposition(3.7)) either α = 0  so Imα = 0 ≤p M2 or α is an epimorphism. Hence Imα 

= M2 ≤p   M2. 
 

Proposition 3.9. Let M and B be modules. Then M is B-d-purely Rickart if and only if for any L ≤⨁ M and A ≤ 
B, L is A-d-purely Rickart module. 

Proof. ⇐) Obvious (put M = L and B = A).  

⇒) Let L ≤⨁ M, A≤ B and α: L → A be any homomorphism. Hence, jαρ ∈ HomR(M, B) where ρ: M→ L be the 

projection and j: A → B injection map. So jαρ(L) = α(L) ≤p  B. But α(L) ≤ A ≤ B. Hence α(L) ≤p  A. ◘     

 

Corollary 3.10. For any module M the following conditions are equivalent: 

1. M is a d-purely Rickart module; 

2. For any direct summand A and any submodule B of M, A is B-d-purely Rickart module; 

3. For any pair of summands A and B of M, A is B-d-purely Rickart module; 

4. M is B-d-purely Rickart module for any direct summand B of M.  

 

 Proof. (1) ⇒ (2) Follows Proposition (3.9). 

 (2)⇒(3) and (3)⇒(4) Obvious.  

(4)⇒(1) put M = B. ◘ 

 

Corollary 3.11. Let M = M1⨁M2 be a d-purely Rickart module, then for each homomorphism αij: Mj → Mi, 

Imαij≤pMi for each i,j∈{1,2} . 

 

Note : Corollary 3.11 means, if M = M1⨁M2 be a d-purely Rickart module, then M1 and M2 are mutually d-
purely purely Rickart modules.  

 

Proposition 3.12. Let R be a ring, then the following conditions are equivalent: 

1. R is a d-purely Rickart ring; 

2. Every right R-module is d-purely Rickart; 

3. Every left R-module is d-purely Rickart; 

4. Every flat R-module is d-purely Rickart; 

5. Every projective R-module is d-purely Rickart; 

6. Every free R-module is d-purely Rickart. 

Proof. 1⇒ 2) R is a d-purely Rickart ring if and only if R is regular ring (Corollary (2.4) if and only if every 

right R-module is regular [3, Ch.3, Theorem (3.1)], then every right R-module is d-purely Rickart (Remarks and 
examples (2.2(1)). 

(2) ⇒(3), (3) ⇒ (4), (4) ⇒ (5) and (5) ⇒ (6) are obvious. 

(6) ⇒ (1) Let J be a principle right ideal in R, so there is an epimorphism α: A → J where A is a free R-module. 

Clear that iα ∈ HomR(A, R), where i: J → R is the inclusion. Now, A⨁R is free, so by hypotheses is a d-purely 

Rickart module. Then by Corollary (3.8), J = Imα = Im(iα) ≤p  R. Hence by (Proposition 2.3) R is a right d-

purely Rickart ring. ◘ 

It's known that if R is a principle ideal domain and a von Neumann regular ring then R is a field. The 

following proposition gives a characterization of a field by using d-purely Rickart module. 
 

Proposition 3.13. If a ring R is a principle ideal domain, then the following conditions are equivalent: 

1. All R-modules are d-purely Rickart; 

2. All finitely generated flat R-modules are d-purely Rickart; 

3. R is a field. 

 

Proof. (1)⇒(2) It's clear. 
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(2) ⇒ (3) Let I = aR be a principle right ideal in R and α: R → aR such that α(r) = ar for each r ∈ R. Clear that α 

is an epimorphism. Now R⨁R is a finitely generated flat R-module. So, by hypothesis, R⨁R is a d-purely 

Rickart module. Since iα ∈ EndR(R), where i: aR → R is the inclusion map, then aR = Imα = Im(iα) ≤p  R 

(Corollary (3.8)). Hence R is a von Neumann regular ring [3, Ch.3, Theorem 2.1]. Thus R is a principle ideal 

domain and von Neumann regular ring, then R is field. 

3⇒1) Since every field is a von Neumann regular ring, hence is a d-purely Rickart ring, then by (Proposition 

(3.12)), the proof is complete. ◘  
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