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 Abstract:  A total coloring of a graph G is a proper coloring with additional property that no two adjacent or 

incident graph elements receive the same color. The total chromatic number of a graph G is the smallest 

positive integer for which  G admits a total coloring. Here, we investigate the total chromatic number of some 

cycle related graphs.  
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I. Introduction 

We begin with finite, connected and undirected graph G , without loops and parallel edges, with vertex 

set  ( )V G  and edge set ( )E G . The vertices and edges are commonly addressed as graph elements. For any 

graph theoretic terminology we refer to Chartrand and Lesniak  [1].  A proper k -coloring of a graph G is a 

function  : ( ) 1,2,...,c V G k  such that    c u c v , for all ( )uv E G .  The chromatic number  

( )G  is the minimum integer k  for which the graph G  admits a proper coloring.   Some variants of graph 

coloring are also introduced. Some of them are a - coloring,  b - coloring,  total coloring etc. The present work 

is focused on total coloring of graphs. 

A function  : ( ) ( )V G E G  N  is called a total coloring  if no two adjacent or incident graph 

elements are assigned the same color. The total chromatic number of  G , denoted by ( )
T

G , is the smallest 

positive integer k  for which there exists a total coloring : ( ) ( )V G E G    1,2,...,k .  The Total 

Coloring Conjecture(TCC) was posed independently by Behzad  [2]  and Vizing [3]  which states that,  

                                                  For any graph  G ,  ( ) ( ) 2
T

G G   . 

 

The TCC is open even after many efforts to settle it. It is proved for particular graph families.  For e.g., 

Rosenfeld  [4] and Vijayaditya  [5]  proved it for graphs G  having  ( ) 3G  .  A survey on total coloring of 

graphs is given in a paper by Behzad  [6] . The TCC for complete graphs and complete multi partite graphs have 

been proved by Behzad et al. [7]  and Yap  [8]. The work of Yap  [9], Andersen  [10],  Sanders and Zhao [11] as 

well as Borodin  [12] reveals that the TCC is true for planar graphs G  having ( ) 5G  . The concept of total 

coloring is further explored by Xie and Yang   [13], Wang  [14]  and Wang et al . [15]. 

             In the present work we investigate the total chromatic number for the graphs obtained from cycle by 

means of various graph operations. 

 

Conjecture 1.1   [2]    ( ) 1 ( ) ( ) 2
T

G G G      . 

Proposition  1.2 [2]     A graph G  is said to be of  type I if ( ) ( ) 1
T

G G     and   is of   

                                      type II  if  ( ) ( ) 2
T

G G    . 

Proposition  1.3  [16]   Any 4- regular multigraph can be total colored with six colors 

Proposition  1.4  [17]   A cycle of  length congruent to 0(mod3)  is of  type I graph  and  all other cycles are  

                                       of   type II graphs. 

 

II. Main Results 

Definition  2.1  A middle graph ( )M G  of a graph G  is the graph whose vertex set is   ( ) ( )V G E G  and in 

which two vertices are adjacent whenever either they are adjacent edges of  G  or one is vertex of G  and  other 

is an edge incident with it. 
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Theorem  2.2  ( ( ))
T nM C =5,  for all  n .   

Proof:    Let   1 2( ) , ,...,n nV C v v v  and   1 2( ) , ,...,n nE C e e e . Thus, ( ( ))nV M C = { 1 2, ,..., nv v v , 

1 2, ,..., ne e e } .  We observe that in ( )nM C , the vertices 1 2, ,..., ne e e  forms a cycle of length n . 

                When 0(mod3)n  , the colors 1, 2 and 3 can be assigned on vertices and edges successively for 

the total coloring. For the remaining edges incident on each ie , we must use two new colors, say 4 and 5, 

successively. The colors 3, 2 and 1 successively can be assigned on the vertices 1 2, ,..., nv v v . Thus only 5 

colors suffice for the total coloring. 

              When 0(mod3)n  , we are considering following two cases: 

 

Case 1 : If the cycle formed by the vertices 1 2, ,..., ne e e  has length  2k ; k 2 . 

               The colors 1 and 2 can be used on consecutive vertices and the colors 3 and 4 on edges of the cycle.  

For the remaining edges incident on ie  with color 1 we can use the colors 2 and 5, and the edges incident on ie  

with color 2 we can use the colors 1 and 5. Thus only 5 colors suffice to color all the elements of ( )nM C . 

 

Case 2 : If the cycle formed by the vertices 1 2, ,..., ne e e  has length 2 1k  ; k 2 . 

We can assign the colors as ( ) 1ie   for odd i ,  ( ) 2ie    for even i  and  2 1( ) 3ke   , 

1( ) 3i ie e    for odd i ,  1( ) 4i ie e     for even i ,  1 2 1( ) 2ke e   ,  1 1( ) 4v e  , ( ) 2i iv e   for odd 

1i  ,  ( ) 1i iv e    for even i ,  1( ) 5i ie v   ,  2 1 2 1( ) 1k ke v    ,  2 1 1( ) 5ke v   . Thus only 5 colors 

suffice to color all the elements of ( )nM C . Hence  ( ( ))
T nM C =5  for all n . 

 

Definition  2.3   A total graph ( )T G   of a graph G  is the graph whose vertex set is  ( ) ( )V G E G  and  two 

vertices are adjacent whenever  they are either adjacent or incident in  G . 

 

Theorem  2.4   
5, 3

( ( ))
6, 3.T n

n
T C

n



 


   

Proof:     Let   1 2( ) , ,...,n nV C v v v  and  1 2( ) , ,...,n nE C e e e .   Thus, ( ( ))nV T C = { 1 2, ,..., nv v v , 

1 2, ,..., ne e e }  = ( ( ))nV M C   and  ( ( ))nE T C = ( ( ))nE M C   1; 1,2,..., 1i iv v i n     1 nv v .  

As ( )nT C  is a regular graph with = 4, ( ( ))
T nT C   ( ) 2G  = 6  by Proposition 1.3.  

 By  the definition of ( )nT C , ( )nM C  ( )nT C ,  ( ( ))
T nT C   ( ( ))

T nM C =5. 

When n = 3, assign the colors as in ( )nM C  and for the edges 1 2v v , 2 3v v  and  3 1v v , we can use the 

colors which is same as the colors used for ie ; i = 1, 2 and 3  respectively. Thus 3( ( ))
T

T C =5.   

When  n  3, as each vertex is adjacent to exactly four vertices of same order and due to the adjacency 

and incidence of elements, five colors will not suffice for the total coloring. Thus  ( ( ))
T nT C  5.  Hence  

( ( ))
T nT C  =6. 

 

Definition  2.5     The Shadow graph 2 ( )D G  of a connected graph G  is constructed by taking two copies of 

G ,  say  G  and G . Join each vertex u  in G  to the neighbors of the corresponding vertex u  in G . 

 

Theorem  2.6   2( ( ))
T nD C = ( )

T nC +2.  
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Proof:  2 ( )nD C ,  the shadow graph of nC  is constructed by taking two copies of nC , say 
nC   and 

nC  .  Join 

each vertex u  in 
nC   to the neighbors of the corresponding vertex u  in 

nC  . It is clear that 
iv   and 

iv   are 

non adjacent.  So we can assign the same colors for the elements of both 
nC   and 

nC  .  

Also ( )
T nC =3  when 0(mod3)n   and 4  otherwise.  Now,  2 ( )nD C  is a regular graph with 

degree four and the edges  
i iv v   are non adjacent to each other. Only two new colors are required for the 

coloring of these edges. Thus  2( ( ))
T nD C = ( )

T nC +2.   

Definition  2.7    The one point union  
( )k

nC  of  k -copies of cycle nC   is the graph obtained by taking v   as a 

common vertex such that any two distinct cycles  
( )i

nC   and  
( )j

nC   are edge disjoint and do not have any 

vertex in common except  v .     

Theorem  2.8  
( )( )

T

k

nC = 2 k +1,  k 2  , for all  n .   

Proof:     Consider the one point union  
( )k

nC  of  k -copies of cycle nC  with the common vertex v . By the 

construction of the graph  ( )d v =2 k , so we need minimum   2 k +1  colors for the total coloring of the vertex 

v   and the edges incident on it. As the remaining vertices are adjacent to maximum two vertices, we need only  

2 k +1   colors for the total coloring of the graph. Thus,  
( )( )

T

k

nC =2 k +1,  for all n  and  k 2 .  

 

III. Concluding   Remarks 

The total chromatic number of nC   was investigated by Rosenfeld  [4].  But we  have explored the 

concept of total coloring for the larger graphs obtained from nC . We have investigated the total chromatic 

numbers   for middle graph,  total graph,  shadow graph of cycle as well as one point union of cycles. 
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