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I.    Introduction 

In this paper we, interest in Bäcklund transformation 12 , and its connection with some special 

equations and their associatedsoliton theory.Under this transformation.an infinite family ofconstant curvature 

surfaces can be produced from a given one.The notion of a differential equation for a function 𝑢(𝑥, 𝑡) that 

describes a pseudospherical surface (P.S.S.) was introduced in [1,6,7], where classifications for some equations 

oftypes 

𝑢𝑥𝑡 = 𝜓  𝑢, 𝑢𝑥  , 𝑢𝑥𝑥 , … … .
𝜕𝑘𝑢

𝜕𝑥𝑘
    and     𝑢𝑡 = 𝜓  𝑢, 𝑢𝑥  , …… .

𝜕𝑘𝑢

𝜕𝑥𝑘
  

Were obtained. Furthermorecharacterizations of equations with more than two independent variables of types 

𝑢𝑥𝑡 = 𝜓  𝑢, 𝑢𝑥  , … … .
𝜕𝑘𝑢

𝜕𝑥𝑘
, 𝑢𝑦 , … .,

𝜕𝑘 ′
𝑢

𝜕𝑥𝑘 ′  , 𝑢𝑡 = 𝜓  𝑢, 𝑢𝑥  , … … .
𝜕𝑘𝑢

𝜕𝑥𝑘
, 𝑢𝑦 , … .,

𝜕𝑘 ′
𝑢

𝜕𝑥𝑘 ′   

and𝑢𝑡𝑡 = 𝜓  𝑢, 𝑢𝑥 , … ,
𝜕𝑘𝑢

𝜕 𝑥𝑘
, 𝑢𝑦 , … ,

𝜕𝑘ʹ𝑢

𝜕 𝑦𝑘ʹ
, 𝑢𝑡 are given in  2,3,4 . 

A systematic procedure to determine linear problems associated to non-linear equations of the abovetypes was 

also introduced in case of two independent variables. 

       In this work, we consider evolution equations for a function 𝑢(𝑥, 𝑦, 𝑡) that describes an(𝜂, 𝜉) 3-dim. P.S.P. 

as given in  2,3,4  and we investigate an analogous method to derive Bäcklundtransformations and conservation 

laws based on geometrical properties of these 3- dimensionalpseudo spherical planes in 𝑅5.  

 

II.   Local theory of constant negative curvature submanifolds of 𝑹𝟐𝒏−𝟏  

Let M be an n-dimensional Riemannian manifold with constant curvature K isometrically immersed in 

M 2n−1with constant curvature Κ ,with 𝐾<Κ . Let e1 , e2 , . . . , e2n−1be a moving orthonormal frame on an open set 

of M ,so that at points of M,e1 , e2 , . . . , enare tangents to M.Let ωAbe the dual orthonormal coframe and consider 

ωAB defined by  2  

 deA =  ωAB eB

B

 

The structure equations of M are 

dωA =  ωB

B

∧ ωBA    ,   ωAB + ωBA = 0                                                                     1  

dωAB =  ωAC

C

∧ ωCB − K ωA ∧ ωB     with     1 ≤ A, B, C ≤ 2n − 1                                      2  

Restricting these forms to M we have ω = 0 ,so (1) gives with n + 1 ≤  , β,  ≤  2n − 1 and 1 ≤  I , J, L  ≤
 𝑛, 

dωα =  ωI

I

∧ ωIα = 0                           3  

dωI =  ωJ

J

∧ ωJI     4  

from (2) we obtain, Gauss equation 
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dωIJ =  ωIL ∧ ωLJ 

L

+  ωIα ∧ ωαJ 

α

− K ωI ∧ ωJ 5  

andCodazzi equation 

dI =  ωIA ∧ ωAα

A

 6  

M has constant sectional curvature K if and only if 

ΩIJ =  dωIJ −  ωIL ∧ ωLJ 

L

= −Κ ωI ∧ ωJ 7  

 ωIα ∧ ωαJ

α

=  K −  K  ωI ∧ ωJ 8  

Also, equation (2) implies that 2  

 dωαβ =  ωαγ ∧ ωγβ +  Ωαβ

γ

 

With             Ωαβ =  ωαI ∧ ωIβ

I

 9  

The forms Ωαβ  give the normal curvature of  M and  I =  (ωI)
2

I   is its first fundamental form. 

For our purpose in this paper, we write these equations when M  is taken to be R5 and M is a 3-dimensional 

submanifold with constant sectional curvature K = −1(i.e. pseudo spherical 3-plane in R5). 

The equations take the forms 2  

 

dω1 = ω4 ∧ ω2  + ω5 ∧ ω3      

dω2 = −ω4 ∧ ω1 + ω6 ∧ ω3

dω3 = −ω5 ∧ ω1 − ω6 ∧ ω2   

 dω4 = ω1 ∧ ω2

dω5 = ω1 ∧ ω3                                     

dω6 = ω2 ∧ ω3  
 
 

 
 

 10  

where we have written 

𝜔4 = 𝜔 12 𝜔5 = 𝜔13, and 

𝜔6 = 𝜔23 with 𝜔𝑖𝑗 = −𝜔𝑗𝑖   , 𝑖, 𝑗 = 1,2,3 ,    𝜔𝑖𝑖 = 0 

We shall recall here the definition of a differential equation to describe a pseudospherical surface, introduced in 

[1] and modify it in order to suit our purposes here. 

Definition 2.1 

A differential equation E-for a real function 𝑢 𝑥 , 𝑦, 𝑡  describes a 3-dimensional pseudospherical plane in 

𝑅5(simply P.S.P.) if it is the necessary and sufficient condition for the existence of differentiable functions 

𝑓𝛼𝑖 , 1 ≤ 𝛼 ≤ 6and1 ≤ 𝑖 ≤ 3, depending on u and its derivatives, such that the 1-forms 2,3  
𝜔𝛼 = 𝑓𝛼1𝑑𝑥 + 𝑓𝛼2𝑑𝑦 + 𝑓𝛼3𝑑𝑡         11  

satisfy the structure equations of a 3-plane of constant sectional curvature −1 in 𝑅5 i.e.  equations (10). 

Definition 2.2 

We shall define such 3-dimensional P.S.P to be a two-parameters 3-dimensional P.S.P𝑓31= 𝑓41= 𝜂 and 𝑓22 =
𝑓42=ξ, with  η  and ξ constant parameters. In Fact, one can see that when𝑢(𝑥, 𝑦, 𝑡) is a generic solution of E, it 
provides a metric defined on an open subset of R3, whose sectional curvature is -1 and the lengths of the vector 

fields  
𝜕

𝜕𝑥
and 

𝜕

𝜕𝑦
 satisfy  

𝜕

𝜕𝑥
 2≥  𝜂 2,  

𝜕

𝜕𝑦
 2≥  𝜉2. 2,3  

 

III.  Generalization of Bäcklund's theorem 
In this section, we define a pseudospherical geodesic congruence between two 𝑛-dimensional 

submanifolds 𝑀 and 𝑀′ of a space form 𝑀 𝑘
2𝑛−1 with constant sectional curvature 𝐾. We prove a generalization 

of Bäcklund's theorem, 12  for such submanifolds and the complete integrability of the differential ideal 

associated to the existence of a pseudospherical congruence. 

In what follows we need the notion of angles between two 𝑘-planes in a 2𝑘-dimensional inner product 

space. 10  
 

Definition 3.1 

Let 𝐸1and 𝐸2be two 𝑘-planes in a 2𝑘-dimensional inner product space 𝑉, <, > and 𝜋: 𝑉 → 𝐸1 the 

orthogonal projection. Define a symmetric bilinear form on 𝐸2 by  𝑣1 ,𝑣2 =< 𝑃 𝑣1 ,   𝑃(𝑣2) >. The 𝑘 angles 

between 𝐸1 and 𝐸2are defined to be 𝜃1 , . . . . , 𝜃𝑘where 𝑐𝑜𝑠2𝜃1 , . . .  . 𝑐𝑜𝑠2𝜃𝑘 are the 𝑘-eigenvalues for the self-

adjoint operator 𝐴: 𝐸1 → 𝐸2 such that  𝑣1 , 𝑣2 = < 𝐴𝑣1 , 𝑣2 > .  10  
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Definition 3.2 

Suppose the 𝑛 angles between 𝐸1 and 𝐸2are 𝜃1 , . . . , 𝜃𝑛 . Then it follows from the definition that there are 

two orthonormal bases 𝑒1 , . . . , 𝑒2𝑛  and 𝑒1
′ , . . . , 𝑒2𝑛

′  of 𝑉 such that 𝑒1
′ , . . . , 𝑒𝑛

′  are eigenvectors of 𝐴 with eigenvalues 

𝑐𝑜𝑠2𝜃1 , . . . . . 𝑐𝑜𝑠2𝜃𝑛  respectively,𝑒1 , . . . , 𝑒𝑛form a base for 𝐸1, and  

𝑒𝑖
′ = cos 𝜃𝑖𝑒𝑖 + sin 𝜃𝑖𝑒𝑛+𝑖−1 , 

𝑒𝑛+𝑖−1
′ = −sin 𝜃𝑖𝑒𝑖 + cos 𝜃𝑖𝑒𝑛+𝑖−1  

for 1 ≤  𝑖 ≤ 𝑛. 9  
 

Definition 3.3 

A geodesic congruence between two 𝑛-dimensional submanifolds 𝑀 and 𝑀′ of a (2𝑛-l)-dimensional 

space form 𝑀  is a diffeomorphism ℓ: 𝑀 → 𝑀′, such that for 𝑃 ∈ 𝑀 and 𝑃′ = ℓ(𝑃), there exists a unique 

geodesic𝛾 in 𝑀  joining 𝑃 and 𝑃′, whose tangent vectors at 𝑃 and 𝑃′ are in 𝑇𝑃𝑀 and 𝑇𝑃 ′ 𝑀′ respectively. 10  
 

Definition 3.4 

A geodesic congruence ℓ: 𝑀 → 𝑀′ between two 𝑛-dimensional submanifolds of 𝑀  is called pseudospherical if: 

(1) the distance between 𝑃 and 𝑃′ = ℓ(𝑃) on 𝑀 , is a constant 𝑟, independent of 𝑃; 

(2) the (𝑛-l) angles between 𝑣𝑃and 𝑣𝑃 ′  are all equal to a constant𝜃, independent, of 𝑃; 

(3) the normal bundles 𝑣 and  𝑣′are flat ; 

(4) the bundle map Γ: 𝑣 → 𝑣′given by the orthogonal projection commutes with the normal connections. 10  
 

Definition  3.5 

For given geodesic congruence ℓ: 𝑀 → 𝑀′, we remark that, the normal spaces 𝑣𝑃 and 𝑣𝑃 ′  , at 

corresponding points 𝑃 and 𝑃′ are (𝑛-1) dimensional and orthogonal to the plane determined by the position 

vector 𝑋 of 𝑀 and the tangent vector of 𝛾 at 𝑃. Therefore, 𝑣𝑃and 𝑣𝑃 ′ , lie in a (2𝑛-2) dimensional vector space, 

i.e. there are (𝑛-1) angles between 𝑣𝑃 and 𝑣𝑃 ′ . 10  
 

Theorem 3.1 

Suppose there is a pseudo-spherical congruence 𝑙: 𝑀 → 𝑀′of 𝑛-manifolds in 𝑅2𝑛−1 with distance 𝑟 

between corresponding points and angle 𝜃 ≠ 0 between corresponding normals. Then both 𝑀 and 𝑀′  have 

constant sectional curvature −𝑠𝑖𝑛2𝜃/𝑟2.  9  
 

Proof. 

Since 𝑣′ is flat, we may choose an orthonormal frame 𝑒𝑛+1
′ , …… , 𝑒2𝑛−1

′  for 𝑣′ such that the normal connection  

𝜔𝑛+𝑖−1 ,𝑛+𝑗−1
′ = 0       12  

Here and throughout this section, we shall agree on the index ranges  

2 ≤ 𝑖 , 𝑗 , 𝑘 ≤ 𝑛.         (13) 

If we use condition (2) of the definition of a pseudo-spherical congruence, there is a local orthonormal frame 

field 𝑒1 , . . . , 𝑒2𝑛−1 for 𝑀 such that  9  

 
𝑒𝑛+𝑖−1

′ = −sin𝜃𝑒𝑖 + cos 𝜃𝑒𝑛+𝑖−1,

e1 = the unit direction of𝑃𝑃′        ,
 (14) 

and𝑒1 , . . . , 𝑒𝑛  form an orthonormal frame for 𝑇𝑀. Let  

 𝑒1
′ = −𝑒1 ,                                     

𝑒𝑖
′ = 𝑐𝑜𝑠 𝜃𝑒𝑖 +  𝑠𝑖𝑛 𝜃𝑒𝑛+𝑖−1;    

 (15) 

then𝑒1
′ , . . . , 𝑒𝑛

′  form an orthonormal frame for 𝑇𝑀′ . Since Γ: 𝑣 → 𝑣′  commutes with the normal connections, 

𝛤𝑒𝑛+𝑖−1 = 𝑒𝑛+𝑖−1
′ , and 𝜔𝑛+𝑖−1 ,𝑛+𝑗−1

′ = 0, we have  

𝜔𝑛+𝑖−1 ,𝑛+𝑗−1
′ = 0                   (16)  

    Suppose locally 𝑀 is given by an immersion 𝑋: 𝑈 → 𝑅2𝑛−1, where 𝑈 is an open subset of 𝑅𝑛 , then 𝑀′  is 
given by  

𝑋′ = 𝑋 + 𝑟𝑒1 .        (17)  
Taking the differential of (17) gives  9  

 

𝑑𝑋′ = 𝑑𝑋 + 𝑟𝑑𝑒1 ,                                                                                    

= 𝜔1 e1 +  𝜔𝑖ei

𝑖

+ 𝑟  𝜔1𝑖ei

𝑖

+ 𝑟  𝜔1,𝑛+𝑖−1en+i−1

𝑖

= 𝜔1e1 +  (𝜔𝑖 + 𝑟𝜔1𝑖)ei

𝑖

+ 𝑟  𝜔1,𝑛+𝑖−1en+i−1 .

𝑖  
 
 

 
 

(18) 

On the other hand, letting 𝜔1
′ , . . . , 𝜔𝑛

′ be the dual coframe of 𝑒1
′ , . . . , 𝑒𝑛

′ ,we have  
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𝑑𝑋′ = 𝜔1
′ 𝑒1

′ +  𝜔𝑖
′𝑒𝑖

′

𝑖

 ,      using(15)

= −𝜔1
′ e1 +  𝜔𝑖

′

𝑖

 − cos 𝜃𝑒𝑖 + sin 𝜃𝑒𝑛+𝑖−1 .
 
 
 

 
 

 19  

Comparing coefficients of 𝑒1 , . . . , 𝑒2𝑛−1 in (18) and (19), we get  

 
𝜔1

′ = −𝜔1 ,

cos 𝜃𝜔𝑖
′ = 𝜔𝑖 + 𝑟𝜔1𝑖  

sin 𝜃𝜔𝑖
′ = 𝑟𝜔1,𝑛+𝑖−1.

,  (20) 

This gives  

𝜔𝑖 + 𝑟𝜔1𝑖  = 𝑟 cot 𝜃𝜔1,𝑛+𝑖−1.(21) 

Using (12), (14) and (16), we have  

 

0 = 𝜔𝑛+𝑖−1 ,𝑛+𝑗−1
′

= 𝑑𝑒𝑛+𝑖−1
′ . 𝑒𝑛+𝑗−1

′

= 𝑑(−sin 𝜃𝑒𝑖 + cos 𝜃𝑒𝑛+𝑖−1 ) . (−sin𝜃𝑒𝑗 + cos 𝜃𝑒𝑛+𝑗−1 )

= sin2 𝜃𝑑𝑒𝑖 . 𝑒𝑗 − sin 𝜃 cos 𝜃(𝑑𝑒𝑖 . 𝑒𝑛+𝑗−1 − 𝑑𝑒𝑗 . 𝑒𝑛+𝑖−1 )   

= sin2 𝜃𝜔𝑖𝑗 − sin 𝜃 cos 𝜃(𝜔𝑖 ,𝑛+𝑗−1 − 𝜔𝑗 ,𝑛+𝑖−1).                   
 
 

 
 

(22) 

Therefore we have 

𝜔𝑖𝑗 = cot 𝜃 𝜔𝑖 ,𝑛+𝑗−1 − 𝜔𝑗 ,𝑛+𝑖−1 .      (23) 

 

In order to find the curvature, we compute the following 1-forms:  

 

 

𝜔1,𝑛+𝑘−1
′ = 𝑑𝑒1

′ . 𝑒𝑛+𝑘−1
′  ,    using 14 and(15)

           = −sin 𝜃𝜔1𝑘 − cos 𝜃𝜔1,𝑛+𝑘−1 , using 21 

= −
sin𝜃

𝑟
𝜔𝑘  ,

𝜔𝑖 ,𝑛+𝑘−1
′ = 𝑑𝑒𝑖

′ . 𝑒𝑛+𝑘−1
′

                  = − sin 𝜃 cos 𝜃𝜔𝑖𝑘 + cos2 𝜃𝜔𝑖 ,𝑛+𝑘−1 + sin2 𝜃𝜔𝑘 ,𝑛+𝑖−1 ,   using 23 
= 𝜔𝑘 ,𝑛+𝑖−1 .  

 
 
 

 
 
 

(24) 

Hence from equation (9) we have 

 

 

Ω1𝑖
′ = − 𝜔1,𝑛+𝑘−1

′ ∧
𝑘

𝜔𝑖 ,𝑛+𝑘−1
′  ,     using 24 

=
sin 𝜃

𝑟
 𝜔𝑘 ∧

𝑘

𝜔𝑘 ,𝑛+𝑖−1,using 1 

= −
sin 𝜃

𝑟
𝜔1 ∧ 𝜔1,𝑛+𝑖−1 , using 20 

=
sin2 𝜃

𝑟2
𝜔1

′ ∧ 𝜔𝑖
′  ;

Ω𝑖𝑗 = − 𝜔𝑖 ,𝑛+𝑘−1
′ ∧

𝑖

𝜔𝑗 ,𝑛+𝑘−1
′ ,          using 24 

= − 𝜔𝑘 ,𝑛+𝑖−1 ∧
𝑖

𝜔𝑘 ,𝑛+𝑗 −1 .
 
 
 
 
 
 
 

 
 
 
 
 
 

(25) 

 

Since 𝑣 is flat and 𝜔𝑛+𝑖−1,𝑛+𝑗−1 = 0, we have 

 

 0 = −𝑑𝜔𝑛+𝑖−1,𝑛+𝑗−1  ,        using 9  

= 𝜔1,𝑛+𝑖−1 ∧ 𝜔1,𝑛+𝑗−1 +  𝜔𝑘 ,𝑛+𝑖−1 ∧
𝑘

𝜔𝑘 ,𝑛+𝑗 −1 . 

  So we have 

 
Ω1𝑖

′ = 𝜔1,𝑛+𝑖−1 ∧ 𝜔1,𝑛+𝑗−1 ,         using 9 

=
sin2 𝜃

𝑟2
𝜔𝑖

′𝜔𝑗
′

 (26) 
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Therefore 𝑀′  has constant sectional curvature −𝑠𝑖𝑛2𝜃/𝑟2. By symmetry, 𝑀 also has constant sectional 

curvature −𝑠𝑖𝑛2𝜃/𝑟2 .  9  
 

Theorem 3.2 

Suppose 𝑀is a local 𝑛-submanifold with constant negative sectional curvature 𝐾 = −𝑠𝑖𝑛2𝜃/𝑟2in 

𝑹2𝑛−1, where 𝑟 > 0 and 𝜃are constants. Let 𝑣1
0  , … , 𝑣𝑛

0, be an orthonormal base at 𝑃0  consisting of principal 

curvature vectors, and 𝑣0 =  𝑐𝑖𝑣𝑖
0𝑛

𝑖=1  a unit vector with 𝑐𝑖 ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑛; then there exists a local 𝑛-

submanifold 𝑀′  of 𝑹2𝑛−1, and a pseudo-spherical congruence 𝑙: 𝑀 → 𝑀′such that if 𝑃0
′ = 𝑙(𝑃0 ),we have 

𝑃0𝑃′         = 𝑟𝑣0 , and 𝜃 is the angle between the normal planes at 𝑃0and𝑃′ .  9  
 

Theorem 3.3 

Let 𝑓𝛼𝑖 , 1 ≤ 𝛼 ≤ 6 , 1 ≤ 𝑖 ≤ 3  , be differentiable functions of variables 𝑥 , 𝑦  and 𝑡 such that  5,8  

 

−𝑓11,𝑦 + 𝑓12,𝑥 + 𝜂𝑓52 + 𝜉𝑓21 − 𝜂𝑓22 − 𝜉𝑓51 = 0 ,            

−𝑓11,𝑡 + 𝑓13,𝑥 + 𝜂𝑓53 + 𝑓43𝑓21 − 𝜂𝑓23 − 𝑓51𝑓33 = 0 ,      

−𝑓12,𝑡 + 𝑓13,𝑦 + 𝜉𝑓53 + 𝑓43𝑓22 − 𝑓52𝑓33 − 𝜉𝑓23 = 0 ,      

−𝑓21,𝑦 + 𝑓22,𝑥 + 𝜂𝑓62 + 𝜂𝑓12 − 𝜉𝑓61 − 𝜉𝑓11 = 0 ,            

−𝑓21,𝑡 + 𝑓23,𝑥 + 𝜂𝑓63 + 𝜂𝑓13 − 𝑓61𝑓33 − 𝑓11𝑓43 = 0 ,       

−𝑓22,𝑡 + 𝑓23,𝑦 + 𝜉𝑓63 + 𝜉𝑓13 − 𝑓62𝑓33 − 𝑓12𝑓43 = 0 ,       

−𝑓31,𝑦 − 𝑓32,𝑥 + 𝑓11𝑓52 − 𝑓12𝑓51 − 𝑓22𝑓61 + 𝑓21𝑓62 = 0 ,

−𝑓31,𝑡 + 𝑓33,𝑥 + 𝑓23𝑓61 + 𝑓13𝑓51 − 𝑓21𝑓63 − 𝑓11𝑓53 = 0 ,

−𝑓32,𝑡 + 𝑓33,𝑦 + 𝑓23𝑓62 + 𝑓13𝑓52 − 𝑓22𝑓63 − 𝑓12𝑓53 = 0 ,

−𝑓41,𝑦 + 𝑓42,𝑥 + 𝑓11𝑓22 − 𝑓12𝑓21 = 0 ,                                 

−𝑓41,𝑡 + 𝑓43,𝑥 + 𝑓13𝑓21 − 𝑓11𝑓23 = 0 ,                                  

−𝑓42,𝑡 + 𝑓43,𝑦 + 𝑓13𝑓22 − 𝑓12𝑓23 = 0 ,                                  

−𝑓51,𝑦 + 𝑓52,𝑥 + 𝜂𝑓12 − 𝜉𝑓11 = 0 ,                                       

−𝑓51,𝑡 + 𝑓53,𝑥 + 𝜂𝑓13 − 𝑓11𝑓33 = 0 ,                                     

−𝑓52,𝑡 + 𝑓53,𝑦 + 𝜉𝑓13 − 𝑓12𝑓33 = 0 ,                                     

−𝑓61,𝑦 + 𝑓62,𝑥 + 𝜂𝑓22 − 𝜉𝑓21 = 0 ,                                       

−𝑓61,𝑡 + 𝑓63,𝑥 + 𝜂𝑓23 − 𝑓21𝑓33 = 0 ,                                    

−𝑓62,𝑡 + 𝑓63,𝑦 + 𝜉𝑓23 − 𝑓22𝑓33 = 0 ,                                     
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  27  

and 

𝑓11𝑓22 − 𝑓12𝑓21 + 𝜂𝑓12 − 𝜉𝑓11 + 𝜉𝑓51 − 𝜂𝑓52

+ sin𝜙  2𝜂𝑓12 − 2𝜉𝑓11 + 𝑓11𝑓52 − 𝑓12𝑓51 − 𝜂𝑓52 − 𝜉𝑓21 − 𝑓21𝑓52 + 𝑓21𝑓12 − 𝑓11𝑓22 + 𝜉𝑓51

+ 𝜂𝑓22 + 𝑓22𝑓51 
+ cos 𝜙  𝑓12𝑓51 − 𝑓11𝑓52 + 2𝜂𝑓12 − 2𝜉𝑓11 + 𝜉𝑓21 + 𝑓21𝑓52 + 𝑓11𝑓22 − 𝑓21 𝑓12 − 𝜂𝑓52

− 𝜂𝑓22−𝑓22𝑓51 + 𝜉𝑓51 = 0, 
𝑓13𝑓21 − 𝑓11𝑓23 + 𝜂𝑓13 − 𝑓11𝑓33 + 𝑓21𝑓33 + 𝑓33 𝑓51 − 𝜂𝑓53 − 𝑓21 𝑓43

+ sin 𝜙  2𝜂𝑓13 − 𝑓11𝑓43 + 𝑓11 𝑓53 − 𝑓13𝑓51 − 𝜂𝑓43 − 𝜂𝑓53 − 𝑓21𝑓43 − 𝑓21𝑓53 + 𝑓21𝑓13 + 𝜂𝑓33

+ 𝑓33𝑓51 − 𝑓11𝑓33 + 𝜂𝑓23 + 𝑓23𝑓51 − 𝑓11𝑓23  
+ cos 𝜙  𝑓13𝑓51 − 𝑓11𝑓53 + 2𝜂𝑓13 − 𝑓11𝑓43 + 𝑓21𝑓43 + 𝑓21𝑓53 − 𝑓21𝑓13 − 𝜂𝑓43 − 𝜂𝑓53

− 𝜂𝑓23−𝑓23𝑓51 + 𝑓23𝑓11 + 𝜂𝑓33 + 𝑓51𝑓33 − 𝑓11𝑓33  = 0, 
𝑓13𝑓22 − 𝑓12𝑓23 + 𝜉𝑓13 − 𝑓12𝑓33 + 𝑓22𝑓33 + 𝑓52𝑓33 − 𝑓22𝑓43 − 𝜉𝑓53

+ sin𝜙  2𝜉𝑓13 − 𝑓12𝑓43 + 𝑓12𝑓53 − 𝑓13𝑓52 − 𝜉𝑓43 − 𝜉𝑓53 − 𝑓22𝑓43 − 𝑓22𝑓53 + 𝑓22𝑓13 + 𝜉𝑓33

+ 𝑓23𝑓52 − 𝑓23 𝑓12 + 𝑓33𝑓52 − 𝑓33𝑓12 + 𝜉𝑓23  
+ cos 𝜙  𝑓13𝑓52 − 𝑓12𝑓53 + 2𝜉𝑓13 − 𝑓12𝑓43 + 𝑓22𝑓43 + 𝑓22𝑓53 − 𝑓22𝑓13 − 𝜉𝑓43 − 𝜉𝑓53

− 𝜉𝑓23−𝑓23𝑓52 + 𝑓23𝑓12 + 𝜉𝑓33 + 𝑓52𝑓33 − 𝑓12𝑓33  = 0, 
With          𝑓31 = 𝜂 = 𝑓41                  ;                       𝑓32 = 𝜉 = 𝑓42 

Then the following statements are valid. 

1.  The following system is completely integrable for 𝜙 ; 

 
3𝜙𝑥 = 𝑓41 + 𝑓51 + 𝑓61 − 𝑓11 +  𝑓21 − 𝑓31  sin 𝜙 +  𝑓31 + 𝑓21 cos 𝜙

3𝜙𝑦 = 𝑓42 + 𝑓52 + 𝑓62 − 𝑓12 +  𝑓22 − 𝑓32 sin𝜙 +  𝑓32 + 𝑓22 cos 𝜙

3𝜙𝑡 = 𝑓43 + 𝑓53 + 𝑓63 − 𝑓13 +  𝑓23 − 𝑓33 sin𝜙 +  𝑓33 + 𝑓23 cos 𝜙

   28  

2. For any solution 𝜙 of(28) the 1- forms  
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𝜎1 = 𝑓11𝑑𝑥 + 𝑓12𝑑𝑦 + 𝑓13𝑑𝑡    , and                                    

𝜎2 =  𝑓21 sin𝜙 + 𝑓31 cos 𝜙 𝑑𝑥 +  𝑓22 sin𝜙 + 𝑓32 cos 𝜙 𝑑𝑦

+ 𝑓23 sin𝜙 + 𝑓33 cos 𝜙 𝑑𝑡

  29  

Are closed one – forms 

3. If 𝑓𝛼𝑖 are analytic functions of parameters 𝜂 and 𝜉 at zero, then the solution 𝜙(𝑥, 𝑦, 𝑡, 𝜂, 𝜉) of (28) and the 

one-forms (29) are also analytic in 𝜂 and 𝜉 at zero. 

 

Proof: 

With respect to point 1. , it follows from the Frobenius theorem. and from (27) and (28) . straight forward 

computations show that (27)  implies.   

𝜙𝑥𝑦 = 𝜙𝑦𝑥              ;              𝜙𝑥𝑡 = 𝜙𝑡𝑥              ;              𝜙𝑦𝑡 = 𝜙𝑡𝑦      .  
point 2. , can be proved by showing that the systems (27) and (28) imply that exterior differentiation of the 

forms 𝜎1 and 𝜎2  in (29) is zero, which is the case. 

In order to prove point 3. , we suppose that functions 𝑓𝛼𝑖 are analytic functions of parameters 𝜂 and 𝜉. Each 

equation of (28) can be considered as an ordinary differential equation whose right – hand side is an  analytic 

functions of (𝜙, 𝜂, 𝜉), where the solutions of 𝜙(𝑥, 𝑦, 𝑡, 𝜂, 𝜉) of this equation exist as defined by point 1. It 

follows from the theory of ordinary differential equations,  11 , on the dependence of solutions up on 

parameters, that 𝜙(𝑥, 𝑦, 𝑡, 𝜂, 𝜉) is an analytic functions of 𝜂 and 𝜉, for 𝜂 and 𝜉 in an appropriate neighborhood of 

zero. This completes the proof of the theorem. 5,8  
 

IV.    Derivation of Bäcklund transformations and conservation laws for evolution equations in 

higher dimensions 
In this section, we extend the results obtained in 5 , by introducing a new method to derive an infinite 

set of conservation laws for equations that describes a P.S.P., based on a geometrical property of these planes. 

So, firstly. We consider 𝑀 and 𝑀′  as sub manifolds of 𝑅2𝑛−1 of dim 𝑛, and 𝑙: 𝑀 → 𝑀 be a pseudospherical 

geodesic congruence between 𝑀 and 𝑀′ , then there exist local orthonormal 

forms 8,9 𝑒1 , 𝑒2  , ……  , 𝑒𝑛  , 𝑒𝑛+1  , … … , 𝑒2𝑛−1 and 𝑒1
′  , 𝑒2

′ ……   , 𝑒𝑛
′  , … …  , 𝑒2𝑛−1

′  for 𝑅2𝑛−1 with 

𝑒1  , 𝑒2  , ……  , 𝑒𝑛  for 𝑀 and 𝑒1
′  , 𝑒2

′ ……   , 𝑒𝑛
′  for 𝑀′ such that 

𝑒1
′ = cos 𝜃𝑒1 + sin 𝜃𝑒𝑛+𝑖−1          ,               2 ≤ i ≤ 𝑛 

𝑒𝑛+𝑖−1
′ = − sin𝜃𝑒𝑖 + cos 𝜃𝑒𝑛+𝑖−1     ,                   ( 30) 

Are verified, see  10 , and 𝑒1
′ = −𝑒1 , where 𝑒1at 𝑃 ∈ 𝑀 is the unit  vector tangent to the geodesic from 𝑃 to 

𝑃′ = 𝑙(𝑃) 

In the special case, when 𝑛 = 2, relations (30) become  1  

 𝑒1
′ = cos 𝜃𝑒1 + sin𝜃𝑒2

𝑒2
′ = − sin 𝜃𝑒1 + cos 𝜃𝑒2

   31  

Where, it is considered that all the (n-1) angles are the same and equal to 𝜃 

In our case of evolution equations of three variables, 𝑀 and 𝑀′  3- dimensional Riemannian sub manifolds of 

𝑅5; 𝑒1
′   , 𝑒2

′   , ……   , 𝑒5
′ and𝑒1 , 𝑒2  , ……  , 𝑒5 are two different erthonormal frames with 𝑒1

′   , 𝑒2
′   , 𝑒3

′  tangents to 𝑀′  

and 𝑒1  ,𝑒2  , 𝑒3 tangents to 𝑀. While 𝜔1  , 𝜔2  , 𝜔3  , 𝜔12  , 𝜔13  , 𝜔23and 𝜔1
′   , 𝜔2

′   , 𝜔3
′   , 𝜔12

′ , 𝜔13
′   , 𝜔23

′ , are the dual 

coframes and connections forms on 𝑀 and 𝑀′  respectively. For 2 ≤ 𝑖 ≤ 3 𝑛 = 3 , one can write the following 

relations, with a pseudo spherical line congruence 𝑙: 𝑀 → 𝑀 , 

 
𝑒1

′ = −𝑒1

𝑒2
′ = cos 𝜃𝑒2 + sin𝜃𝑒3

𝑒3
′ = − sin 𝜃𝑒2 + cos 𝜃𝑒3

   32  

From the relations (32), we have 

 
𝜔1 = −𝜔1

′

𝜔2 = cos 𝜃𝜔2
′ + sin𝜃𝜔3

′

𝜔3 = − sin 𝜃𝜔2
′ + cos 𝜃𝜔3

′

   33  

And 

 
𝜔1

′ = −𝜔1

𝜔2
′ = cos 𝜃𝜔2 − sin𝜃𝜔3

𝜔3
′ = sin 𝜃𝜔2 + cos 𝜃𝜔3

   34  

Now, consider a differential equation (𝐸) for 𝑢 𝑥, 𝑦, 𝑡  which describes a two parameters 3-dim. 
P.S.P. with associated 1 – forms. 
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𝜔1 = 𝑓11𝑑𝑥 + 𝑓12𝑑𝑦 + 𝑓13𝑑𝑡;
𝜔2 = 𝑓21𝑑𝑥 + 𝑓22𝑑𝑦 + 𝑓23𝑑𝑡;             
𝜔3 = 𝜂𝑑𝑥 + 𝜉𝑑𝑦 + 𝑓33𝑑𝑡;                    
𝜔4 = 𝜔12 = 𝜂𝑑𝑥 + 𝜉𝑑𝑦 + 𝑓43𝑑𝑡;       
𝜔5 = 𝜔13 = 𝑓51𝑑𝑥 + 𝑓52𝑑𝑦 + 𝑓53𝑑𝑡;
𝜔6 = 𝜔23 = 𝑓61𝑑𝑥 + 𝑓62 𝑑𝑦 + 𝑓63𝑑𝑡. 

 
 

 
 

 35  

Where 𝑓𝛼𝑖 , are functions of 𝑢 𝑥, 𝑦, 𝑡  and its derivatives (observe that we are denoting 𝜔4 , 𝜔5  and 𝜔6for 

𝜔12 , 𝜔13  and 𝜔23 respectively, which are the classical notation for the connection forms). We have the 

following 8  
 

Proposition 4.1 
Let 𝐸 be a differential equation which describes a two parameters 3- dim P.S.P. with associated 1- forms (35) . 

Then, for each solution 𝑢of 𝐸, the system of equations for 𝜙 𝑥, 𝑦, 𝑡 . 8  

 
𝜔12 − 𝑑𝜙 + 𝜔3

′ = 0,

𝜔13 − 𝑑𝜙 + 𝜔2
′ = 0,

𝜔23 − 𝑑𝜙 + 𝜔1
′ = 0

  36  

Are completely integrable. Moreover, for each solution 𝑢of 𝐸, and corresponding solution 𝜙 of (36). the forms 

 𝜎1 = 𝑓11𝑑𝑥 + 𝑓12𝑑𝑦 + 𝑓13𝑑𝑡 ,                                                                                                           

𝜎2 =  𝑓21 sin𝜙 + 𝑓31 cos 𝜙 𝑑𝑥 +  𝑓22 sin𝜙 + 𝑓32 cos 𝜙 𝑑𝑦 +  𝑓23 sin 𝜙 + 𝑓33 cos 𝜙 𝑑𝑡
  

Are closed forms. 

 

Proof 

It follows from (33) that 𝑢 is a solution of 𝐸 iff.𝜔12 − 𝑑𝜙 + 𝜔3
′ = 0i.e., 

 𝜔12 − 𝑑𝜙 + sin 𝜙𝜔2 + cos 𝜙𝜔3 = 0,

𝜔13 − 𝑑𝜙 + 𝜔2
′ = 0                                

  37  

 𝜔13 − 𝑑𝜙 + cos 𝜙𝜔2 + sin 𝜙𝜔3 = 0,

𝜔23 − 𝑑𝜙 + 𝜔1
′ = 0                                

  38  

and𝜔12 − 𝑑𝜙 + 𝜔1 = 0 39  

Are completely integrable for𝜙. In this case: 

𝜔1  ; and sin 𝜙𝜔2 + cos 𝜙𝜔3  40  
Are closed forms. Hence, inserting (35) into (37) we obtain equations. 

  (𝜂 − 𝜙𝑥 + 𝑓21 sin 𝜙 + 𝜂 cos 𝜙)𝑑𝑥 + (𝜉 − 𝜙𝑦 + 𝑓22 sin𝜙 + 𝜉 cos 𝜙)𝑑𝑦 + (𝑓43 −𝜙𝑡 + 𝑓23 sin 𝜙 + 𝑓23 cos 𝜙)𝑑𝑡

= 0 

3𝜙𝑥 = 𝑓41 + 𝑓51 + 𝑓61 − 𝑓11 +  𝑓21 − 𝑓31  sin 𝜙 +  𝑓31 + 𝑓21 cos 𝜙,  41  

Are closed forms. Hence, inserting (35) into (38) we obtain equations. 

(𝑓51 − 𝜙𝑥 + 𝑓21 cos 𝜙 − 𝜂 sin𝜙)𝑑𝑥 + (𝑓52 − 𝜙𝑦 + 𝑓22 cos 𝜙

− 𝜉 sin 𝜙)𝑑𝑦 + (𝑓53 −𝜙𝑡 + 𝑓23 cos 𝜙 − 𝑓23 sin 𝜙)𝑑𝑡 = 0 

3𝜙𝑦 = 𝑓42 + 𝑓52 + 𝑓62 − 𝑓12 +  𝑓22 − 𝑓32 sin 𝜙 +  𝑓32 + 𝑓22 cos 𝜙 ,  42  

Are closed forms. Hence, inserting (35) into (39) we obtain equations. 

 𝑓61 − 𝜙𝑥 − 𝑓11 𝑑𝑥 +  𝑓62 − 𝜙𝑦 − 𝑓12 𝑑𝑦 +  𝑓63 − 𝜙𝑡 − 𝑓13 𝑑𝑡 = 0 

3𝜙𝑡 = 𝑓43 + 𝑓53 + 𝑓63 − 𝑓13 +  𝑓23 − 𝑓33 sin 𝜙 +  𝑓33 + 𝑓23 cos 𝜙  43  

Whose integrabilty condition is 𝐸. also, inserting (35) into (40), One can obtain the closed forms (29). 

     Now, we note that whenever 𝐸 does not involve the parameters 𝜂, 𝜉 the closed forms (29) may provide an 

infinite number of conservation laws. 8  
Also, under certain conditions, equations (28) may provide Bäcklund transformations for 𝐸 and as we know 

from theorem (3.3), the conditions  

𝜙𝑥𝑦 = 𝜙𝑦𝑥              ;              𝜙𝑥𝑡 = 𝜙𝑡𝑥              ;              𝜙𝑦𝑡 = 𝜙𝑡𝑦      .  

are valid as the complete integrabilty condition for (28). As conservation laws are common features of 

mathematical physics, where they describe the conservation of fundamental physical quantities, it is worth 

studying them in this geometric study. Before giving the method for deriving conservation laws for evolution 

equations that describes 2 – parameters 3-dim. P.S.P., we consider the following:  

 

Definition4.1 
We suppose a system of the form 

𝑢𝑡 = 𝑆 𝑢  44  
In the system, when a functional 𝐽 (𝑥, 𝑦, 𝑡)  satisfies. 

𝑑𝐽 𝑈 𝑥, 𝑦, 𝑡  /𝑑𝑡 = 0,  45  

The functional is said to be an integral of equation (44). and 
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𝜕

𝜕𝑡
𝑇 𝑢 𝑥, 𝑦, 𝑡  +

𝜕

𝜕𝑥
𝑄 𝑢 𝑥, 𝑦, 𝑡  +

𝜕

𝜕𝑦
𝑅 𝑢 𝑥, 𝑦, 𝑡  = 0 46  

Where usually each of 𝑇 𝑢 𝑥, 𝑦, 𝑡  , 𝑄 𝑢 𝑥, 𝑦, 𝑡   and 𝑅 𝑢 𝑥, 𝑦, 𝑡  do not involve derivatives with respect to 𝑡, 

is called a conservation law. In particular, if we are to apply this idea to an evolution equations for 𝑢 𝑥, 𝑦, 𝑡 , 

then 𝑇, 𝑄 and 𝑅 may depend upon 𝑥, 𝑦, 𝑡, 𝑢, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑥𝑥 , 𝑢𝑦𝑦 , …… , but not on𝑢𝑡 .  8  

If we assume the function 𝑢 𝑥, 𝑦, 𝑡  and its derivatives with respect to 𝑥 and 𝑦 go to zero sufficiently fast as 
 𝑥 → ∞,  𝑦 → ∞, i. e. , if 𝑇, 𝑄𝑥  𝑎𝑛𝑑 𝑅𝑦  are integrable on (−∞ , ∞) , so that 𝑄 → constant as  𝑥 → ∞, 𝑅 → 

constant as  𝑦 → ∞, then equation (46) can be integrated to yield.  
𝑑

𝑑𝑡
  𝑇𝑑𝑥𝑑𝑦 = 0   ,

∞

−∞

i. e
∞

−∞

  𝑇 𝑢 𝑥, 𝑦, 𝑡    𝑑𝑥 𝑑𝑦 = 𝐽 𝑢   =
∞

−∞

∞

−∞

Constant 

The method to derive conservation laws for evolution equations that describe, spherical surfaces (P.S.S.) is 

introduced by Cavalcante and Tenenblatin  5 , for the case of two independent variables.  

In this work, we will give a method with argument analogue to that considered in  5,8  to derive conservation 

laws for evolution equations that describe 2 – parameters 3-dim. P.S.P. This integrated method is based on 

geometrical properties of these planes.  

Here, we suppose the functions 𝑓𝛼𝑖  to be analytic in each of 𝜂 and 𝜉 seperatly, and describe the solutions 𝜙 of 

(28) as a power series of 𝜂 and𝜉 . In addition, from relations (29) we obtain a sequence of closed one – forms. 

So, we suppose 

𝑓𝛼𝑖  𝑥, 𝑦, 𝑡, 𝜂, 𝜉 =  𝛼𝑖
𝑟  𝑥, 𝑡 

∞

𝑟=0

𝜂𝑟 + 𝑔𝛼𝑖
𝑟 (𝑦, 𝑡)𝜉𝑟 47  

And the solution 𝜙 of (28) may have the form 

𝜙 𝑥, 𝑦, 𝑡, 𝜂, 𝜉 =  (𝜙𝑖 𝑥, 𝑡 

∞

𝑖=0

𝜂𝑖 + 𝜓𝑖(𝑦, 𝑡)𝜉𝑖 )       48  

For fixed , 𝑦, 𝑡 , we consider functions of 𝜂 and 𝜉 respectively as follows: 

𝐶 𝜂, 𝜉 = cos 𝜙 = cos   (𝜙𝑖

∞

𝑖=0

𝜂𝑖 + 𝜓𝑖𝜉
𝑖)  49  

𝑆 𝜂, 𝜉 = sin 𝜙 = sin   (𝜙𝑖

∞

𝑖=0

𝜂𝑖 + 𝜓𝑖𝜉
𝑖)  50  

From relations (49) and (50), we have  

 𝐶 0,0 = cos 𝜙0 + 𝜓0 ;

𝑆 0,0 = sin 𝜙0 + 𝜓0 
  

𝑑𝑟𝐶

𝑑𝜂𝑟
 0, 𝜉 = −(𝑟 − 1)!  

𝑟 − 𝛼

𝛼!

𝑑𝛼𝐶

𝑑𝜂𝛼
(

𝑟−1

𝛼=0

0, 𝜉)𝜙𝑟−𝛼 51  

𝑑𝑟

𝑑𝜂𝑟
 0, 𝜉 = (𝑟 − 1)!  

𝑟 − 𝛼

𝛼!

𝑑𝛼𝐶

𝑑𝜂𝛼
(

𝑟−1

𝛼=0

0, 𝜉)𝜙𝑟−𝛼     , for  𝑟 ≥ 1                     

𝑑𝑟𝐶

𝑑𝜉𝑟
 𝜂, 0 = −(𝑟 − 1)!  

𝑟 − 𝛼

𝛼!

𝑑𝛼𝑆

𝑑𝜉𝛼
(

𝑟−1

𝛼=0

𝜂, 0)𝜓𝑟−𝛼 52  

𝑑𝑟𝑆

𝑑𝜉𝑟
 𝜂, 0 = (𝑟 − 1)!  

𝑟 − 𝛼

𝛼!

𝑑𝛼𝐶

𝑑𝜉𝛼
(

𝑟−1

𝛼=0

𝜂, 0)𝜓𝑟−𝛼     , for  𝑟 ≥ 1                      

Finally, we define the following functions of 𝑥, 𝑦 , 𝑡 : 

𝐺𝑟
𝛼𝑖 =  2𝑟

𝛼 − 3𝑟
𝛼  

𝑑𝑖−𝛼𝐶

𝑑𝜂𝑖−𝛼
 0, 𝜉 −  2𝑟

𝛼 + 3𝑟
𝛼  

𝑑𝑖−𝛼𝑆

𝑑𝜂𝑖−𝛼
 0, 𝜉 , 

𝐿𝑟
𝛼𝑖 =  2𝑟

𝛼 − 3𝑟
𝛼  

𝑑𝑖−𝛼𝑆

𝑑𝜂𝑖−𝛼
 0, 𝜉 +  2𝑟

𝛼 + 3𝑟
𝛼  

𝑑𝑖−𝛼𝐶

𝑑𝜂𝑖−𝛼
 0, 𝜉 , 

𝐹2𝑟 =  4𝑟
2 + 5𝑟

2 + 6𝑟
2 − 1𝑟

2  + 𝐿𝑟
22 ,         𝑟 = 1,3 53  

𝐹3𝑟 =  4𝑟
3 + 5𝑟

3 + 6𝑟
3 − 1𝑟

3  + 𝐿𝑟
33 ,         𝑟 = 1,3 

𝐹𝑃𝑟 =  4𝑟
𝑃 + 5𝑟

𝑃 + 6𝑟
𝑃 − 1𝑟

𝑃  +  
𝑃 − 𝑚

𝑚!
𝐺𝑟

0𝑚 𝜙𝑃−𝑚 +  
1

(𝑃 − 𝑚)!
𝐿𝑟

𝑚𝑃

𝑃

𝑚=1

𝑃−1

𝑚=1

, 𝑟 = 1,3 

𝐺′
′

𝑟
𝛼𝑖 =  𝑔2𝑟

𝛼 − 𝑔3𝑟
𝛼  

𝑑𝑖−𝛼𝐶

𝑑𝜉𝑖−𝛼
 𝜂, 0 −  𝑔2𝑟

𝛼 + 𝑔3𝑟
𝛼  

𝑑𝑖−𝛼𝑆

𝑑𝜉𝑖−𝛼
 𝜂, 0 , 
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𝐿′
′

𝑟
𝛼𝑖 =  𝑔2𝑟

𝛼 − 𝑔3𝑟
𝛼  

𝑑𝑖−𝛼𝑆

𝑑𝜉𝑖−𝛼
 𝜂, 0 +  𝑔2𝑟

𝛼 + 𝑔3𝑟
𝛼  

𝑑𝑖−𝛼𝐶

𝑑𝜉𝑖−𝛼
 𝜂, 0 , 

𝐹2𝑟
′ =  𝑔4𝑟

2 + 𝑔5𝑟
2 + 𝑔6𝑟

2 − 𝑔1𝑟
2  + 𝐿𝑟

22 54  
𝐹3𝑟

′ =  𝑔4𝑟
3 + 𝑔5𝑟

3 + 𝑔6𝑟
3 − 𝑔1𝑟

3  + 𝐿𝑟
33 

𝐹𝑞𝑟
′ =  𝑔4𝑟

𝑞
+ 𝑔5𝑟

𝑞
+ 𝑔6𝑟

𝑞
− 𝑔1𝑟

𝑞  +  
𝑞 − 𝑠

𝑠!
𝐺𝑟

0𝑠𝜓𝑞−𝑠 +  
1

(𝑞 − 𝑠)!
𝐿𝑟

𝑠𝑞

𝑞

𝑠=1

𝑞−1

𝑠=1

, 𝑟 = 2,3 

Where each of 𝛼, 𝑖, 𝑝, 𝑞 is non- negative integer such that 𝑖 ≥ 𝛼: 𝑝, 𝑞 ≥ 4   , and 𝑟 = 1,2,3. 
It is easy to see that the functions 𝐺′

′
𝑟
𝛼𝑖  and 𝐿′

′
𝑟
𝛼𝑖  depend above depend on 𝜙0 , 𝜙1 , … , 𝜙𝑖−𝛼 . Whears the functions 

𝐺′
′

𝑟
𝛼𝑖  and 𝐿′

′
𝑟
𝛼𝑖  depend on 𝜓0 , 𝜓1 , …… , 𝜓𝑖−𝛼  

Also, the functions (𝐹2𝑟 , 𝐹3𝑟)and (𝐹𝑝𝑟 ) depend on𝜙0and 𝜙1 , 𝜙2 , …… , 𝜙𝑝−1 , respectively, but the functions 

(𝐹2𝑟
′ , 𝐹3𝑟

′ )and (𝐹𝑞𝑟
′ ) depend on 𝜓0  and 𝜓1 , 𝜓2 , …… , 𝜓𝑞−1 , respectively.  

Under the above notation, we obtain the following corollary. 

 

Corollary 4.1 

Suppose 𝑓𝛼𝑖  𝑥, 𝑦, 𝑡, 𝜂, 𝜉 , 1 ≤ 𝛼 ≤ 6  , 1 ≤ 𝑖 ≤ 3 , be differentiable functions of 𝑥, 𝑦, 𝑡, analytic at 𝜂 = 0 , 𝜉 = 0 

that satisfy(27). Then, in view of the above notation, the following statements hold. 

(i) The solution 𝜙 of (28) is analytic at 𝜂 = 0 , 𝜉 = 0  ; 𝜙0  and𝜓0 are determined by. 

 𝜙0,𝑥 =  41
0 + 51

0 + 61
0 − 11

0  + 𝐿1
00 ,

𝜙0,𝑡 =  43
0 + 53

0 + 63
0 − 13

0  + 𝐿3
00 ,

  55  

 

 𝜓0,𝑦 =  𝑔42
0 + 𝑔52

0 + 𝑔62
0 − 𝑔12

0  + 𝐿′
′

2
00 ,

𝜓0,𝑡 =  𝑔43
0 + 𝑔53

0 + 𝑔63
0 − 𝑔13

0  + 𝐿′
′

3
00

  56  

And, for 1 ≥ 𝑖 , 𝜙𝑖and𝜓𝑖 are recursively determined by the system 

 𝜙𝑖 ,𝑥 = 𝐺1
00𝜙𝑖 + 𝐹𝑖1;

𝜙𝑖 ,𝑡 = 𝐺3
00𝜙𝑖 + 𝐹𝑖3

  57  

 𝜓𝑖,𝑦 = 𝐺2
00𝜓𝑖 + 𝐹𝑖2;

𝜓𝑖,𝑡 = 𝐺3
00𝜓𝑖 + 𝐹𝑖3

  58  

(ii) For any such solution 𝜙, equation(48) and any integer 𝑖 ≥ 0 

𝛽𝑖 =  
1

 𝑖 − 𝛼 !
 𝐺1

𝛼𝑖𝑑𝑥 + 𝐺′
′

2
𝛼𝑖 𝑑𝑦 +  𝐺3

𝛼𝑖 + 𝐺′
′

3
𝛼𝑖  𝑑𝑡 

𝑖

𝛼=0

 59  

Are closed one- forms. 

The proof of the corollary follows with somehow straight forward calculations from equations (48) → (54) and 

equations (28) with the introduced notations.  

Now, if we consider a non-linear evolution equation for 𝑢(𝑥, 𝑦, 𝑡)which describes a 3–dim. 

P.S.P., then there exist functions 𝑓𝛼𝑖 , 1 ≤ 𝛼 ≤ 6  , 1 ≤ 𝑖 ≤ 3 , depending on 𝑢(𝑥, 𝑦, 𝑡) and its derivatives, such 

that, for any solution 𝑢 of the evolution equation, 𝑓𝛼𝑖  satisfy (27). So, it follows from theorem (3) that equations 

(28) are completely integrablefor  . If we consider 𝑓𝛼𝑖  to be analytic functions of parameters 𝜂, 𝜉 then we can 

find that the solutions 𝜙 of (28) and the 1-forms given by (29), are analytic in 𝜂, 𝜉 where their coefficients 

𝜙𝑖  , 𝜓𝑖 and 𝛽𝑖 , as functions of 𝑢, are determined by  (55) → (59).  The ciosed 1-forms 𝛽𝑖  provide a sequence of 

conservation laws for the evolution equation, with equations given by. 

𝑄𝑖 =  
1

 𝑖 − 𝛼 !
 𝐺3

𝛼𝑖 + 𝐺′
′

3
𝛼𝑖 + 𝐺′

′
2
𝛼𝑖  ,

𝑖

𝛼=0

 

𝑅𝑖 =  
1

 𝑖 − 𝛼 !
 𝐺3

𝛼𝑖 + 𝐺′
′

3
𝛼𝑖 + 𝐺′

′
1
𝛼𝑖  ,

𝑖

𝛼=0

 60  

𝑇𝑖 =  
1

 𝑖 − 𝛼 !
 𝐺1

𝛼𝑖 + 𝐺2
𝛼𝑖  ,

𝑖

𝛼=0

 

with 

𝑄𝑖 ,𝑥 + 𝑅𝑖 ,𝑥 + 𝑇𝑖 ,1 = 0    ,    𝑖 ≥ 0 

       For Bäcklund transformations of the equation E which describes P.S.P., we remark that the angle 𝜙 of a 

pseudospherical line congruence is determined by the system of equations (28). If we suppose that (28) is 

equivalent to a system of the form: 
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𝑢 = 𝐺 𝜙                                                                                                 (61) 

𝐿 𝜙 = 0                                                                                                (62) 

Then given a solution u of E the system (28) is integrable and ϕis a solution of (62), then 𝑢 defined by the 

equation (61) will be a solution for𝐸. However, it still needs more work to be done. 

 

V. Conclusion 
In this paper, we generalized Bäcklund transformations and conservation laws for evolution equations in higher 

dimensions. 
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