Examination of Proper Randomness of the Numbers generated by L.H.C. Tippett (1927)

B.K. Sarmah*, D. Chakrabarty,

*Department of Statistics, Bholanath College, Dhubri, Assam, India. Department of Statistics, Handique Girls' College, Assam, India

Abstract: Proper randomness of the numbers generated by L.H.C Tippett has been examined. By B.K. Sarmah and D. Chakrabarty in Dec.. 2014, IJESRT Vol-3, issue 12, by applying the Chi-square test for testing the significance of difference between observed frequency of each of the digit in the table and the corresponding theoretical (expected) frequency.

In this paper, the randomness of the digits have been tested by applying t-test for amount of deviation of the observed number of occurrences and the theoretical(expected) number of occurrences of the respective digits and hence the numbers. The test shows that the numbers generated by L.H.C Tippett deviated significantly in most the observations from proper randomness.

Keywords: Random number generated by L.H.C Tippett, students t-test, testing of randomness.

I. Introduction

Drawing of random sample has been found to be vital or basic necessity in most of the researches and investigations especially of applied sciences. The convenient practical method of selecting a random sample consists of the use of Table of Random Numbers. Existing tables of random numbers, used commonly, are the ones due to Fisher and Yates (Constructed in 1938), L.H.C. Tippett (Constructed in 1927), Kendall and Babington Smith (Constructed in 1939) and Rand Corporation (constructed in 1955)

The random number tables have been subjected to various statistical tests of randomness. These tests have limitations to decide on proper randomness of the numbers occurring in the corresponding tables. As a Consequence it is not guaranteed that the numbers in each of these tables are properly random. This leads to think of testing the proper randomness of the numbers in this tables. In the present study, an attempt has been made to test this. The study, here, has been made on the testing of randomness of the table of numbers constructed by L.H.C Tippett only.

By the existing statistical methods, it is only possible to know whether the randomness of the numbers of a table is proper. It is only possible to know whether the deviation of the degree of its randomness is significant.

In order to test the proper randomness of the random numbers table constructed by Tippett t-test has been applied.

II. Materials and Methods:

Tippetts random number table consists of a total of 41600 digits arranged in 10,400 four digited numbers

To know whether the number in random numbers table of Tippetts are proper or not student's t-test for amount of deviation is applied.

Let 'd' be the variable denoting the measure of the deviation (amount of deviation) of the observed number of occurrences of the respective digit.

Suppose, di(i=0,1....9) are independent observed values of the deviation variables.

If the table of number is random then di=0, for all i, in the ideal situation . However, due to chance error, di may assume non zero value.

Thus the values of di's are due to chance error but not due to any assignable error if the table is random.

The chance variables are i.i.d. $N(o, \sigma)$ variables.

Thus testing of randomness is equivalent to testing of the hypothesis H_o

That $E(d_i) = 0$, for all i,

Let us consider the statistic t for testing $\ensuremath{H_{o}}$

i.e.
$$t = \frac{\overline{d} - E(\overline{d})}{S.E.(\overline{d})} \sim t_{n-1}$$

where,

$$\overline{d}_{=}\frac{1}{n}\sum_{i=1}^{n}d_{i}$$

We have,

$$E(\overline{d}) = \frac{1}{n} \sum E(d_i) = 0$$

Also,

$$var(\overline{d}) = \frac{\sigma^2}{n}, \ \sigma^2$$
 is unknown

However unbiased estimate of σ^2 is

When H_o is true

$$s^{2} = \frac{1}{n-1} \sum (d_{i} - \overline{d})^{2}$$
$$= \frac{1}{n-1} \left[\sum d_{i}^{2} - \frac{(\sum d_{i})^{2}}{n} \right]$$

Which implies unbiased estimate of

$$var \ \overline{(d)} = \frac{s^2}{n}$$

and $S.D. \ \overline{(d)} = \frac{s}{\sqrt{n}}$

Therefore statistic t for testing $H_{\rm o}$ becomes

$$t = rac{d}{s/\sqrt{n}}$$
 when H_o is true and this t follows student's t distribution with (n-1) d.f

III. Steps in the Method:

In order to test the proper randomness of the numbers of L.H.C Tippett table one is required to proceed with the following steps:

Step2: In the second step, compute the theoretical expected frequencies. This is done by dividing trails i.e. 1^{st} 2000 and 20^{th} 2000 and last 1600 trails by 10 assuming that the digit 0 to 9 occurs equal number of times.

Step 3: In the third step, compute the amount of deviation of observed occurrences of digits and expected occurrences of digits.

Step 4: In the fourth step, compute the value of student's t for each of the trails.

Step 5: Compare the t value with corresponding theoretical values.

Step 6: Draw conclusion as per the result obtained in step 5.

IV. Results and discussion:

The results obtained on operating the steps (Nos. 1 to 5) on the random numbers table constructed by L.H.C Tippett have been observed. It is observed from the table that occurrences of digit 0 to 9 are not equal.

V. Conclusion:

From the table prepared for observed frequency of occurrence of digits along with respective expected frequency (shown in bracket) it is observed that the calculated value of t is significant in most of the cases except 1^{st} 2000, 10^{th} 2000, 17^{th} 2000 and 1600^{th} trails. That is calculated value of 't' have been found to be significant on comparing them with the corresponding theoretical values for most of the cases (trails).

Hence it may be concluded that the table of numbers constructed by L.H.C Tippett deviates significantly from proper randomness.

Therefore L.H.C Tippett Random Numbers Table Cannot be treated as properly random.

VI. Table

Observed frequency of occurrence of digits along with the respective expected frequency (Shown in bracket), amount of deviation (di) and the values of students 't' statistic from L.H.C Tippett.

Digits	0	1	2	3	4	5	6	7	8	9	t-value
1 st 2000	1	20	10	6	2	6	3	2	30	1	2.65
	201 (200)	225 (200)	210 (200)	194 (200)	202 (200)	194 (200)	203 (200)	202 (200)	170 (200)	199 (200)	*
2 ND 2000	8	8	4	2	16	33	10	6	27	16	3.56
	208 (200)	208 (200)	196 (200)	198 (200)	184 (200)	167 (200)	190 (200)	206 (200)	227 (200)	216 (200)	
3 rd 2000	5	19	11	4	12	6	11	27	5	24	4.15
	205(200)	219 (200)	211 (200)	204(200)	212 (200)	194 (200)	211 (200)	173 (200)	195 (200)	176 (200)	
4 th 2000	4	3	17	0	8	4	6	14	4	2	3.57
	204 (200)	197 (200)	217 (200)	200 (200)	192 (200)	196 (200)	206(200)	186 (200)	204 (200)	198 (200)	
5 th 2000	2	13	1	9	17	22	12	11	1	6	3.99
	198 (200)	213 (200)	199 (200)	191 (200)	183 (200)	222 (200)	188 (200)	211 (200)	201 (200)	194 (200)	
6 TH 2000	25	26	7	5	3	25	10	10	4	1	4.14
	175 (200)	174 (200)	193 (200)	205 (200)	203 (200)	225 (200)	210 (200)	210 (200)	204 (200)	201 (200)	
7 [™] 2000	1	7	2	19	9	23	8	13	6	2	3.99
	201 (200)	207 (200)	198 (200)	219 (200)	191 (200)	187 (200)	192 (200)	213 (200)	194 (200)	198 (200)	
`8 [™] 2000	26	17	4	12	12	15	1	2	10	1	4.14
	226 (200)	183 (200)	196 (200)	188 (200)	212 (200)	185 (200)	201 (200)	198 (200)	210 (200)	201 (200)	
9 TH 2000	13	6	6	11	4	3	10	18	17	8	5.37
	187 (200)	194 (200)	206 (200)	211 (200)	204 (200)	197 (200)	210 (200)	182 (200)	217 (200)	192 (200)	
10 TH 2000	9	1	8	24	2	12	6	3	26	21	3.31
	209 (200)	201 (200)	208 (200)	224 (200)	202 (200)	212 (200)	194 (200)	197 (200)	174 (200)	179 (200)	*
11 TH 2000	11	4	10	1	9	7	11	18	23	12	4.42
	211 (200)	196 (200)	210 (200)	199 (200)	209 (200)	193 (200)	211 (200)	182 (200)	177 (200)	212 (200)	
12 th	10	2	20	5	29	19	18	14	18	3	5.43
2000	190 (200)	198 (200)	180 (200)	195 (200)	229 (200)	219 (200)	182 (200)	186 (200)	218 (200)	203 (200)	
13 TH 2000	3	5	6	11	10	1	22	12	2	30	3.64
	203 (200)	195 (200)	206 (200)	211 (200)	190 (200)	201 (200)	178 (200)	188 (200)	198 (200)	230 (200)	
14 TH 2000	22	4	5	15	8	25	7	8	4	21	7.48
	222(200)	196 (200)	205 (200)	215 (200)	205 (200)	175 (200)	207 (200)	192 (200)	204 (200)	179 (200)	
15 TH	14	23	15	9	7	7	22	9	11	13	7.48
2000	186 (200)	187 (200)	215 (200)	209 (200)	207 (200)	207 (200)	178 (200)	209 (200)	189 (200)	213 (200)	
16 th 2000	3	17	3	5	5	8	2	8	6	7	4.19
	203 (200)	183 (200)	203 (200)	205 (200)	205 (200)	208 (200)	202 (200)	192 (200)	206 (200)	193 (200)	
17 th 2000	12	38	3	13	25	2	21	3	4	13	2.83
	212 (200)	162 (200)	197 (200)	213 (200)	225 (200)	198 (200)	179 (200)	197 (200)	204 (200)	213 (200)	*
18 th 2000	27	7	11	0	15	9	5	29	14	17	4.04
	227 (200)	207 (200)	211 (200)	200(200)	185 (200)	191 (200)	205 (200)	171 (200)	186 (200)	217 (200)	
19 th 2000	20	12	19	23	12	24	2	5	28	13	5.44
	220 (200)	212 (200)	181 (200)	177 (200)	212 (200)	176 (200)	202 (200)	205 (200)	228 (200)	187 (200)	
20 th 2000	11	0	1	13	6	11	11	6	23	2	3.93
	211 (200)	200 (200)	199 (200)	187 (200)	194 (200)	189 (200)	189 (200)	206 (200)	223 (200)	202 (200)	
Last 1600	15	24	15	0	13	8	2	2	1	0	2.83
	175 (160)	136 (160)	175 (160)	160 (160)	147 (160)	168 (160)	162 (160)	158 (160)	159 (160)	160 (160)	*

Examination of Proper Randomness of the Numbers generated by L.H.C. Tippett (1927)

*Indicates the values which are less than theoretical values of t 0.01.8 = 3.36

References

- [1]. Cochran, W.G. (1940): "Sample survey", Cambridge University press.
- [2].
- [3].
- Chakrabarty, D. (2004): "A theoretical definition of probability based on common sense", Bulletin of pure and applied sciences, 23 E-2, 343-349. Chakrabarty, D. (2005): "Probability;Link between classical definition and Empirical definition", J. Ass. Sc. Soc., 45,13-18. Chakrabarty, D. (2006): "Non equally likely outcomes: The classical definition of probability", Bulletin of pure and applied sciences, 25, E-2, 471-[4]. 481.
- Chakrabarty, D. (2007): "Empirical definition of probability : Special case of its Theoretical definations". Int. J. Agricult. Stats. Sci., 3(1), 261-267. Chakrabarty, D. (2008): "Bernolli's definition of probability: Special case of its Chakrabarty definition", Int. J. Agricult. Stats. Sci., 4(1), 23-267. [5].
- [6].
- [7]. Cochran (1940): "A survey of Experimental design", Mimeo, U.S.D.A.
- [8]. Fisher, R. A. (1938): Statistical table for biological, agricultural and medical research, 6th edition (1982), Longman group limilted, England, 37-38 & 134-139.
- Kendall, M.G. and B. B. Simith (1938): Randomness and Random sampling numbers, Jour. Roy Sat. Soc., 103, 147-166. [9].
- [10]. [11].
- Rand Corporation (1955): A million random digits free press, Glenoe, III. Snedecor, G.W. and W. G. Cochran (1967): "Statistical methods, Lowa state university press, Ames, Lowa, 6th edition.
- Tippet (1927). "Random number tables" tracts of computer, No.-15, Cambridge University press. [12].
- [13]. Von Mises R. (1939): "Probability, Statistics and Truth" Macmillian.
- [14].
- Sarmah, B.K and Chakrabarty, D (2014): "Testing of Randomness of Number generated by Fisher and Yates", IJESRT, 3(11), 632-636. Sarmah, B.K and Chakrabarty, D (2014): "Examination of Proper Randomness of the Number Generated by L.H.C Tippett, IJESRT, 3(12), 661-668. [15].
- Sarmah, B.K and Chakrabarty, D (2015): Examination of Proper Randomness of the Number Generated by Kendall and Babington Smith. IJESRT [16]. 4(2) Febuary/15, 260-282. B.K. Sarmah*, D. Chakrabarty, N. Barman (2015): Examination of Proper Randomness of the Number Generated by Rand Corporation (1955), IJESM
- [17]. 5(1): January- March, 2015, 97-119.
- [18]. Sarmah, B.K and Chakrabarty, D (2015): Testing of proper Randomness of the numbers generated by Fisher and Yates (Applying t-test) accepted by ABJMI for Vol-7, issue-1, May,2015