
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 3 Ver. III (May - Jun. 2015), PP 30-37 
www.iosrjournals.org  

DOI: 10.9790/5728-11333037                                      www.iosrjournals.org                                            30 | Page 

 

  Bounds on generalized fuzzy entropy measure 
                                                                                        

Mohd Javid Dar and M.A.K. Baig 
P.G. Department of Statistics University of Kashmir, Hazratbal, Srinagar-190006 (INDIA) 

  

Abstract: In this communication, we propose a new generalized fuzzy entropy measure using segment 

decomposition and effective range and study its particular cases. Also some fuzzy coding theorems have been 

established.  

Keywords:- effective Range, segment Decomposition, Fuzzy set, Average Mean Length, Average Fuzzy Mean 

Length,   Generalized Fuzzy entropy, Information Bounds. 

AMS Subject Classification: 60E15, 62N05, 90B25, 94A17, 94A24.   

 

I. Introduction 
In coding theory, it is assumed that Q is a finite set of alphabets and there are D code characters. A 

codeword is defined as a finite sequence of code characters and a variable length code C of size K is a set of K 

code words denoted by c1 , c2 ,… , ck with lengths n1 , n2 ,… , nk  respectively. Without loss of generality it may be 

assumed that n1 ≤ n2 ≤ ⋯ ≤ nk . 
The channel, which is considered here, is not noiseless. In other words, the codes considered are error 

correcting codes. The criterion for error correcting is defined in terms of a mapping α, which depends on the 

noise characteristics of the channel. This mapping α is called the error admissibility mapping. Given codeword 

‘c’ and error admissibility α, the set of codeword’s received over the channel when c was sent, denoted by α c  
is the error range of c. 

Various kinds of error pattern can be described in terms of mapping α. In particular α may be defined as 

(Bernard & Sharma [1988]) 

                              αe c =  u|w c− u ≤ e , 

Where e is the random substitution error and  w c− u  is the Humming weight, i.e. the number of non-zero 

coordinates of c − u . It can be easily verified by Bernard and Sharma [1988] that the number of sequences in  

αe c  denoted as  αe c   is given by 

                              αe c  =   n
i
  D− 1 in

i=0 , where n is the length of cord word c. 

We may assume that α0 corresponds to the noiseless. In other words, if c is sent then c is received w.r.t.  α0. 

Moreover it is clear that   αe c   depends only on the length n of c when α and D are given. In noiseless coding, 

the class of uniquely decodable instantaneous codes is studied. It is known that these codes satisfy prefix 
property (Abramson [1963]). 

  In the same way Hartnett [1974] studied variables length code over noisy channel, satisfying the prefix 

property in the range. These codes are called α-prompt codes. Such codes have the property that they can 

decode promptly. 

Further, Burnard and Sharma [1988] gave a combinational information inequality that must necessarily 

be satisfied by code word lengths of prompt code codes. Two useful concepts, namely, segment decomposition 

and the effective range rα ci  of code words ci of length ni under error mapping α as the Cartesian product of 

ranges of the segment are also given by Bernard and Sharma [1988]. The numbers of sequences in effective 

range of ci denoted by  rα  ni
 depends only on α and ni . It is given that 

 rα  ni
=  α n1

 α n2
… α ni−ni−1

. 

Also, we adopt the notion α 0 = 1. Moreover, Bernard and Sharma [1988] obtained the following inequality 

 

Lemma 1.1: For any set of length n1 ≤ n2 ≤ ⋯ ≤ nk  
 rα  ni

=  rα  ni−1
.  rα  ni−ni−1

 

Proof: The proof easily follows from the definition of the effective range. 

We have 

                                                                      rα  ni
=  α n1

.  α n2−n1
… α ni−ni−1

 

And                                                               rα  ni−1
=  α n1

.  α n2−1 … α ni−1−ni−2
 

Therefore                                                     rα  ni
=  rα  ni−1

.  rα  ni−ni−1
 

 

Theorem 1.1: An α-prompt code with k code words of lengthn1 ≤ n2 ≤ ⋯ ≤ nk , satisfies the following 

inequality 
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                                                                                           rα  ni

k
i=1 D−ni ≤ 1                                                         

(1.1) 

Proof: Let Ni denote the number of code words of length i in the code. Then, since the range of the word of 

length one has to be disjoint, we have 

N1 ≤
q

 rα  1
=

q

 α 1
=

q

q
= 1 

Next, we know that for a code to be α-prompt, no sequence in the range of a code word can be prefix of any 

sequence in the range of another code word. Since N1 ≤ 1, if there are more than one code word and some noise 

effect is there, then we will not able to get any word of length one and we will have to consider words of length 

2 or more only. 

The first digit will be one of the code symbols, i.e. for forming words of larger than  N1 = 0 and the first 

position can be filled in just one way for purpose of uniformity of arguments at larger stages. We will say that 

the first position can be filled in   
D

 rα  1
− N1  ways. 

The number of symbols that may be added at the second position is at most 
D

 α 1
 which is equivalent to D

 rα  1

 rα  2
  

from Lemma 1.1 Thus, we will have 

N2 ≤  
D

 rα  1
− N1  D.

 rα  1
 rα  2

  

=
D2

 rα  2
− N1 . D

 rα  1
 rα  2

 

Now to form words of length 3, only those sequences of length 2 which are not code words can be accepted as 

permissible prefix. Their number is 

                                                                                                    
D2

 rα  2
− N1 . D

 rα  1

 rα  2
− N2 . 

Once again, the number of symbols that may be added in the third position is 
D

 α 1
. From Lemma 1.1, we can take                                                                           

D

 α 1
= D

 rα  2

 rα  3
. 

Thus,                                                                             N3 ≤  
D2

 rα  2
− N1D

 rα  1

 rα  2
− N2  D

 rα  2

 rα  3
                                                                                                                                                            

                                                                                            =
D3

 rα  3
− N1D2  rα  1

 rα  3
− N2D

 rα  2

 rα  3
 

We may proceed in the same manner to obtain results for various Ni ′s. For the last length nk , we will have 

Nnk
≤

Dn k

 rα  n k

− N1Dnk−1
 rα  1

 rα  n k

− N2Dnk−2
 rα  2

 rα  n k

 …  Nnk−1
D
 rα  n k−1

 rα  n k

. 

This can be written as          rα  i
k
i=1 NiD

−i ≤ 1. 

Changing the summation from the length 1, 2,… , nk  to the code word length n1 , n2,…,nk . The above inequality 

can be equivalently put as  rα  ni

k
i=1 D−ni ≤ 1, which proves the theorem. 

 

Remark 1.1: If the codes of constant length n are taken, then the average inequality (1.1) reduces to 
                      Hamming sphere packing bound (Hamming [1950]). 

 

Remark 1.2: If the channel is noiseless, the inequality (1) reduces to the well known Kraft inequality 

                     (Kraft [1949]). 

                    Bernard and Sharma [1990] have obtained a lower bound on average code word length for prompt 

code using a quantity similar to Shannon entropy. 

                Campbell [1965] considered a code length of order t defined by 

L t = 1
t logD   piD

tn i  

k

i=1

;  0 < t < ∞                                                     (1.2) 

An application of L-Hospitals rule shows that 

L 0 = lim
t→0

L t =  nipi

k

i=1

                                                                                  (1.3) 

For large t,  piD
tn ik

i=1 ≅ pjD
tn j , where nj  is the largest of the number  n1 , n2 ,… , nk . Moreover, L t   is a 

monotonic non-decreasing function of t (Beckenbach and Bellman [1961]).Thus L(0) is the conventional 

measure of mean length and L(∞) is the measure which would be used if the maximum length were of prime 

importance. 
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Definition: Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets were introduced  by 

Lotfi A. Zadeh  in (1965) as an extension of classical notion of set. In classical set theory, the membership of the 

elements in a set is assessed in binary terms according to a bivalent condition—an element either belongs or 

does not belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the membership of 

elements in a set; this is described with the aid of the membership function valued in the real unit interval [0,1] 

expressed as μA xi ∶ U → [0,1], where U is universe of discourse which represents the grade of membership of 

x ∈ U in A as follows 

μA xi =  
0, if x ∉ A and there is no ambiguity
1, if x ∈ A and there is no ambiguity

0,   if maximum ambiguity, i. e. x ∈ A or x ∉ A

  

      

 Let                                                          A =  xi: 0 < μA xi < 1,∀i = 1, 2,… , n  
                                                                B =  xi: 0 < μB xi < 1,∀i = 1, 2,… , n   
and                                                         U =  ui : ui > 0,∀i = 1, 2,… , n            
be two fuzzy sets and U, the set of utilities corresponding to fuzzy membership function μA xi  for any event E. 

Corresponding to the above membership functions, we have the following fuzzy information scheme.  

F. S. =  

E1              E2 … En

μA x1 μA x2 … μA xn 

μB x1 μB x2 … μB xn 
u1      u2 …        un

  

 

2.1    Lower Bound on Code Word Length 𝐭 
Suppose that a person believe that the degree of membership of ith  event is μB xi  and the code with code 

length ni   has been constructed accordingly. But contrary to his belief the true degree of membership is μA xi .  
        We will now obtain a lower bound of mean length L(t) under the condition 

  μA xi +  1 − μA xi   
k
i=1  μB

−1 xi +  1 − μB xi  
−1
  rα  ni

D−ni ≤ 1                (2.1)   

 

Remark 2.1: For a noiseless channel   rα  ni
= 1 ∀ i = 1, 2,… , k. The inequality (2.1) reduces to the fuzzy 

                        Inequality corresponding to Autar and Soni [1975]                     

  μA xi +  1 − μA xi   
k
i=1  μB

−1 xi +  1 − μB xi  
−1
 D−ni ≤ 1                           (2.2)  

 

Remark 2.2: Moreover, if μA xi +  1 − μA xi  = μB xi +  1 − μB xi   for each i, (2.2) reduces to Kraft 

[1949] inequality  

                                         D−nik
i=1 ≤ 1                                                                                           (2.3)  

Theorem 2.1: Let a source S have k messages symbols S1 , S2 ,… , Sk  with message degree of membership 

μA x1 , μA x2 ,… , μA xk ; μA xi ≥ 0. Let an α-prompt code encode these messages into a code alphabet of 

D symbols and let the length of the code word corresponding to the messages Si be ni. Then the code length of 

order t, L(t), shall satisfy the inequality 

              L t ≥
1

1−β
logD   μA

β  xi +  1 − μA xi  
β
   rα  ni

 
1−βk

i=1                                  (2.4)  

 

Proof: In the Holder’s inequality 

                   xi
pk

i=1  
1

p   yi
qk

i=1  
1

q 
≤  xiyi

k
i=1                                                                           (2.5)  

With the equality if and only if xi = cyi, where c is a positive number, 1 p + 1
q = 1 and p < 1. We note the 

direction of Holder’s inequality is the reverse of the usual one as  p < 1 (Backenbach and Bellman [1961]). 

       Substituting 

 p = −t, q = 1 − β, x =  μ
A

−1

t  xi +  1 − μA xi  
−1

t  D−ni  and yi =  μ
A

1

t  xi +  1 − μA xi  
1

t  rα  ni
, 

 we get  

    μ
A

−1

t  xi +  1 − μA xi  
−1

t  D−ni  

−t

k
i=1  

−1
t 

    μ
A

1

t  xi +  1 − μA xi  
1

t  rα  ni
 

1−β

k
i=1  

1
 1−β  

    ≤

 D−nik
i=1  rα  ni

  

 or  
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   μA xi +  1 − μA xi   Dtn ik
i=1  

−1
t 

   μ
A

1−β

t  xi +  1 − μA xi  
1−β

t     rα  ni
 

1−β

k
i=1  

1
 1−β  

        

≤  D−nik
i=1  rα  ni

  

      Moreover, 1 p + 1
q = 1,⇒ β =  1 + t −1, with this substitution the above inequality reduces to  

 

   μA xi +  1 − μA xi   Dtn ik
i=1  

−1
t 

    μA
β  xi +  1 − μA xi  

β
   rα  ni

 
1−β

k
i=1  

1
 1−β  

  

            ≤  D−nik
i=1  rα  ni

 

Using inequality of Bernard and Sharma [1988], viz.             D−tn ik
i=1  rα  ni

≤ 1 

Which gives 

   μA xi +  1 − μA xi   Dtn ik
i=1  

1
t 

≥     μA
β  xi +  1 − μA xi  

β
   rα  ni

 
1−β

k
i=1  

1
 1−β  

  

or 

            
1

t
logD    μA xi +  1 − μA xi   Dtn ik

i=1  ≥
1

1−β
logD     μA

β  xi +  1 − μA xi  
β
   rα  ni

 
1−β

k
i=1    

Hence                                                                             

L t ≥
1

1−β
logD     μA

β  xi +  1 − μA xi  
β
   rα  ni

 
1−β

k
i=1                     (2.6) 

The quantity 
1

1−β
logD     μA

β  xi +  1 − μA xi  
β
   rα  ni

 
1−β

k
i=1   is similar to fuzzy entropy corresponding to 

Renyi’s entropy of order β [1961]. 

It can be easily verified that the quantity in (2.4) hold if and only if 

ni = −β logD  μA xi +  1 − μA xi   + logD     μA
β  xi +  1 − μA xi  

β
   rα  ni

 
1−β

k
i=1     

 

Particular Cases:  

a) For t = 0 and β = 1, the inequality (2.4) reduces to the  fuzzy inequality corresponding to the Bernard 

and Sharma [1990] 

n ≥   μA xi +  1 − μA xi   
k
i=1 logD  

  rα  n i
 

  μA  xi + 1−μA  xi   
k
i=1

 

1−β

  

b)  For noiseless channel,  rα  ni−1
 ∀i, the inequality (2.4) reduces to the fuzzy inequality corresponding to 

the Campbell [1965] 

L(t) ≥ Hβ A ,  

              where Hβ A  is the fuzzy entropy corresponding to the Renyi’s entropy of order β 

c) If the channel is noiseless and t = 0, β = 1, then the inequality reduces the fuzzy entropy 

corresponding to the well known Shannon’s [1948] inequality n ≥ H A , where H A  is the fuzzy entropy 

corresponding to the Shannon’s entropy. 

 

 Theorem 2.2: . Let an α-prompt code encode the K messages S1 , S2 ,… , Sk into a code alphabet of D symbols 

and let the length of the corresponding encoded messages Si be ni. Then the code length of order t, L(t) shall 
satisfy the inequality. 

 

L t ≥
1

1−β
logD    μA xi +  1 − μA xi    μB

β−1 xi +  1 − μB xi  
β−1

   rα  ni
 

1−βk
i=1             (2.7)  

With equality if and only if 

ni =  − log  rα  ni
 
−β
 μB

β xi +  1 − μB xi  
β
 

+ logD   μA xi +  1 − μA xi   

k

i=1

 μB
β−1 xi  +  1 − μB xi  

β−1
   rα  ni

 
1−β

 

where           L t =  
1

t
logD   μA xi +  1 − μA xi   

k
i=1 Dtn i . 

Proof: In the Holder’s inequality 

  xi
pk

i=1  
1

p   yi
qk

i=1  
1

q 
≤  xiyi

k
i=1   

With the equality if and only if  
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xi
p

= cyi
q

, where c is a positive number, 1 p + 1
q = 1 and p < 1. We note that direction of Holder’s inequality 

is the reverse of the usual one as p < 1 (Beckenbach and Bellman [1961]). 

substituting 

                       p = −t, q = tβ, xi =  μ
A

−1

t  xi +  1 − μA xi  
−1

t  D−ni  

 and             yi =  μ
A

1

tβ xi +  1 − μA xi  
1

tβ  μB
−1 xi +  1 − μB xi  

−1
  rα  ni

,   

We get 

   μA xi +k
i=1

1−μAxiDtni−1ti=1kμAxi+1−μAxiμB−tβxi+1−μBxi−tβrαnitβ1tβ  

≤   μA xi +  1 − μA xi    μB
−1 xi +  1 − μB xi  

−1
 n

i=1  rα  ni
D−ni   

Moreover, 1 p + 1
q = 1,⇒ β =  1 + t −1, with this substitution the above inequality reduces to 

 

   μA xi +  1 − μA xi   Dtn i

k

i=1

 

−1
t

    μA xi +  1 − μA xi    μB
β−1 xi 

k

i=1

+  1 − μB xi  
β−1

   rα  ni
 

1−β
  

1
1−β

 

≤   μA xi +  1 − μA xi    μB
−1 xi +  1 − μB xi  

−1
 n

i=1  rα  ni
D−ni    

this gives 

   μA xi +  1 − μA xi   Dtn ik
i=1  

1

t
≥

    μA xi +  1 − μA xi    μB
β−1 xi +  1 − μB xi  

β−1
   rα  ni

 
1−β

 k
i=1  

1

1−β
  

or     
1

t
logD    μA xi +  1 − μA xi   Dtn ik

i=1  ≥ 

                                                          
1

1−𝛽
𝑙𝑜𝑔𝐷     𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖    𝜇𝐵

𝛽−1 𝑥𝑖 +  1 − 𝜇𝐵 𝑥𝑖  
𝛽−1

   𝑟𝛼  𝑛 𝑖 
1−𝛽

 𝑘
𝑖=1   

Hence, 

                                                  𝐿(𝑡) ≥  
1

1−𝛽
𝑙𝑜𝑔𝐷     𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖    𝜇𝐵

𝛽−1 𝑥𝑖 +  1 −𝑘
𝑖=1

𝜇𝐵𝑥𝑖𝛽−1𝑟𝛼𝑛𝑖1−𝛽  

The quantity 
1

1−𝛽
𝑙𝑜𝑔𝐷     𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖    𝜇𝐵

𝛽−1 𝑥𝑖 +  1 − 𝜇𝐵 𝑥𝑖  
𝛽−1

   𝑟𝛼  𝑛𝑖 
1−𝛽

 𝑘
𝑖=1   is 

equivalent to fuzzy inaccuracy corresponding to Nath’s inaccuracy [1970] of order 𝛽.  

 

Particular Cases: 

For 𝑡 = 0 𝑎𝑛𝑑 𝛽 → 1, the inequality (2.7) reduces to                                        𝑛 ≥   𝜇𝐴 𝑥𝑖 +  1 −𝑘
𝑖=1

𝜇𝐴𝑥𝑖𝑙𝑜𝑔𝐷𝑟𝛼𝑛𝑖𝜇𝐵𝑥𝑖+1−𝜇𝐵𝑥𝑖                                                       (2.8) 

 For noiseless channel,   𝑟𝛼  𝑛𝑖 = 1; ∀𝑖, the inequality (2.8) reduces to  

                              

𝑛 ≥   𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   
𝑘
𝑖=1 𝑙𝑜𝑔𝐷  𝜇𝐵 𝑥𝑖 +  1 − 𝜇𝐵 𝑥𝑖   = 𝐻 𝜇𝐴 𝑥𝑖 ,  𝑥𝑖               (2.9) 

Where 𝐻 𝜇𝐴 𝑥𝑖 ,  𝑥𝑖    is a fuzzy measure of inaccuracy corresponding to Kerridge [1961] measure of 

inaccuracy. 

a) When  𝜇𝐴 𝑥𝑖 = 𝜇𝐵 𝑥𝑖 , then the R.H.S. of (2.9) reduces to the fuzzy inequality corresponding to the 

Shannon [1948] measure of inaccuracy. 

b) For noiseless channel   𝑟𝛼  𝑛𝑖 = 1;  ∀𝑖, the inequality (2.7) reduces to fuzzy inequality corresponding 

to Autar and Soni [1975]  
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𝐿 𝑡 ≥ 𝐻𝛽 𝜇𝐴 𝑥𝑖 , 𝜇𝐵 𝑥𝑖                                                                              (2.10)  

Where 𝐻𝛽 𝜇𝐴 𝑥𝑖 ,𝜇𝐵 𝑥𝑖   is fuzzy measure of inaccuracy corresponding to Nath [1970] of order𝛽.  

 

2.2    𝜷- measure of Uncertainty Involving Utilities 

Consider a fuzzy function corresponding to Gill et.al [1989] as  

 𝐻𝑘
𝛽  𝐴,𝑈 =

     𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑘
𝑖=1    

𝑢 𝑖

 𝑢 𝑖 𝜇 𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑖

𝑘
𝑖=1

 

1−𝛽

−1

1−21−𝛽 ;     𝛽 > 0 ≠ 1                                   (2.11)       

Which is 𝛽-measure of uncertainty involving utilities. 

 

Remark: When the utility aspect of the scheme is considered (i.e. 𝑢𝑖 = 1, 𝑖 = 1, 2, 3,… , 𝑘 as well as 𝛽 → 1, the 

measure (2.11) becomes fuzzy information measure corresponding to Shannon’s [1948] measure of information. 

Further, define a parametric mean length credited with utilities and membership function 𝜇𝐴 𝑥𝑖   as 

 𝐿 𝑈𝛽 =
  𝑢𝑖

𝑘
𝑖=1  𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   𝐷

 𝛽−1−1 𝑛 𝑖  

𝛽

−1

1−21−𝛽                                                                                                  (2.12) 

Where 𝛽 > 0  ≠ 1 , 𝜇𝐴 𝑥𝑖 ≥ 0, 𝑖 = 1, 2,… ,𝑘 and  𝜇𝐴 𝑥𝑖 = 1𝑘
𝑖=1  which is a generalization fuzzy mean 

length corresponding to Campbell [1965], and for 𝛽 → 1, it reduces to fuzzy mean code word length 

corresponding to Shannon [1948] measure and gave a characterization of 𝐻𝑈𝐾
𝛽  𝐴;𝑈  under the condition  

 𝑢𝑖  μ𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   𝐷
−𝑛𝑖 ≤ 𝑢𝑖  𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   

𝑘
𝑖=1                                                         (2.13)  

 

Theorem 2.2: Suppose 𝑛1 ,𝑛2 ,… ,𝑛𝑘  are the lengths of uniquely decodable code words satisfying (2.13), then 

the average code length satisfies   

                       𝐿 𝑈𝛽 ≥ 𝐻𝑘
𝛽  𝐴,𝑈                                                                                                                                (2.14) 

With the equality in (2.14) if and only if  

𝑛𝑖 =

𝛽 𝑙𝑜𝑔𝐷  
𝑢𝑖

 𝑢𝑖 𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑘
𝑖=1

 +

𝑙𝑜𝑔𝐷    𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖    
𝑢𝑖

 𝑢𝑖 𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑘
𝑖=1

 

1−𝛽

𝑘
𝑖=1      (2.15)    

Proof: In the Holder’s inequality (Beckenback et.al [1961])                               

       𝑥𝑖
𝑝

𝑘

𝑖=1

 

1
𝑝 

  𝑦𝑖
𝑞

𝑘

𝑖=1

 

1
𝑞 

≤ 𝑥𝑖𝑦𝑖

𝑘

𝑖=1

                                                                                                                   (2.16) 

 

For all 𝑥𝑖 > 0,𝑦𝑖 > 0, 𝑖 = 1, 2,… , 𝑘 𝑎𝑛𝑑 𝑝 < 1,𝑤ℎ𝑒𝑟𝑒 
1

𝑝
+

1

𝑞
= 1 with the equality in (2.16) if and only if there 

exists a positive number c such that 

                      𝑥𝑖
𝑝

= 𝑐𝑦𝑖
𝑞

                                                                                                                                                  (2.17) 

We substitute  

𝑥𝑖 =

 𝜇𝐵

𝛽

𝛽−1 𝑥𝑖 +  1 − 𝜇𝐵 𝑥𝑖  
𝛽

𝛽−1𝐷−𝑛𝑖 ; 𝑦𝑖=  𝜇𝐵
 1−𝛽 −1

 𝑥𝑖 +

1−𝜇𝐵𝑥𝑖1−𝛽−1𝐷−𝑛𝑖𝑢𝑖𝑖=1𝑘𝑢𝑖𝜇𝐴𝑥𝑖+1−𝜇𝐴𝑥𝑖; ∀𝑖  

𝑝 =  1 − 𝛽−1  𝑎𝑛𝑑  𝑞 = 1 − 𝛽, we get 

   𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   𝐷
 𝛽−1−1 𝑛𝑖

𝑘

𝑖=1

 

𝛽
𝛽−1

   𝜇𝐴 𝑥𝑖 

𝑘

𝑖=1

+  1 − 𝜇𝐴 𝑥𝑖    
𝑢𝑖

 𝑢𝑖  𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   
𝑘
𝑖=1

 

1−𝛽

 

 1−𝛽 −1
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                            ≤   𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖    
𝑢𝑖

 𝑢𝑖 𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑘
𝑖=1

 𝑘
𝑖=1 𝐷−𝑛𝑖    

Using the inequality (2.13), the above inequality can be written as 

 

   𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   𝐷
 𝛽−1−1 𝑛𝑖𝑘

𝑖=1  
𝛽

≥    𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   
𝑘
𝑖=1  

𝑢𝑖

 𝑢𝑖 𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑘
𝑖=1

 

1−𝛽

    

   𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   𝐷
 𝛽−1−1 𝑛 𝑖𝑘

𝑖=1  
𝛽
−1

1−21−𝛽 ≥

   𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑘
𝑖=1  

𝑢 𝑖

 𝑢 𝑖 𝜇 𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑘
𝑖=1

 

1−𝛽

 −1

1−21−𝛽   

Hence,                                              𝐿 𝑈𝛽 ≥ 𝐻𝑘
𝛽  𝐴,𝑈 . 

 

Theorem 2.3: Let  𝑛1 ,𝑛2 ,… , 𝑛𝑘  are the lengths of uniquely decodable code words, then the average code length 

𝐿 𝑈𝛽  can be made to satisfy the inequality  

                         

𝐻𝑘
𝛽  𝐴,𝑈 ≤ 𝐿 𝑈𝛽 ≤ 𝐷.𝐻𝑘

𝛽  𝐴,𝑈 +
𝐷−1

1−21−𝛽                                                                                                (2.18) 

Proof: Suppose  

 

𝑛𝑖 =

𝛽 𝑙𝑜𝑔𝐷  
𝑢𝑖

 𝑢𝑖 𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑘
𝑖=1

 +

𝑙𝑜𝑔𝐷    𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖    
𝑢𝑖

 𝑢𝑖 𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑘
𝑖=1

 

1−𝛽

𝑘
𝑖=1              (2.19)  

Clearly, 𝑛 𝑖  and 𝑛 𝑖+1 satisfy the inequality in Holder’s inequality. Moreover 𝑛 𝑖  satisfy the inequality (2.13). 

          Let 𝑛𝑖  be the (unique) integer between 𝑛 𝑖  and 𝑛 𝑖+1. Since𝛽 > 0 (≠ 1), we have 

 

   𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   𝐷
 𝛽−1−1 𝑛 𝑖

𝑘

𝑖=1

 

𝛽

≤    𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   𝐷
 𝛽−1−1 𝑛𝑖

𝑘

𝑖=1

 

𝛽

 

                                                                   

< 𝐷    𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   𝐷
 𝛽−1−1 𝑛 𝑖𝑘

𝑖=1  
𝛽

                                         (2.20)  

We know  

  𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖    
𝑢𝑖

 𝑢𝑖 𝜇𝐴  𝑥𝑖 + 1−𝜇𝐴  𝑥𝑖   
𝑘
𝑖=1

 

1−𝛽

𝑘
𝑖=1 =    𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖   𝐷

 𝛽−1−1 𝑛 𝑖𝑘
𝑖=1  

𝛽

  

Hence, (2.20) can be expressed as  

  𝜇𝐴 𝑥𝑖 +  1 − 𝜇𝐴 𝑥𝑖    
𝑢𝑖

 ui  μA xi +  1 − μA xi   
𝑘
𝑖=1

 

1−β
𝑘

𝑖=1

≤    μA xi +  1 − μA xi   D β−1−1 ni

k

i=1

 

β

 

< D    μA xi +  1 − μA xi   
k
i=1  

ui

 ui μA  xi + 1−μA  xi   
k
i=1

 

1−β

    

Thus,                      Hk
β A, U ≤ L Uβ ≤ D. Hk

β A, U +
D−1

1−21−β 
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