On α - ρ-Continuity Where $\rho \in\{\mathbf{L}, \mathbf{M}, \mathbf{R}, \mathbf{S}\}$

R.Selvi \& M.Priyadarshini

Abstract

The authors introduced the concept of ρ-continuity between a topological space and a non empty set where $\rho \epsilon\{L, M, R, S\}$ in [ρ - continuity between a topological space and a non empty set where $\rho \in\{L, M, R, S\}$, International Journal of mathematical sciences 9(1-2)(2010), 97-104.]. In this paper, the concept of $\alpha-\rho$ continuity is introduced and its properties are investigated.Recently, Navpreet singh Noorie and Rajni Bala introduced the concept of $f^{\#}$ function to characterize the closed, open and continuous functions. In this paper, α -ρ-continuity is further characterized by using f^{\neq}functions.

I. Introduction

By a multifunction $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$, We mean a point to set correspondence from X into Y with $\mathrm{F}(\mathrm{x}) \neq \varphi$ for all $\mathrm{x} \in \mathrm{X}$. Any function $f: X \rightarrow Y$ induces a multifunction $f^{1}{ }_{o} f: X \rightarrow \wp(X)$. It also induces another multifunction $f_{o} f^{1}: Y$ $\rightarrow(\mathrm{Y})$ provided f is surjective. The notions of L-Continuity, M-Continuity, R-Continuity and S-Continuity of a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ between a topological space and a non empty set and introduced by Selvi and Priyadarshini . The purpose of this paper is to introduce $\alpha-\rho$-continuity. Here we discuss their links with α-open, α-closed sets. Also we establish pasting lemmas for R-continuous and s-continuous functions and obtain some characterizations for $\alpha-\rho$-continuity. Navpreet singh Noorie and Rajni Bala [2] introduced the concept of f^{*} function to characterize the closed, open and continuous functions. The authors [6] characterized ρ-continuity by using $f^{\#}$ functions. In an analog way $\alpha-\rho$-continuity is characterized in this paper.

II. Preliminaries

The following definitions and results that are due to the authors [3] and Navpreet singh Noorie and Rajni Bala [2] will be useful in sequel.

Definition: 2.1(L-CONTINUOUS AND M-CONTINUOUS)

Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow \mathrm{Y}$ be a function. Then f is
(i) L-Continuous if $f^{1}(f(A))$ is open in X for every open set A
in X. [3]
(ii) M-Continuous if $\mathrm{f}^{1}(\mathrm{f}(\mathrm{A})$) is closed in X for every closed set A in X . [3]

Definition: 2.2 (R-CONTINUOUS AND S-CONTINUOUS) Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be a function.
Then f is
(i) R-Continuous if $f\left(f^{1}(B)\right)$ is open in Y for every open set B in Y. [3]
(ii) S-Continuous if $f\left(f^{1}(B)\right)$ is closed in Y for every closed set B in Y. [3]

Definition 2.3 : Let $f: X \rightarrow Y$ be any map and E be any subset of X. then (i) $f^{\#}(E)=\left\{y \in Y: f^{1}(y) \subseteq E\right\}$; (ii) $\mathrm{E}^{\#}=\mathrm{f}^{1}\left(\mathrm{f}^{\#}(\mathrm{E})\right)$. [2]
Lemma 2.4: Let E be a subset of X and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Then the following hold .
(i) $f^{\#}(E)=Y \backslash f(X \backslash E) ;$ (ii) $f(E)=Y \backslash f^{\#}(X \backslash E)$. [2]

Lemma 2.5 : Let E be a subset of X and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Then the following hold.
(i) $\mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{E})\right)=X \backslash \mathrm{f}^{-1}(\mathrm{f}(\mathrm{X} \backslash \mathrm{E}))$; (ii) $\mathrm{f}^{1}(\mathrm{f}(\mathrm{E}))=\mathrm{X} \backslash \mathrm{f}^{-1}\left(\mathrm{f}^{\#}(\mathrm{X} \backslash \mathrm{E})\right)$. [6]

Lemma 2.6: Let E be a subset of X and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Then the following hold.
(i) $\mathrm{f}^{\#}\left(\mathrm{f}^{1}(\mathrm{E})\right)=\mathrm{Y} \backslash \mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{E})\right)$; (ii) $f\left(\mathrm{f}^{1}(\mathrm{E})\right)=\mathrm{Y}^{\#} \mathrm{f}^{\#}\left(\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{E})\right)$. [6]

Definition 2.7 : Let $f: X \rightarrow Y, A \subseteq X$ and $B \subseteq Y$.we say that A is f-saturated if $f^{1}(f(A)) \subseteq A$ and B is f^{1} saturated if $f\left(f^{1}(B)\right) \supseteq B$. Equivalently A is f-saturated if and only if $f^{1}(f(A))=A$, and B is f^{1}-saturated if and only if $\quad f\left(f^{1}(B)\right)=B$.
Definition 2.8: Let A be a subset of a topological space ($\mathbf{X}, \boldsymbol{\tau}$). Then A is called
(i)semi-open if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$ and semi-closed if $\operatorname{int}(\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{A}$; [1] (ii) regular open if $\mathrm{A}=\operatorname{int}(\mathrm{cl}(\mathrm{A})$) and regular closed if $\operatorname{cl}(\operatorname{int}(\mathrm{A}))=\mathrm{A} ;[5]$.
(iii) α-open if $\mathrm{A} \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))$ and α-closed if $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \subseteq \mathrm{A} ;[]$.
(iv) pre-open if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A}))$ and pre-closed if $\mathrm{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{A} ;[\mathrm{]}$. (v)semi-pre-open if if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))$ and semi-pre-closed if $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A}))) \subseteq \mathrm{A} ;[]$.
Definition: 2.9 Let $f(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then f is α-continuous if $f^{1}(B)$ is open in X for every α open set B in Y.
Definition: 2.10 Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then f is α-open (resp. α-closed) if $\mathrm{f}(\mathrm{A})$ is α-open(resp. α-closed) in Y for every α-open(resp. α-closed) set A in Y.

III. $\quad \alpha$ - ρ-CONTINUITY WHERE $\rho \in\{L, M, R, S\}$

Definition: 3.1 (α-L CONTINUOUS AND α-M CONTINUOUS)

Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow \mathrm{Y}$ be a function. Then f is
(i) α-L Continuous if $f^{1}(f(A))$ is open in X for every α-open set A in X.
(ii) α-M Continuous if $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))$ is closed in X for every α-closed set A in X .

Definition: 3.2 (α-R CONTINUOUS AND $\alpha-$ S CONTINUOUS) Let $\mathrm{f}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then f is
(i) α-R Continuous if $f\left(f^{1}(B)\right)$ is open in Y for every α-open set B in Y
(ii) α-S Continuous if $f\left(f^{1}(B)\right)$ is closed in Y for every α-closed set B in Y

Example: 3.3

Let $X=\{a, b, c, d\}$ and $Y=\{1,2,3,4\}$.
Let $\tau=\{\Phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$ and
$\tau^{\mathrm{c}}=\{\Phi, X,\{\mathrm{~b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{d}\}\}$
Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow \mathrm{Y}$ defined by $\mathrm{f}(\mathrm{a})=1, \mathrm{f}(\mathrm{b})=2, \mathrm{f}(\mathrm{c})=3, \mathrm{f}(\mathrm{d})=4$. Then f is $\alpha-\mathrm{L}$ Continuous and $\alpha-\mathrm{M}$ Continuous.

Example: 3.4

Let $X=\{a, b, c, d\}$ and $Y=\{1,2,3,4\}$.
Let $\sigma=\{\Phi, \mathrm{Y},\{1\},\{2\},\{1,2\},\{1,2,3\}\}$, and
$\sigma^{\mathrm{c}}=\{\Phi, \mathrm{Y},\{2,3,4\},\{1,3,4\},\{3,4\},\{4\}\}$
Let $\mathrm{g}: \mathrm{X} \rightarrow(\mathrm{Y}, \sigma)$ defined by $\mathrm{g}(\mathrm{a})=1, \mathrm{~g}(\mathrm{~b})=2, \mathrm{~g}(\mathrm{c})=3, \mathrm{~g}(\mathrm{~d})=4$. Then g is α-R Continuous and α-S Continuous.
Definition: 3.5
Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function, Then f is
(i) $\quad \alpha$-LR Continuous, if it is both α-L Continuous and $\alpha-\mathrm{R}$ Continuous.
(ii) α-LS Continuous, if it is both $\alpha-\mathrm{L}$ Continuous and $\alpha-\mathrm{S}$ Continuous.
(iii) α-MR Continuous, if it is both $\alpha-\mathrm{M}$ Continuous and α-R Continuous.
(iv) α-MS Continuous, if it is both $\alpha-\mathrm{M}$ Continuous and $\alpha-\mathrm{S}$ Continuous .

Theorem : 3.6

(i)Every injective function $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is α-L Continuous and α-M Continuous.
(ii)Every surjective function $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is α-R Continuous and α-S Continuous.
(ii)Any constant function $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is $\alpha-\mathrm{R}$ Continuous and $\alpha-\mathrm{S}$ Continuous.

Proof:
(i) Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be injective function. Then
α-L Continuity and α-M Continuity follow from the fact that $\mathrm{f}^{1}(\mathrm{f}(\mathrm{A}))=\mathrm{A}$. This proves
(ii) Let $f:(x, \tau) \rightarrow(Y, \sigma)$ be surjective function. Since f is surjective, $f\left(f^{1}(B)\right)=B$ for every subset B of Y. Then f is both α-R Continuous and α-S Continuous. This proves (ii).
(iii) Suppose $f(x)=y_{0}$ for every x in X. Then $f\left(f^{1}(B)\right)=Y$ if $y_{0} \in B$ and $f\left(f^{1}(B)\right)=\Phi$ if $y_{0} \in Y \backslash B$. This proves (iii). Corollary : 3.7
If $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be bijective function then f is
α-L Continuous, α-M Continuous, α-R Continuous and α-S Continuous .

Theorem : 3.8

Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$. (i) If f is L-Continuous (resp. M-Continuous) then it is α-L Continuous (resp. $\alpha-\mathrm{M}$ Continuous).
(ii) If f is R -Continuous (resp. S-Continuous) then it is α-R Continuous (resp. α-S Continuous).

Proof :
(i) Let A \underline{C} X be α-open (resp. α-closed) in X. since every α-open (resp. α-closed) set is open (resp. closed) and since f is L-continuous (resp. M-continuous), $f^{1}(f(A))$ is open (resp. closed) in X. Therefore f is α-L Continuous (resp. α-M Continuous).
(ii) Let B \underline{C} Y be α-open (resp. α-closed) in Y. since every α-open (resp. α-closed) set is open (resp. closed) and since f is R-continuous (resp. S-continuous), $f\left(f^{-1}(B)\right)$ is open (resp. closed) in Y. Therefore f is α-R Continuous (resp. α-S Continuous).

Theorem : 3.9

Let $f:(x, \tau) \rightarrow Y$ be α-L Continuous. Then $\operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$ is f-saturated whenever A is f-saturated and semi-pre-closed.
Proof:
Let A $\underline{C} X$ be f-saturated. Since f is α-L Continuous, $\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))) \underline{C}^{1}(f(\operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))))$. And since A is semi- pre-closed $f^{1}(f(\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))))) \underline{C} \mathrm{f}^{1}(f(\mathrm{~A}))$.

Therefore $\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))) \underline{C} \quad f^{1}(f(\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))))) \underset{C}{ } f^{1}(f(A))$. since A is f-saturated, $f^{1}(f(A))=A$ so that $\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))) \underline{C} \quad \mathrm{f}^{1}(\mathrm{f}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A}))))) \underline{\operatorname{Cint}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))}$. That implies $\quad \operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))=\mathrm{f}^{-1}(\mathrm{f}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))))$. Therefore Hence $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))$ is f -saturated whenever A is f -saturated and semi- pre-closed.
Corollary : $\mathbf{3 . 1 0}$
Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow \mathrm{Y}$ be α-L Continuous. Then $\operatorname{int}\left(\operatorname{cl}\left(\operatorname{int}\left(\mathrm{f}^{1}(\mathrm{~B})\right)\right)\right)$ is f -saturated for every subset B of Y .
Proof :
Let B $\underline{C} Y$. we know that $f\left(f^{1}(B)\right) \underline{C} B$, Then $f^{1}\left(f\left(f^{1}(B)\right)\right) \underline{C} f^{1}(B)$. Also $f^{1}(B) \underline{C} f^{1}\left(f\left(f^{1}(B)\right)\right) \underline{C} f^{1}(B)$. So that $f^{-1}\left(f\left(f^{-1}(B)\right)\right)=f^{1}(B)$.
This proves that $\mathrm{f}^{1}(\mathrm{~B})$ is f -saturated, and hence by using theorem :3.9, $\operatorname{int}\left(\mathrm{cl}\left(\operatorname{int}\left(\mathrm{f}^{1}(\mathrm{~B})\right)\right)\right)$ is f -saturated .
Theorem : $\mathbf{3 . 1 1}$
Let $\mathrm{f}: \mathrm{x} \rightarrow(\mathrm{Y}, \sigma)$ be α-S Continuous Then $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))$ is f^{1} - saturated whenever B is f^{1}-saturated and semi-pre-open .
Proof:
Let B C Y be f^{1}-saturated. Since f^{1} is $\alpha-S$ Continuous , $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(B))) \underline{\mathcal{D}} \mathrm{f}\left(\mathrm{f}^{1}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(\mathrm{~B}))))\right)$, and since B is
 B is f^{-1}-saturated, $f\left(f^{1}(B)\right)=B$. So that $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(B))) \underline{\mathcal{D}} \mathrm{f}\left(\mathrm{f}^{1}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(B))))\right) \underline{\mathcal{O}} \operatorname{cl}(\operatorname{int}(\operatorname{cl}(B)))$, which implies that $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(\mathrm{B})))=\mathrm{f}\left(\mathrm{f}^{1}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B}))))\right)$, Therefore hence $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{B})))$ is f^{-1}-saturated .

Corollary : 3.12

Let $\mathrm{f}: \mathrm{x} \rightarrow(\mathrm{Y}, \sigma)$ be $\alpha-\mathrm{S}$ Continuous Then $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{f}(\mathrm{A}))))$ is $\quad \mathrm{f}^{1}-$ saturated for every subset A of X .
Proof:
Let $A \underline{C}$. We know that $f^{1}(f(A)) \underline{\mathcal{O}} A$, Then $f\left(f^{1}(f(A))\right) \underline{\mathcal{D}} f(A)$ Also $f(A) \underline{\mathcal{O}} f\left(f^{1}(f(A))\right) \underline{\mathcal{O}} f(A)$, So that $f(f$ $\left.{ }^{1}(f(A))\right)=f(A)$. This proves that hence by using (theorem 2.11) $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{f}(\mathrm{A}))))$ is f^{1} - saturated.

IV. Properties

In this section we prove certain theorems related with α-open and α-closed functions .

Theorem : 4.1

(i) Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be α-open and α-Continuous, Then f is α-L Continuous.
(ii) Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be open and α - Continuous, Then f is α-R Continuous.

Proof:
(i) Let $\mathrm{A} \underline{\mathrm{C}} \mathrm{X}$ be α-open in X. Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be α-open and α - Continuous, since f is α-open $\mathrm{f}(\mathrm{A})$ is α-open in Y, and since f is α-continuous $f^{1}(f(A))$ is open in X. Therefore f is α-L Continuous, This proves (i).
(ii) Let BCY be α-open in Y. Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be open and \leftrightarrows ontinuous, since f is α-continuous f
${ }^{1}(B)$ is open in X, and since f is open $f\left(f^{-1}(B)\right)$ is open in Y, Therefore f is $\alpha-R$ Continuous, This proves (ii).
Theorem : 4.2

$$
\Rightarrow
$$

(i) Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be α-closed and α - Continuous, Then f is α-M Continuous.
(ii) Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be closed_and α-Continuous, Then f is α-S Continuous.

Proof:
(i) Let $\mathrm{A} \underline{\mathrm{C}} \mathrm{X}$ be α-closed in X . Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be α-closed and α - Continuous , since f is α-closed $f(A)$ is α-closed in Y, and since f is α-continuous $\Longrightarrow f^{11}(f(A))$ is closed in X. Therefore f is $\alpha-M$ Continuous . This proves (i).
(ii) Let $\mathrm{BC} Y$ be α-closed in Y . Let $\mathrm{f}:(\mathrm{x}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be closed and α-Continuous, since f is α-continuous $f^{1}(B)$ is closed in X, and since f is closed $\leftrightharpoons\left(f^{1}(B)\right)$ is closed in Y. Therefore f is α-S Continuous, This proves (ii).

$$
\Rightarrow
$$

Theorem : 4.3

Let X be a topological space .

(i) If A is an α-open subspace of X , the inclusion function $\mathrm{j}: \mathrm{A} \rightarrow \mathrm{X}$ is α-L-continuous and α-R-continuous .
(ii) If A is an α-closed subspace of X , the inclusion function $\mathrm{j}: \mathrm{A} \rightarrow \mathrm{X}$ is α-M-continuous and α-S-continuous .
Proof :
(i) Suppose A is an α-open subspace of X. Let $j: A \rightarrow X$ be an inclusion function. Let UcX be α-open in X then $j\left(j^{-1}(U)\right)=j(U n A)=U n A$ Which is open in X.Hence j is α-R-continuous .Now, let $U \underline{c} A$ be α-open in A. Then $\mathrm{j}^{-1}(\mathrm{j}(\mathrm{U}))=\mathrm{j}^{-1}(\mathrm{U})=\mathrm{U}$ which is open in A .
Hence j is α-L-continuous, this proves (i)
(ii) Suppose A is an α-closed subspace of X.

Let $j: A \rightarrow X$ be an inclusion function. Let UcX be α-closed in X then $j\left(j^{-1}(U)\right)=j(U n A)=U n A$, Which is closed in X .Hence j is α-S-continuous .Now, let U c A be α-closed in A. Then $j^{-1}(j(U))=j^{-1}(U)=U$ which is closed in A. Hence j is α-M-continuous, this proves (ii).

Theorem : 4.4

Let $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be any two functions. Then the following hold.
(i) If $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is α-L-continuous (resp. α-M-continuous) and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is α-open (resp. α-closed) and continuous, then $\quad \mathrm{g}$ of $: \mathrm{X} \rightarrow \mathrm{Z}$ is α-L-continuous (resp. α-M-continuous).
(ii) If $g: Y \rightarrow Z$ is open (resp.closed) and α-continuous and $f: X \rightarrow Y$ is R-continuous (resp. S-continuous) ,then g of is α - R -continuous (resp. α-S-continuous).
Proof:
Suppose g is α-L-continuous (resp. $\alpha-\mathrm{M}$ continuous) and f is α-open (resp. α-closed) and continuous .Let A be α-open (resp. α-closed) in X .Then $(g \circ f)^{-1} .(g \circ f)(A)=f^{1}\left(g^{-1}(g(f(A)))\right)$. SinceTTs α-open (resp. α-closed) f (A) is α-open (resp. α-closed) in Y. since g is α-L-continuous (resp. α-M-continuous), g^{-} ${ }^{1}\left(g(f(A))\right.$ is open (resp. closed)in Y since f is continuous $\quad f^{-1}\left(g^{-1}(g(f(A)))\right)$ is open (resp. α-closed) in X .Therefore, $\mathrm{g} \circ \mathrm{f}$ is α-L-continuous (resp. α-M-continuous). This proves (i) .
(ii) Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be R-continuous (resp. S-continuays) and continuous.

Let B be α-open (resp. α-closed) in Z.
$\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be open (resp. closed) and $\alpha-$
$(B)=(\mathrm{g} \circ \mathrm{f})\left(\mathrm{f}^{1}\left(\mathrm{~g}^{-1}(\mathrm{~B})\right)\right)=\mathrm{g}\left(\mathrm{f}\left(\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~B})\right)\right)\right)$ since g is $\Rightarrow \mathrm{g}^{-1}(\mathrm{~B})$ is since f is R-continuous (resp. S-continuous) $\Rightarrow f\left(f^{1}\left(g^{-1}(B)\right)\right)$ is open (resp. closed) in Y. since g is open (resp. closed) $\Rightarrow \mathrm{g}(\mathrm{f}(\mathrm{f}-1(\mathrm{~g}-1(\mathrm{~B}))))$ is open (resp. closed) in Z . Therefore, $\mathrm{g} \circ \mathrm{f}$ is $\alpha-\mathrm{R}$-continuous (resp. α-R-continuous). This proves (ii).

Theorem : 4.5

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is α-L-continuous and if A is an open subspace of X , then the restriction of f to A is α-Lcontinuous .
Proof :
Let $h=f / A$. Then $h=f \circ j$, where j is the inclusion map $j: A \rightarrow X$ since j is open and continuous and since $f: X$ $\rightarrow \mathrm{Y}$ is $\quad \alpha$-L-continuous, using theorem (4.4 (i)),
Therefore, hence h is α-L-continuous .

Theorem : 4.6

If $f: X \rightarrow Y$ is α-M-continuous and if A is a closed subspace of X, then the restriction of f to A is $\alpha-M$ continuous .
Proof :
Let $h=f / A$. Then $h=f \circ j$, where j is the inclusion map $j: A \rightarrow X$ since j is closed and continuous and since $f: X$ $\rightarrow \mathrm{Y}$ is $\quad \alpha-\mathrm{M}$-continuous, using theorem (4.4 (i)),
Therefore, hence h is $\alpha-\mathrm{M}$-continuous .

Theorem : 4.7

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be α-R-continuous. Let $\mathrm{f}(\mathrm{x}) \underline{\mathrm{C}} \mathrm{Z} \underline{\mathrm{C}} \mathrm{Y}$ and $\mathrm{f}(\mathrm{X})$ be open in Z . Let h: $\mathrm{X} \rightarrow \mathrm{Z}$ be obtained by from f by restricting the co-domain of f to Z. Then h is α - R -continuous.
Proof:
Clearly $h=j \circ f$ where $j: f(x) \rightarrow Z$ is an inclusion map. since $f(X)$ is open in Z, the inclusion map j is both open and α-continuous. Then by applying theorem 4.4 (ii). Hence h is α-R-continuous .

Theorem : 4.8

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be α-S-continuous. Let $\mathrm{f}(\mathrm{x}) \underline{\mathrm{C}} \mathrm{Z} \underline{\mathrm{C}} \mathrm{Y}$ and $\mathrm{f}(\mathrm{X})$ be closed in Z . Let $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Z}$ be obtained by from f by restricting the co-domain of f to Z. Then h is α-S-continuous.
Proof :
Clearly $h=j \circ f$ where $j: f(x) \rightarrow Z$ is an inclusion map . since $f(X)$ is closed in Z, the inclusion map j is both closed and α-continuous. Then by applying theorem 4.4 (ii). Hence h is α-S-continuous

V. Characterizations

Theorem : 5.1

A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is α-L-continuous if and only if $\mathrm{f}^{1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$ is closed in X for every α-closed subset A of X.

Proof:
Suppose f is α-L-continuous . Let A be α - closed in X. Then $G=\mathrm{X} / \mathrm{A}$ is α-open in X . since f is α-L-continuous and since G is α-open in $X \quad f^{1}(f(G))$ is open in X. By applying lemma ((2.5)-(i)) $\quad f^{1}\left(f^{\#}(A)\right)=X \backslash f^{1}(f(X \backslash A))$ $=X \backslash f^{1}(f(G))$. That implies $f^{1}\left(f^{\#}(A)\right)$ is closed in X.

Conversely, we assume that $f^{-1}\left(f^{\#}(A)\right)$ is closed in X for every α-closed subset A of X. Let G be a α-open in X. By our assumption, $f^{1}\left(f^{\#}(A)\right)$ is closed in X, where $A=X \backslash G$. By using lemma ((2.5)-(ii)) $f^{1}(f(G))=X \backslash f$ ${ }^{1}\left(f^{\#}(X \backslash G)\right)=X \backslash f^{1}\left(f^{\#}(A)\right)$. That implies $f^{-1}(f(G))$ is open in X. Therefore, hence f is α-L-continuous .

Theorem : 5.2

A function $f: X \rightarrow Y$ is α-M-continuous if and only if $f^{1}\left(f^{\#}(G)\right)$ is open in X for every α-open subset G of X. Proof:
Suppose f is α-M-continuous. Let G be α - open in X . Then $\mathrm{A}=\mathrm{X} \backslash \mathrm{G}$ is α-closed in X . since f is α-Mcontinuous and since A is α-closes d in $X \quad f^{1}(f(A))$ is closed in X . By applying lemma((2.5)-(i)) $\quad f^{1}\left(f^{\#}(G)\right)=$ $X \backslash f^{1}(f(X \backslash G))=X \backslash f^{1}(f(A)) . \quad$ That implies $f^{1}\left(f^{\#}(G)\right)$ is open in X.
Conversely, we assume that $f^{1}\left(f^{\#}(G)\right)$ is open in X for every α-open subset G of X. Let A be a α-closed in X . By our assumption, $f^{11}\left(f^{4}(G)\right)$ is open in X, where $G=X \backslash A$. By using lemma ((2.5)-(ii)) $f^{1}(f(A))=X \backslash f$ ${ }^{1}\left(\mathrm{f}^{\#}(\mathrm{X} \backslash \mathrm{A})\right)=X \backslash \mathrm{f}^{1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)$. That implies ${ }^{\mathrm{T}} \mathrm{f}_{\mathrm{f}}(\mathrm{A})$) is open in X . Therefore, hence f is α-M-continuous .

Theorem : 5.3

The function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\alpha \xrightarrow{\mathrm{D}}$ Y.

Proof :
Suppose f is α-R-continuous . Let B be α-closed in Y . Then $G=Y \backslash B$ is α-open in Y . since f is α-Rcontinuous and since G is α-open in $Y \quad f\left(f^{1}(G)\right)$ is open in Y. Now by using lemma $((2.6)(i)) \quad f^{\#}\left(f^{1}(B)\right)=Y \backslash$ $f\left(f^{-1}(Y \backslash B)\right)=Y \backslash f\left(f^{-1}(G)\right)$. That implies $f^{\#}\left(f^{-1}(B)\right)$ is closed in Y.
Conversely, we assume that $f^{\#}\left(f^{1}(B)\right)$ is closed in Y for every α-closed subset B of Y. Let G be α-open in Y. Let $\mathrm{B}=\mathrm{Y} \backslash \mathrm{G}$. By our assumption , $\mathrm{f}^{\#}\left(\mathrm{f}^{1}(\mathrm{~B})\right)$ is closed in Y .

By lemma((2.6)(ii)) $\quad f\left(f^{1}(G)\right)$
$=Y \backslash\left(f^{\#}\left(f^{1}(Y \backslash G)\right)\right)=Y \backslash f^{\#}\left(f^{1}(B)\right)$, mis proves that $f\left(f^{1}(G)\right)$ is open in Y. Therefore, hence f is $\alpha-R-$ continuous.

Theorem : 5.4

The function $f: X \rightarrow Y$ is α-S-continuous if and only if ${ }^{\#}\left(f^{1}(G)\right)$ is open in Y for every α-open subset G of Y. Proof:
Suppose f is α-S-continuous. Let $\Rightarrow \alpha$-open in Y. Then $B=Y \backslash G$ is α-closed in Y . since f is α-S-continuous and since B is α-closed in $Y \quad f\left(f^{1}(B)\right)$ is open in Y. Now by using lemma $((2.6)(i)) \quad f^{\#}\left(f^{1}(G)\right)=Y \backslash f\left(f^{1}(Y \backslash G)\right)$ $=Y \backslash f\left(f^{-1}(B)\right)$. That implies $f^{\#}\left(f^{1}(G)\right)$ is open in Y.
Conversely, we assume that $f^{\#}\left(f^{1}(G)\right)$ is open in Y for every α-open subset G of Y . Let B be α-closed in Y. Let $\mathrm{G}=\mathrm{Y} \backslash \mathrm{B}$. By our assumption, $\mathrm{f}^{\#}\left(\mathrm{f}^{1}(\mathrm{G})\right)$ is open in Y .

By lemma ((2.6)(ii)) f(f
$\left.{ }^{1}(B)\right)=Y \backslash\left(f^{\#}\left(f^{1}(Y \backslash B)\right)\right)=Y \backslash f^{\#}\left(f^{1}(G)\right)$ hhis proves that $f\left(f^{1}(B)\right)$ is closed inY. Therefore, hence f is $\alpha-S$ continuous.

Theorem : 5.5

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be a function. Then the following are equivalent.
(i) f is α-L-continuous ,
(ii) for every α-closed subset A of $X, f^{1}\left(f^{\#}(A)\right.$ is closed in X,
(iii) (iii)for every $x \in X$ and for every α-open set U in X with $f(x) \in f(U)$ there is an open set G in X with x ϵG and $f(G) \underline{c} f(U)$,
(iv) $\mathrm{f}^{1}(\mathrm{f}(\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))))) \underline{\mathcal{O}} \operatorname{int}\left(\mathrm{f}^{1}(\mathrm{f}(\mathrm{A}))\right)$ for everysemi-pre-closed subset A of X .
(v) $\operatorname{cl}\left(f^{1}\left(f^{\#}(A)\right)\right) \underline{\mathcal{O}} \mathrm{f}^{1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))\right.$ for every semi-pre- open subset A of X.

Proof : (i) \leftrightarrow (ii) : follows from theorem 5.1. (i) \leftrightarrow (iii): Suppose f is α-L-continuous .Let U be α-open set in X such that $f(x) \in f(U)$. since f is α-L-continuous, $f^{1}(f(U))$ is open in X. since $x \in f^{1}(f(U))$ there is an open set G in X such that $x \in G \underline{C} f^{-1}(f(U)) \Rightarrow f(G)-f\left(f^{1}(f(U))\right) \underline{C} f(U)$. This proves (iii). conversely, suppose(iii) holds . Let U be α-open set in X and $x \in f^{1}(f(U))$. Then $f(x) \in f(U)$. By using (iii), there is an open set G in X containing x such that $f(G) \underline{C} f(U)$. Therefore $x \in G \underline{C} f^{-1}(f(G)) \underline{C} f^{1}(f(U)) f^{1}(f(U))$ is open set in X This completes the proof for (i) $\leftrightarrow(\overline{i i i})$.
(i) \leftrightarrow (iv) :

Suppose f is α-L-continuous. Let A be a semi-closed subset of X. Then $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))$ is α-open set in X . By the α-L-continuity of f we see that $f^{-1}(f(\operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))))$ is open in X. since A is semi-pre-closed in X, We have $f^{1}(f(\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))))) \underline{\mathcal{O}} \mathrm{f}^{1}(f(A))$ and since $f^{-1}(f(\operatorname{int}(A)))$ is open in X. It follows that $f^{1}(f(\operatorname{int}(A)) \underline{\mathcal{O}}$ $\operatorname{int}\left(f^{1}(f(A))\right)$. This proves (iv). conversely, we assume that (iv) holds . Let U be α-open set in X. since U is semi-pre-closed by applying (iv) we get $f^{-1}(f(\operatorname{int}(\operatorname{cl}(\operatorname{int}(U))))) \underline{\mathcal{O}} \operatorname{int}\left(f^{-1}(f(U))\right)$, Therefore $f^{-1}(f(U)) \underline{\mathcal{O}} \operatorname{int}\left(f{ }^{-}\right.$ ${ }^{1}(\mathrm{f}(\mathrm{U}))$) and hence $\mathrm{f}^{-1}(\mathrm{f}(\mathrm{U}))$ is open in X . This proves that f is α-L-continuous . (ii) $\leftrightarrow(\mathrm{v})$: Suppose (ii) holds . Let A be a semi-pre-open subset of X . By using (ii) $f^{1}\left(f^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))\right.$ is closed in X . since A is semi-preopen $\mathrm{f}^{1}\left(\mathrm{f}\left({ }^{\#}(\mathrm{~A})\right)\right) \underline{\mathrm{C}} \mathrm{f}^{1}\left(\mathrm{f}^{\#}(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))\right)$ This proves (v),
Conversely, let us assume that (v) holds. Let A be a α-closed subset of X, since A is semi-pre-open by (v), we see that $\operatorname{cl}\left(f^{1}\left(f^{\#}(A)\right)\right) \supset f^{1}\left(f^{\#}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A))))\right)=f^{1}\left(f^{\#}(A)\right)$, Therefore $\mathrm{f}^{1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)$ is closed in X . This proves (ii)

Theorem : 5.6

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow \mathrm{Y}$ be a function. Then the following are equivalent.
(i) f is α-M-continuous,
(ii) for every α-open subset G of $X, f^{1}\left(f^{\neq}(G)\right.$ is open in X, (iii) $\operatorname{cl}\left(f^{1}(f(A))\right) \underline{\mathcal{D}} f^{1}(f(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))))$ for every semi-pre-open subset A of X.
${ }^{1}\left(f^{\#}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))))\right) \underline{\mathcal{D}} \operatorname{int}\left(f^{1}\left(f^{\#}(A)\right)\right)$ for every semi-pre-closed subset A of X .

Proof :
(i) \leftrightarrow (iii) \cdot Suppose f is $\alpha-($ i) \leftrightarrow (ii) : follows

A be a semi-pre-open set in X. Since f is $\alpha-M$-continuous, $\quad f^{1}(f(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))))$ is closed in X. Since A is semi-pre-open in X we see that $f^{11}(f(A)) \underline{\mathcal{D}} \mathrm{f}^{11}(f(\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))))$, It follows that $\quad \mathrm{cl}\left(\mathrm{f}^{-}\right.$ $\left.{ }^{1}(f(A))\right) \quad \underline{\mathcal{O}} \operatorname{cl}\left(\mathrm{f}^{1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))))\right)=\mathrm{f}^{11}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A})))))$. This proves (iii) . conversely, suppose (iii) holds. Let A be α-closed subset in X Since A is semi-pre-open by applying (iii) , $\operatorname{cl}\left(\mathrm{f}^{1}(\mathrm{f}(\mathrm{A}))\right) \underline{\mathcal{O}} \mathrm{f}^{1}(\mathrm{f}(\mathrm{cl}(\mathrm{A})))=\mathrm{f}^{1}(\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))))) \quad$ That implies $\mathrm{f}^{1}(\mathrm{f}(\mathrm{A}))$ is closed set in X . This completes the proof for (i) \leftrightarrow (iii) .
(ii) \leftrightarrow (iv) :

Suppose (ii) holds . Let A be a semi-pre-closed subset of X . Then $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))$ is α-open in X .
By (ii) , $f^{1}\left(f^{\#}(\operatorname{int}(c l(\operatorname{int}(A))))\right) \underline{\mathcal{D}} f^{1}\left(f^{\#}(A)\right)$. X. we see that $\mathrm{f}^{1}\left(\mathrm{f}^{\#}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{~A}))))\right) \underline{\mathcal{O}} \operatorname{int}\left(\mathrm{f}^{1}\left(\mathrm{f}^{\#}(\mathrm{~A})\right)\right)$. This proves
en in (iv) . \quad Suppose (iv) holds . Let G be α-open in X. since G is semi-pre-closed in X , by using (iv) we see that $\mathrm{f}^{1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)=\mathrm{f}$ ${ }^{1}\left(f^{\#}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))))\right) \underline{\mathcal{D}} \operatorname{int}\left(\mathrm{f}^{1}\left(\mathrm{f}^{\#}(\mathrm{G})\right)\right)$. Then it follows that $f^{1}\left(f^{\#}(G)\right)$ is open in X. This proves (ii) .

Theorem : 5.7

Let $f:(X, \tau) \rightarrow Y$ be a function and y be a space with a base consisting of f^{-1} saturated open sets . Then the following are equivalent .
(i) f is α-R-continuous,
ii) for every α-closed subset B of $\mathrm{X}, \mathrm{f}^{\#}\left(\mathrm{f}^{1}(\mathrm{~B})\right.$ is closed in Y , (iii)for every $\mathrm{x} \in \mathrm{X}$ and for every α-open set V in Y with $x \in f^{1}(V)$ there is an open set G in Y with $f(x) \in G$ and $f^{1}(G) \underline{c} f^{1}(V)$,
(iv) $f\left(f^{1}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(B))))\right) \underline{\mathcal{D}} \operatorname{int}\left(f\left(f^{1}(B)\right)\right)$ for every semi-pre-closed subset B of Y .
(v) $\operatorname{cl}\left(f^{\#}\left(f^{1}(B)\right)\right) \underline{\mathcal{D}} \mathrm{f}^{\#}\left(\mathrm{f}^{1}(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(B))))\right.$ for every semi-pre- open subset B of Y.

