On α - ρ -Continuity Where $\rho \in \{L, M, R, S\}$

R.Selvi & M.Priyadarshini

Abstract: The authors introduced the concept of ρ -continuity between a topological space and a non empty set where $\rho \in \{L,M,R,S\}$ in [ρ - continuity between a topological space and a non empty set where $\rho \in \{L,M,R,S\}$, International Journal of mathematical sciences 9(1-2)(2010), 97-104.]. In this paper, the concept of α - ρ continuity is introduced and its properties are investigated. Recently, Navpreet singh Noorie and Rajni Bala introduced the concept of $f^{\#}$ function to characterize the closed, open and continuous functions. In this paper, α - ρ -continuity is further characterized by using $f^{\#}$ functions.

I. Introduction

By a multifunction $F: X \to Y$, We mean a point to set correspondence from X into Y with $F(x) \neq \varphi$ for all $x \in X$. Any function $f: X \to Y$ induces a multifunction $f^1_{\circ} f: X \to \mathcal{O}(X)$. It also induces another multifunction $f_{\circ} f^1: Y \to (Y)$ provided f is surjective. The notions of L-Continuity, M-Continuity, R-Continuity and S-Continuity of a function $f: X \to Y$ between a topological space and a non empty set and introduced by Selvi and Priyadarshini . The purpose of this paper is to introduce α - ρ -continuity. Here we discuss their links with α -open, α -closed sets. Also we establish pasting lemmas for R-continuous and s-continuous functions and obtain some characterizations for α - ρ -continuity . Navpreet singh Noorie and Rajni Bala [2] introduced the concept of $f^{\#}$ function to characterize the closed, open and continuous functions. The authors [6] characterized ρ -continuity by using $f^{\#}$ functions. In an analog way α - ρ -continuity is characterized in this paper.

II. Preliminaries

The following definitions and results that are due to the authors [3] and Navpreet singh Noorie and Rajni Bala [2] will be useful in sequel.

Definition: 2.1(L-CONTINUOUS AND M-CONTINUOUS)

Let $f: (x, \tau) \to Y$ be a function. Then f is

(i) L-Continuous if $f_{1}^{1}(f(A))$ is open in X for every open set A in X. [3]

(ii) M-Continuous if $f^{1}(f(A))$ is closed in X for every closed set A in X. [3]

Definition: 2.2 (R-CONTINUOUS AND S-CONTINUOUS) Let $f: X \to (Y, \sigma)$ be a function. Then f is

(i) R-Continuous if $f(f_{1}^{1}(B))$ is open in Y for every open set B in Y. [3]

(ii) S-Continuous if $f(f^{1}(B))$ is closed in Y for every closed set B in Y. [3]

Definition 2.3: Let $f: X \to Y$ be any map and E be any subset of X. then (i) $f^{\#}(E) = \{ y \in Y : f^{-1}(y) \subseteq E \}$; (ii) $E^{\#} = f^{-1}(f^{\#}(E))$. [2]

Lemma 2.4 : Let E be a subset of X and let $f : X \to Y$ be a function. Then the following hold. (i) $f^{\#}(E) = Y \setminus f(X \setminus E)$; (ii) $f(E) = Y \setminus f^{\#}(X \setminus E)$. [2]

Lemma 2.5: Let E be a subset of X and let $f: X \to Y$ be a function. Then the following hold.

(i) $f^{1}(f^{\#}(E)) = X \setminus f^{1}(f(X \setminus E))$; (ii) $f^{1}(f(E)) = X \setminus f^{1}(f^{\#}(X \setminus E))$. [6]

Lemma 2.6: Let E be a subset of X and let f: $X \rightarrow Y$ be a function. Then the following hold.

(i) $f^{\#}(f^{1}(E)) = Y \setminus f(f^{1}(Y \setminus E))$; (ii) $f(f^{1}(E)) = Y \setminus f^{\#}(f^{1}(Y \setminus E))$. [6]

Definition 2.7 : Let $f: X \to Y$, $A \subseteq X$ and $B \subseteq Y$.we say that A is f-saturated if $f^{1}(f(A)) \subseteq A$ and B is f^{1} -saturated if $f(f^{1}(B)) \supseteq B$. Equivalently A is f-saturated if and only if $f^{1}(f(A)) = A$, and B is f^{1} -saturated if and only if $f(f^{1}(B)) = B$.

Definition 2.8: Let A be a subset of a topological space (X,τ) . Then A is called

(i)semi-open if $A \subseteq cl(int(A))$ and semi-closed if $int(cl(A)) \subseteq A$;[1] (ii) regular open if A=int(cl(A)) and regular closed if cl(int(A))=A; [5].

(iii) α -open if $A\subseteq int(cl(int(A)))$ and α -closed if $cl(int(cl(A)))\subseteq A;[]$.

(iv) pre-open if $A \subseteq int(cl(A))$ and pre-closed if $cl(int(A)) \subseteq A$; []. (v)semi-pre-open if if $A \subseteq cl(int(cl(A)))$ and semi-pre-closed if $int(cl(int(A))) \subseteq A$; [].

Definition: 2.9 Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then f is α -continuous if $f^{-1}(B)$ is open in X for every α -open set B in Y.

Definition: 2.10 Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then f is α -open (resp. α -closed) if f(A) is α -open(resp. α -closed) in Y for every α -open(resp. α -closed) set A in Y.

III. α - ρ -CONTINUITY WHERE $\rho \in \{L, M, R, S\}$

Definition: 3.1 (α-L CONTINUOUS AND α-M CONTINUOUS)

Let f: $(x, \tau) \rightarrow Y$ be a function. Then f is

(i) α -L Continuous if $f^{1}(f(A))$ is open in X for every α -open set A in X.

(ii) α -M Continuous if $f^1(f(A))$ is closed in X for every α -closed set A in X.

Definition: 3.2 (α -R CONTINUOUS AND α -S CONTINUOUS) Let f: X \rightarrow (Y, σ) be a function. Then f is (i) α -R Continuous if f (f¹_.(B)) is open in Y for every α -open set B in Y

(ii) α -S Continuous if f (f¹(B)) is closed in Y for every α -closed set B in Y

Example: 3.3

Let $X = \{a, b, c, d\}$ and $Y = \{1, 2, 3, 4\}$.

Let $\tau = \{ \Phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\} \}$ and

 $\tau^{c} = \{ \Phi, X, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{d\} \}$

Let $f: (x, \tau) \rightarrow Y$ defined by f(a)=1, f(b)=2, f(c)=3, f(d)=4. Then f is α -L Continuous and α -M Continuous. **Example: 3.4**

Let $X = \{a, b, c, d\}$ and $Y = \{1, 2, 3, 4\}$.

Let $\sigma = \{ \Phi, Y, \{1\}, \{2\}, \{1,2\}, \{1,2,3\} \}$, and

 $\sigma^{c} = \{ \Phi, Y, \{2,3,4\}, \{1,3,4\}, \{3,4\}, \{4\} \}$

 $0 = \{\Psi, I, \{2, 5, 4\}, \{1, 5, 4\}, \{5, 4\}, \{4\}\}$

Let $g: X \to (Y, \sigma)$ defined by g(a)=1, g(b)=2, g(c)=3, g(d)=4. Then g is α -R Continuous and α -S Continuous. **Definition: 3.5**

Let $f: (x, \tau) \rightarrow (Y, \sigma)$ be a function , Then f is

- (i) α -LR Continuous , if it is both α -L Continuous and α -R Continuous.
- (ii) α -LS Continuous, if it is both α -L Continuous and α -S Continuous.
- (iii) α -MR Continuous, if it is both α -M Continuous and α -R Continuous.
- (iv) α -MS Continuous, if it is both α -M Continuous and α -S Continuous.

Theorem: 3.6

(i)Every injective function f: $(x, \tau) \rightarrow (Y, \sigma)$ is α -L Continuous and α -M Continuous.

(ii)Every surjective function f: $(x, \tau) \rightarrow (Y, \sigma)$ is α -R Continuous and α -S Continuous.

(ii)Any constant function f: $(x, \tau) \rightarrow (Y, \sigma)$ is α -R Continuous and α -S Continuous.

Proof:

(i) Let f: $(x, \tau) \rightarrow (Y, \sigma)$ be injective function. Then

 α -L Continuity and α -M Continuity follow from the fact that $f^{-1}(f(A)) = A$. This proves

(ii) Let f: $(x, \tau) \rightarrow (Y, \sigma)$ be surjective function. Since f is surjective, f (f¹(B)) =B for every subset B of Y. Then f is both α -R Continuous and α -S Continuous. This proves (ii).

(iii) Suppose $f(x) = y_0$ for every x in X. Then $f(f^1(B)) = Y$ if $y_0 \in B$ and $f(f^1(B)) = \Phi$ if $y_0 \in Y \setminus B$. This proves (iii). **Corollary : 3.7**

If $f: (x, \tau) \rightarrow (Y, \sigma)$ be bijective function then f is

 $\alpha\text{-}L$ Continuous , $\alpha\text{-}M$ Continuous , $\alpha\text{-}R$ Continuous and $\alpha\text{-}S$ Continuous .

Theorem: 3.8

Let $f: (x, \tau) \rightarrow (Y, \sigma)$. (i) If f is L-Continuous (resp. M-Continuous) then it is α -L Continuous (resp. α -M Continuous).

(ii) If f is R-Continuous (resp. S-Continuous) then it is α -R Continuous (resp. α -S Continuous). Proof :

(i) Let $A \subseteq X$ be α -open (resp. α -closed) in X. since every α -open (resp. α -closed) set is open (resp. closed) and since f is L-continuous (resp. M-continuous), $f^{1}(f(A))$ is open (resp. closed) in X. Therefore f is α -L Continuous (resp. α -M Continuous).

(ii) Let B <u>C</u> Y be α -open (resp. α -closed) in Y. since every α -open (resp. α -closed) set is open (resp. closed) and since f is R-continuous (resp. S-continuous), f(f¹(B)) is open (resp. closed) in Y. Therefore f is α -R Continuous (resp. α -S Continuous).

Theorem : 3.9

Let $f: (x, \tau) \to Y$ be α -L Continuous. Then int(cl(int(A))) is f-saturated whenever A is f-saturated and semipre-closed.

Proof:

Let A <u>C</u> X be f-saturated. Since f is α -L Continuous, int(cl(int (A))) <u>C</u>f¹(f(int(cl(int(A))))). And since A is semi- pre-closed f¹(f(int(cl(int(A))))) <u>C</u> f¹(f(A)).

Therefore int(cl(int(A)))C $f^{1}(f(int(cl(int(A)))))$ C $f^{1}(f(A))$. since A is f-saturated, $f^{1}(f(A)) = A$ so that $\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))) \subset f^{1}(\operatorname{f}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))))) \operatorname{Cint}(\operatorname{cl}(\operatorname{int}(A))))$. That implies $\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))) = f^{1}(\operatorname{f}(\operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))))$. Therefore Hence int(cl(int(A))) is f-saturated whenever A is f-saturated and semi- pre-closed. Corollary : 3.10

Let $f: (x, \tau) \to Y$ be α -L Continuous. Then int(cl(int($f^1(B)$))) is f-saturated for every subset B of Y.

Proof : Let B <u>C</u> Y. we know that $f(f^{1}(B)) \subseteq B$, Then $f^{1}(f(f^{1}(B))) \subseteq f^{1}(B)$. Also $f^{1}(B) \subseteq f^{1}(f(f^{1}(B))) \subseteq f^{1}(B)$. So that $f^{1}(f(f^{1}(B))) = f^{1}(B).$

This proves that $f^{1}(B)$ is f-saturated, and hence by using theorem :3.9, $int(cl(int(f^{1}(B))))$ is f-saturated. Theorem: 3.11

Let $f: x \to (Y, \sigma)$ be α -S Continuous Then cl(int(cl(B))) is f^1 – saturated whenever B is f^1 –saturated and semi-pre-open.

Let B C Y be f^1 –saturated. Since f^1 is α -S Continuous ,cl(int(cl(B))) \underline{O} f(f^1 (cl(int(cl(B))))), and since B is semi-pre-open, $f(f^{1}(cl(int(cl(B))))) \supseteq f(f^{1}(B))$, Therefore $cl(int(cl(B))) \supseteq f(f^{1}(cl(int(cl(B))))) \supseteq f(f^{1}(B))$, since B is f^1 -saturated, $f(f^1(B)) = B$. So that $cl(int(cl(B))) \supseteq f(f^1(cl(int(cl(B))))) \supseteq cl(int(cl(B))))$, which implies that $cl(int(cl(B))) = f(f^{1}(cl(int(cl(B)))))$, Therefore hence cl(int(cl(B))) is f^{1} -saturated.

Corollary : 3.12

Let $f: x \to (Y, \sigma)$ be α -S Continuous Then cl(int(cl(f(A)))) is f^1 – saturated for every subset A of X. Proof:

Let A CX. We know that $f^{1}(f(A)) \supset A$, Then $f(f^{1}(f(A))) \supset f(A)$ Also $f(A) \supset f(f^{1}(f(A))) \supset f(A)$, So that $f(f^{1}(f(A))) \supset f(A)$. f(A) = f(A). This proves that hence by using (theorem 2.11) cl(int(cl(f(A)))) is f^1 -saturated.

IV. **Properties**

In this section we prove certain theorems related with α -open and α -closed functions.

Theorem: 4.1

(i) Let $f: (x, \tau) \to (Y, \sigma)$ be α -open and α - Continuous, Then f is α -L Continuous.

(ii) Let $f: (x, \tau) \to (Y, \sigma)$ be open and α - Continuous, Then f is α -R Continuous.

Proof:

(i) Let A CX be α -open in X. Let f: (x, τ) \rightarrow (Y, σ) be α -open and α - Continuous, since f is α -open f(A) is α -open in Y, and since f is α -continuous $f^{1}(f(A))$ is open in X. Therefore f is α -L Continuous, This proves (i).

(ii) Let BCY be α -open in Y. Let $f: (x, \tau) \to (Y, \sigma)$ be open and \Box Sontinuous, since f is α -continuous f ¹(B) is open in X, and since f is open $f(f^{1}(B))$ is open in Y, Therefore f is α -R Continuous, This proves (ii).

Theorem: 4.2

(i) Let $f: (x, \tau) \to (Y, \sigma)$ be α -closed and α - Continuous. Then f is α -M Continuous.

(ii) Let $f: (x, \tau) \to (Y, \sigma)$ be closed and α - Continuous, Then f is α -S Continuous.

Proof:

(i) Let A <u>CX</u> be α -closed in X. Let $f: (x, \tau) \to (Y, \sigma)$ be α -closed and α - Continuous, since f is α -closed f(A) is α -closed in Y, and since f is α -continuous $f^{(A)}(f(A))$ is closed in X. Therefore f is α -M Continuous. This proves (i).

(ii) Let BCY be α -closed in Y. Let $f: (x, \tau) \to (Y, \sigma)$ be closed and α - Continuous, since f is α -continuous $f^{1}(B)$ is closed in X, and since f is closed $= f^{1}(B)$ is closed in Y. Therefore f is α -S Continuous, This proves (ii).

Theorem: 4.3

Let X be a topological space.

- (i) If A is an α -open subspace of X, the inclusion function $j: A \to X$ is α -L-continuous and α -R-continuous.
- (ii) If A is an α -closed subspace of X, the inclusion function $j: A \to X$ is α -M-continuous and α -S-continuous .

Proof:

Hence j is α -L-continuous, this proves (i)

(ii) Suppose A is an α -closed subspace of X.

⇒

⁽i) Suppose A is an α -open subspace of X. Let $j: A \to X$ be an inclusion function. Let UcX be α -open in X then $j(j^{-1}(U))=j(UnA)=UnA$ Which is open in X. Hence j is α -R-continuous. Now, let U c A be α -open in A. Then $j^{-1}(j(U)) = j^{-1}(U) = U$ which is open in A.

Let $j : A \to X$ be an inclusion function. Let UcX be α -closed in X then $j(j^{-1}(U))=j(UnA)=UnA$, Which is closed in X. Hence j is α -S-continuous. Now, let U <u>c</u> A be α -closed in A. Then $j^{-1}(j(U)) = j^{-1}(U) = U$ which is closed in A. Hence j is α -M-continuous, this proves (ii).

Theorem: 4.4

Let $g: Y \to Z$ and $f: X \to Y$ be any two functions. Then the following hold.

(i) If $g: Y \to Z$ is α -L-continuous (resp. α -M-continuous) and $f: X \to Y$ is α -open (resp. α -closed) and continuous, then $g \circ f: X \to Z$ is α -L-continuous (resp. α -M-continuous).

(ii) If $g: Y \to Z$ is open (resp.closed) and α -continuous and $f: X \to Y$ is R-continuous (resp. S-continuous), then g o f is α -R-continuous (resp. α -S-continuous).

Proof :

Suppose g is α -L-continuous (resp. α -M continuous) and f is α -open (resp. α -closed) and continuous .Let A be α -open (resp. α -closed) in X .Then $(g \circ f)^{-1} \cdot (g \circ f)(A) = f^{-1}(g^{-1}(g(f(A))))$. Since T is α -open (resp. α -closed) f (A) is α -open (resp. α -closed) in Y. since g is α -L-continuous (resp. α -M-continuous), g^{-1}(g(f(A)))) is open (resp. closed) in Y since f is continuous $f^{-1}(g^{-1}(g(f(A))))$ is open (resp. α -closed) in X. Therefore, $g \circ f$ is α -L-continuous (resp. α -M-continuous). This proves (i).

(ii) Let $f: X \to Y$ be R-continuous (resp. S-continues) and $g: Y \to Z$ be open (resp. closed) and α -continuous. Let B be α -open (resp. α -closed) in Z. Then $(g \circ f)(g \circ f)^{-1}(B) = (g \circ f)(f^{-1}(g^{-1}(B))) = g(f(f^{-1}(g^{-1}(B))))$. since g is continuous $g^{-1}(B)$ is open (resp. closed) in Y. since g is R-continuous (resp. S-continuous) $\Rightarrow f(f^{-1}(g^{-1}(B)))$ is open (resp. closed) in Y. since g is open (resp. closed) $\Rightarrow g(f(f^{-1}(g^{-1}(B))))$ is open (resp. closed) in Z. Therefore, $g \circ f$ is α -R-continuous (resp. α -R-continuous). This proves (ii).

Theorem: 4.5

$$\Rightarrow$$

If $f: X \to Y$ is α -L-continuous and if A is an open subspace of X , then the restriction of f to A is α -L-continuous .

Proof :

Therefore , hence h is $\alpha\mbox{-}L\mbox{-}continuous\,$.

Theorem: 4.6

If $f:X\to Y$ is a-M-continuous and if A is a closed subspace of X , then the restriction of $\,f\,$ to A is a-M-continuous .

Proof :

Let $h = f_A$. Then $h = f \circ j$, where j is the inclusion map j:A \rightarrow X since j is closed and continuous and since f: X \rightarrow Y is α -M-continuous, using theorem (4.4 (i)), Therefore, hence h is a M continuous

Therefore , hence h is $\alpha\mbox{-}M\mbox{-}continuous$.

Theorem: 4.7

Let f: $X \to Y$ be α -R-continuous . Let $f(x) \subseteq Z \subseteq Y$ and f(X) be open in Z. Let h: $X \to Z$ be obtained by from f by restricting the co-domain of f to Z. Then h is α -R-continuous. Proof :

Clearly $h = j \circ f$ where $j : f(x) \to Z$ is an inclusion map . since f(X) is open in Z, the inclusion map j is both open and α -continuous. Then by applying theorem 4.4 (ii). Hence h is α -R-continuous.

Theorem: 4.8

Let $f: X \to Y$ be α -S-continuous. Let $f(x) \subseteq Z \subseteq Y$ and f(X) be closed in Z. Let $h: X \to Z$ be obtained by from f by restricting the co-domain of f to Z. Then h is α -S-continuous. Proof:

Clearly $h = j \circ f$ where $j : f(x) \to Z$ is an inclusion map . since f(X) is closed in Z, the inclusion map j is both closed and α -continuous. Then by applying theorem 4.4 (ii). Hence h is α -S-continuous

V. Characterizations

Theorem : 5.1

A function $f: X \to Y$ is α -L-continuous if and only if $f^{1}(f^{\#}(A))$ is closed in X for every α -closed subset A of X.

Proof:

Suppose f is α -L-continuous . Let A be α - closed in X . Then G = X / A is α -open in X . since f is α -L-continuous and since G is α -open in X $f^1(f(G))$ is open in X. By applying lemma((2.5)-(i)) $f^1(f^{\#}(A)) = X \setminus f^1(f(X \setminus A)) = X \setminus f^1(f(G))$. That implies $f^1(f^{\#}(A))$ is closed in X.

Conversely, we assume that $f^{1}(f^{\#}(A))$ is closed in X for every α -closed subset A of X. Let G be a α -open in X. By our assumption, $f^{1}(f^{\#}(A))$ is closed in X, where $A = X \setminus G$. By using lemma ((2.5)-(ii)) $f^{1}(f(G)) = X \setminus f^{1}(f^{\#}(A))$. That implies $f^{1}(f(G))$ is open in X. Therefore, hence f is α -L-continuous. **Theorem : 5.2**

A function $f: X \to Y$ is α -M-continuous if and only if $f^{-1}(f^{\#}(G))$ is open in X for every α -open subset G of X. Proof :

Suppose f is α -M-continuous . Let G be α - open in X. Then $A = X \setminus G$ is α -closed in X. since f is α -M-continuous and since A is α -closed in X . $f^1(f(A))$ is closed in X. By applying lemma((2.5)-(i)) $f^1(f^{\#}(G)) = X \setminus f^1(f(X \setminus G)) = X \setminus f^1(f(A))$. That implies $f^1(f^{\#}(G))$ is open in X.

Conversely, we assume that $f^1(f^{\#}(G))$ is open in X for every α -open subset G of X. Let A be a α -closed in X. By our assumption, $f^1(f^{\#}(G))$ is open in X, where $G = X \setminus A$. By using lemma ((2.5)-(ii)) $f^1(f(A)) = X \setminus f^1(f^{\#}(X \setminus A)) = X \setminus f^1(f^{\#}(G))$. That implies f(A) is open in X. Therefore, hence f is α -M-continuous.

Theorem: 5.3

The function $f: X \to Y$ is $\alpha \xrightarrow{\mathbf{P}}$ solution only if $f^{\#}(f^{-1}(B))$ is closed in Y for every α -closed subset B of Y.

Conversely , we assume that $f^{\sharp}(f^{1}(B))$ is closed in Y for every α -closed subset B of Y. Let G be α -open in Y. Let $B = Y \setminus G$. By our assumption , $f^{\sharp}(f^{1}(B))$ is closed in Y. By lemma((2.6)(ii)) f(f^{1}(G)) = Y \setminus (f^{\sharp}(f^{1}(Y \setminus G))) = Y \setminus f^{\sharp}(f^{1}(B)), is proves that $f(f^{1}(G))$ is open in Y. Therefore , hence f is α -R-continuous .

Theorem : 5.4

The function $f: X \to Y$ is α -S-continuous if and only if ${}^{\#}(f^{-1}(G))$ is open in Y for every α -open subset G of Y. Proof :

Suppose f is a-S-continuous . Let the a-open in Y. Then B=Y\G is a-closed in Y. since f is a-S-continuous and since B is a-closed in Y $f(f^1(B))$ is open in Y. Now by using lemma ((2.6)(i)) $f^{\#}(f^1(G)) = Y \setminus f(f^1(Y \setminus G)) = Y \setminus f(f^1(G))$. That implies $f^{\#}(f^1(G))$ is open in Y.

Conversely, we assume that $f^{\sharp}(f^{1}(G))$ is open in Y for every α -open subset G of Y. Let B be α -closed in Y. Let $G = Y \setminus B$. By our assumption, $f^{\sharp}(f^{1}(G))$ is open in Y. By lemma ((2.6)(ii)) f(f^{1}(B)) = Y \setminus (f^{\sharp}(f^{1}(Y \setminus B))) = Y \setminus f^{\sharp}(f^{1}(G)) by proves that $f(f^{1}(B))$ is closed in Y. Therefore, hence f is α -S-continuous.

$$\Rightarrow$$

Theorem : 5.5

Let $f: (X,\tau) \rightarrow Y$ be a function . Then the following are equivalent.

(i) f is α -L-continuous,

- (ii) for every α -closed subset A of X, $f^{-1}(f^{\#}(A)$ is closed in X,
- (iii) (iii) for every $x \in X$ and for every α -open set U in X with $f(x) \in f(U)$ there is an open set G in X with x ϵ G and $f(G) \underline{c} f(U)$,

(iv) $f^{1}(f(int(cl(int(A))))) \supseteq int(f^{1}(f(A)))$ for everysemi-pre-closed subset A of X.

(v) $cl(f^{1}(f^{*}(A))) \supseteq f^{1}(f^{*}(cl(int(cl(A)))))$ for every semi-pre- open subset A of X.

Proof : (i) \leftrightarrow (ii) : follows from theorem 5.1. (i) \leftrightarrow (iii): Suppose f is α -L-continuous .Let U be α -open set in X such that $f(x) \in f(U)$. since f is α -L-continuous, $f^1(f(U))$ is open in X. since $x \in f^1(f(U))$ there is an open set G in X such that $x \in G \subseteq f^1(f(U)) \Rightarrow f(G) - f(f^1(f(U))) \subseteq f(U)$. This proves (iii). conversely, suppose(iii) holds . Let U be α -open set in X and $x \in f^1(f(U))$. Then $f(x) \in f(U)$. By using (iii), there is an open set G in X containing x such that f (G) $\subseteq f(U)$. Therefore $x \in G \subseteq f^1(f(G)) \subseteq f^1(f(U))$ is open set in X. This completes the proof for (i) \leftrightarrow (iii).

Suppose f is α -L-continuous . Let A be a semi-closed subset of X. Then int(cl(int(A))) is α -open set in X. By the α -L-continuity of f we see that $f^1(f(int(cl(int(A)))))$ is open in X. since A is semi-pre-closed in X, We have $f^1(f(int(cl(int(A))))) \supseteq f^1(f(A))$ and since $f^1(f(int(A)))$ is open in X. It follows that $f^1(f(int(A))) \supseteq int(f^1(f(A)))$. This proves (iv). conversely, we assume that (iv) holds. Let U be α -open set in X. since U is semi-pre-closed by applying (iv) we get $f^1(f(int(cl(int(U))))) \supseteq int(f^1(f(U)))$, Therefore $f^1(f(U)) \supseteq int(f^1(f(U)))$ and hence $f^1(f(U))$ is open in X. This proves that f is α -L-continuous . (ii) \leftrightarrow (v) : Suppose (ii) holds. Let A be a semi-pre-open subset of X. By using (ii) $f^1(f^{\#}(cl(int(cl(A)))))$ is closed in X. since A is semi-pre-open $f^1(f((int(cl(A)))))$.

Conversely, let us assume that (v) holds. Let A be a α -closed subset of X, since A is semi-pre-open by (v), we see that $cl(f^{1}(f^{\#}(A))) \supset f^{1}(f^{\#}(cl(int(cl(A))))) = f^{1}(f^{\#}(A))$, Therefore $f^{1}(f^{\#}(A))$ is closed in X. This proves (ii)

Theorem: 5.6

Let $f: (X,\tau) \rightarrow Y$ be a function. Then the following are equivalent. (i) f is α -M-continuous. (ii) for every α -open subset G of X, $f^{1}(f^{\#}(G)$ is open in X, (iii) $cl(f^{1}(f(A))) \supset f^{1}(f(cl(int(cl(A)))))$ for every semi-pre-open subset A of X. (iv) f $(f^{\#}(int(cl(int(A))))) \supseteq int(f^{1}(f^{\#}(A)))$ for every semi-pre-closed subset A of X. Proof: (i) \leftrightarrow (ii) : follows (i) \leftrightarrow (iii) :Suppose f is α -M-continuous . Let from theorem 5.2. semi-pre-open set in X.Since f is α-M-continuous, $f^{-1}(f(cl(int(cl(A))))))$ is A be a closed in X. Since A is semi-pre-open in X we see that $f^{1}(f(A)) \supseteq f^{1}(f(cl(int(cl(A)))))$, It follows that cl(f $f(f(A))) \supseteq cl(f^1(f(cl(int(cl(A)))))) = f^1(f(cl(int(cl(A)))))$. This proves (iii) . conversely, suppose (iii) holds. Let A be α -closed subset in X Since A is semi-pre-open by applying (iii), That implies $f^{1}(f(A))$ is closed $cl(f^{1}(f(A))) \supseteq f^{1}(f(cl(A))) = f^{1}(f(cl(int(cl(A)))))$ set in X. This completes the proof for (i) \leftrightarrow (iii). $(ii) \leftrightarrow (iv)$: Suppose (ii) holds. Let A be a semi-pre-closed subset of X. Then int(cl(int(A))) is α -open in X. By (ii), $f^{-1}(f^{\#}(int(cl(int(A))))) \supset f^{-1}(f^{\#}(A))$. Since, $f^{1}(f^{\#}(int(cl(int(A))))))$ is open in we see that $f^{1}(f^{\#}(int(cl(int(A))))) \supset int(f^{1}(f^{\#}(A)))$. Χ. This proves Suppose (iv) holds . Let G be α -open in X . since G is (iv) . we see that $f^{1}(f^{\#}(G)) = f$ semi-pre-closed in X, by using (iv) $(f^{\#}(int(cl(int(A))))) \supseteq int(f^{1}(f^{\#}(G))))$. Then it follows that $f^{1}(f^{\#}(G))$ is open in X. This proves (ii). Theorem : 5.7 Let $f: (X,\tau) \rightarrow Y$ be a function and y be a space with a base consisting of f^{-1} saturated open sets. Then the following are equivalent. (i) f is α -R-continuous, ii) for every α -closed subset B of X, $f^{\#}(f^{-1}(B))$ is closed in Y, (iii) for every $x \in X$ and for every α -open set V in

Y with $x \in f^{1}(V)$ there is an open set G in Y with $f(x) \in G$ and $f^{1}(G) \subseteq f^{1}(V)$,

(iv) $f(f^{1}(int(cl(int(B))))) \supseteq int(f(f^{1}(B)))$ for every semi-pre-closed subset B of Y.

(v) $cl(f^{\#}(f^{1}(B))) \supseteq f^{\#}(f^{1}(cl(int(cl(B)))))$ for every semi-pre- open subset B of Y.