Fekete-Szegö Inequality For A Certain Class Of Analytic Function Associated With Convolution

Prachi Srivastava
Faculty of Mathematical \& Statistical Sciences, Shri Ramswaroop Memorial University, Barabanki, 225003, U. P., INDIA

Abstract: In this paper, a class of analytic functions associated with convolution is defined, and for this class we obtain Fekete-Szegö inequality, integral representation and structural formula for that class.
 2000 Mathematics Subject Classification: 30A10, 30C45.
 Keywords and phrases: Analytic function; Convolution; Starlike functions; subordination; Fekete-Szegö inequality

I. Introduction and Preliminaries

Let A_{p} denotes the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}(p \in N=1,2,3 \ldots) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the unit disk $\Delta=\{z \in C ;|z|<1\}$.
Let $g(z) \in A_{p}$ be of the form:

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k} \tag{1.2}
\end{equation*}
$$

A convolution (Hadamard product) of $f(z) \in A_{p}$ of the form (1.1) with $g(z) \in A_{p}$ of the form (1.2) is defined by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k}=(g * f)(z) \tag{1.3}
\end{equation*}
$$

This convolution generalizes several convolution operators such as:
Dziok Srivastava operator [5], involving a generalized hypergeometric function ${ }_{q} F_{S}$:

$$
{ }_{q} H_{s}^{p}\left(\left[\alpha_{1}\right]\right) f(z):=z_{q}^{p} F_{S}\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots \beta_{s} ; z\right) * f(z),
$$

If

$$
\begin{equation*}
b_{p+k} \equiv \frac{\left(\alpha_{1}\right)_{k}\left(\alpha_{2}\right)_{k} \ldots\left(\alpha_{q}\right)_{k}}{\left(\beta_{1}\right)_{k}\left(\beta_{2}\right)_{k} \ldots\left(\beta_{s}\right)_{k}} \frac{1}{k!}, q=s+1, \beta_{i} \neq 0,-1,-2, \ldots(i=1,2, \ldots s), \tag{1.4}
\end{equation*}
$$

which again generalizes Hohlov operator [7], involving Gaussian hypergeometric function ${ }_{2} F_{1}$:

$$
{ }_{2} H_{1}^{p}\left(\left[\alpha_{1}\right]\right) f(z):=z_{2}^{p} F_{1}\left(\alpha_{1}, \alpha_{2} ; \beta_{1} ; z\right) * f(z),
$$

as well as Carlson and Shaffer operator [4], involving incomplete beta function:

$$
L_{p}\left(\alpha_{1}, \beta_{1}\right) f(z):=z_{2}^{p} F_{1}\left(\alpha_{1}, 1 ; \beta_{1} ; z\right) * f(z)
$$

which further reduces to Ruschweyh derivative operator [12]:

$$
D^{n+p-1} f(z)=\frac{z^{p}}{(1-z)^{n+p}} * f(z)
$$

if $\alpha_{1}=n+p>0, \beta_{1}=1$ and $D^{0} f(z) \equiv f(z)$.

In addition, the convolution (1.3) reduces to the Salagean operator [13], if

$$
b_{p+k}=\left(\frac{p+k}{p}\right)^{n}, n=0,1,2 \ldots
$$

and to a generalized Salagean operator [2], if

$$
b_{p+k}=\left(\frac{p+\delta k}{p}\right)^{n}, \delta>0, n=0,1,2 \ldots
$$

Further if

$$
b_{p+k}=\left(\frac{p+k+\lambda}{p+\lambda}\right)^{n},(\lambda \in C \backslash\{-p\}, n \in Z)
$$

the convolution (1.3) reduces to the multiplier transformation, which is denoted as

$$
l_{p}(n, \lambda) f(z)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k+\lambda}{p+\lambda}\right)^{n} a_{p+k} z^{p+k} .
$$

The multiplier transformation has been studied by Aghalary et al. [1].
Further, the convolution (1.3) reduces to an integral operator involving fractional integral operator $D_{z}^{-\lambda} f(z)$, if

$$
b_{p+k}=\frac{(p+1)_{k}}{(p+\lambda+1)_{k}}
$$

and hence

$$
(f * g)(z)=z^{-\lambda} \frac{\Gamma(p+\lambda+1)}{\Gamma(p+1)} D_{z}^{-\lambda} f
$$

where

$$
D_{z}^{-\lambda} z^{\rho}=\frac{\Gamma(\rho+1)}{\Gamma(\rho+\lambda+1)} z^{\rho+\lambda}, \quad(\lambda>0) .
$$

Again, this convolution (1.3) reduces to the derivative operator involving fractional derivative
operator D_{z}^{λ} if

$$
b_{p+k}=\frac{(p+1)_{k}}{(p-\lambda+1)_{k}}
$$

and hence,

$$
\begin{aligned}
(f * g)(z)= & z^{\lambda} \frac{\Gamma(p-\lambda+1)}{\Gamma(p+1)} D_{z}^{\lambda} f, \\
& D_{z}^{\lambda} z^{\rho}=\frac{\Gamma(\rho+1)}{\Gamma(\rho-\lambda+1)} z^{\rho-\lambda} .
\end{aligned}
$$

The fractional integral and fractional derivative operators of order λ is defined by Owa [9] and Srivastava and [14].
Recently, Patel and Mishra [10] defined a calculus operator $\Omega_{z}^{(\lambda, p)}: A_{p} \rightarrow A_{p}$ for a function $f \in A_{p}$ and for a real number $\lambda(-\infty<\lambda<p+1)$ by

$$
\Omega_{z}^{(\lambda, p)} f(z)=\frac{\Gamma(p+1-\lambda)}{\Gamma(p+1)} z^{\lambda} D_{z}^{\lambda} f(z)
$$

$$
\Omega_{z}^{(\lambda, p)} f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{\Gamma(p+1-\lambda) \Gamma(p+k+1)}{\Gamma(p+1) \Gamma(p+k-\lambda+1)} a_{p+k} z^{p+k}, z \in \Delta
$$

A function $f(z) \in A_{p}$ is said to be p-valently starlike of order α in Δ, if it satisfies the inequality

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha(z \in \Delta ; 0 \leq \alpha<p ; p \in N)
$$

The class of all p-valent starlike functions of order α is denoted by $S_{p}^{*}(\alpha)$ and write $S_{1}^{*}(\alpha) \equiv S^{*}(\alpha)$.
On the other hand, a function $f(z) \in A_{p}$ is said to be p-valently convex of order α in Δ, if it satisfies the inequality

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha(z \in \Delta ; 0 \leq \alpha<p ; p \in N)
$$

The class of all p-valent convex functions of order α is denoted by $K_{p}(\alpha)$ and write $K_{1}(\alpha) \equiv K(\alpha)$.
Furthermore, a function $f(z) \in A_{p}$ is said to be p-valently close-to-convex of order α in Δ, if it satisfies the inequality

$$
\operatorname{Re}\left\{z^{1-p} f^{\prime}(z)\right\}>\alpha(z \in \Delta ; 0 \leq \alpha<p ; p \in N) .
$$

The class of all p-valent close-to-convex functions of order α is denoted by $C K_{p}(\alpha) . C K_{p}(0) \equiv C K_{p}$ and denote $C K_{1}(0) \equiv C K$.
A function $f \in A_{p}$ is said to be in the class $P(\alpha)$ if and only if

$$
\operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha(z \in \Delta ; 0 \leq \alpha<p ; p \in N)
$$

For two functions f and g analytic in Δ, we say that the function f is subordinate to g in Δ, and we write

$$
f(z) \prec g(z)
$$

if there exists a Schwarz function w, which is analytic in Δ, with $w(0)=0$ and $|w(z)|<1$ for all $z \in \Delta$, such that

$$
f(z)=g(w(z)),(z \in \Delta)
$$

Let P be the class of the functions ψ with normalization $\psi(0)=1$, which are convex and univalent in Δ and satisfy the condition $\operatorname{Re}[\psi(z)]>0$ for $z \in \Delta$.

Definition 1.1 A function $f \in A_{p}$ is said to be in the class $S_{p}(g, b, m ; \psi)$, if and only if

$$
\begin{align*}
& 1+\frac{1}{b}\left\{\left(\frac{z(f * g)^{m+1}(z)}{(f * g)^{m}(z)}\right)-(p-m)\right\} \prec \psi(z), \tag{1.5}\\
& \quad \text { with } p>m, m \in N_{0}=\{0,1,2 \ldots\}, b \in C \backslash\{0\},
\end{align*}
$$

$$
\text { where }(f * g)^{r}(z) \text { denotes the } r^{t h} \text { derivative of }(f * g) \text { and is given by }
$$

$$
\begin{equation*}
(f * g)^{r}(z)=\frac{p!}{(p-r)!} z^{p-r}+\sum_{k=1}^{\infty} \frac{(p+k)!}{(p+k-r)!} a_{p+k} b_{p+k} z^{p+k-r}, r \in N_{0} \tag{1.6}
\end{equation*}
$$

It is observe that for $-1 \leq B<A \leq 1, S_{p}(g, b, m ; A, B):=S_{p}\left(g, b, m ; \frac{1+A z}{1+B z}\right)$
We note that $S_{p}\left(\frac{z^{p}}{1-z}, 1-\alpha, 0 ; 1,-1\right)=S_{p}^{*}(\alpha) . S_{p}\left(\frac{z^{p}}{1-z},-1,0 ; 2 \alpha-1,-1\right)$ is the class studied by
Patil and Thakare [11].
The class $S_{p}\left(\frac{z^{p}}{1-z}, b, m ; 1,-1\right)$ is introduced by Altintas and Srivastava [3]. Also the class $S_{p}\left(\frac{z^{p}}{1-z}, 1, p-2 ;\left\{\left(2-\frac{\alpha}{p}\right) A-\left(1-\frac{\alpha}{p}\right) B\right\}, B\right)$ is studied by Güney and Eker [6] for negative coefficients.

In this paper, we obtain Fekete-Szegö inequality, Integral representation and structural formula are also obtained for the classes $S_{p}(g, b, m ; \psi)$ and $S_{p}(g, b, m ; A, B)$.

II. Fekete-Szegö inequality for the class $S_{p}(g, b, m ; A, B)$

Theorem 2.1 Let $g \in A_{p}$ be of the form (1.2) with $p>m,-1 \leq B<A \leq 1, m \in N_{0}=\{0,1,2 \ldots\}$,

$$
\begin{gather*}
b \in C \backslash\{0\} \text {, if } f(z) \in S_{p}(g, b, m ; A, B) \text {, then } \\
\left|a_{p+2}-\zeta a_{p+1}^{2}\right| \leq \frac{(A-B)|b|(p-m+2)(p-m+1)}{2(p+1)(p+2)!\left|b_{p+2}\right|} \tag{2.1}\\
\max \left[1,\left[\frac{[(A-B) b-B](p-m+2)(p+1) b_{p+1}^{2}}{(p+1) b_{p+1}^{2}(p-m+2)}+\right.\right. \\
\left.\left.\frac{2 \zeta b(A-B)(p-m+1)(p+2) b_{p+2}}{(p+1) b_{p+1}^{2}(p-m+2)} \right\rvert\,\right]
\end{gather*}
$$

The estimate (21) is sharp.
Proof. Since $f(z) \in S_{p}(g, b, m ; A, B)$, we have

$$
1+\frac{1}{b}\left\{\left(\frac{z(f * g)^{m+1}(z)}{(f * g)^{m}(z)}\right)-(p-m)\right\}=\frac{1+A w(z)}{1+B w(z)}
$$

where $w(z)=\sum_{k=1}^{\infty} w_{k} z^{k}$ is a bounded analytic function satisfying the condition $w(0)=0$
and $|z|<1$ for $z \in \Delta$, or

$$
\begin{gather*}
\left\{B z(f * g)^{m+1}(z)-[(A-B) b+B(p-m)](f * g)^{m}(z)\right\} w(z) \tag{2.2}\\
=(p-m)(f * g)^{m}(z)-z(f * g)^{m+1}(z) .
\end{gather*}
$$

Writing corresponding series expansions in (2.2), we get

$$
\begin{gathered}
\left\{B \frac{p!z^{p-m}}{(p-m-1)!}+B \sum_{k=1}^{\infty} \frac{(p+k)!a_{p+k} b_{p+k}}{(p+k-m-1)!} z^{p+k-m}-[(A-B) b+B(p-m)] .\right. \\
\left.\left\{\frac{p!}{(p-m)!} z^{p-m}+\sum_{k=1}^{\infty} \frac{(p+k)!a_{p+k} b_{p+k}}{(p+k-m)!} z^{p+k-m}\right\}\right\}\left(w_{1} z+w_{2} z^{2}+\ldots\right) \\
\quad=\left\{\frac{p!z^{p-m}}{(p-m-1)!}+\sum_{k=1}^{\infty} \frac{(p-m)(p+k)!}{(p+k-m)!} a_{p+k} b_{p+k} z^{p+k-m}\right\} \\
\quad-\left\{\frac{p!z^{p-m}}{(p-m-1)!}+\sum_{k=1}^{\infty} \frac{(p+k)!a_{p+k} b_{p+k}}{(p+k-m-1)!} z^{p+k-m}\right\}
\end{gathered}
$$

or,

$$
\begin{gathered}
\left\{\frac{-(A-B) b p!}{(p-m)!} z^{p-m}+\sum_{k=1}^{\infty} \frac{(p+k)!a_{p+k} b_{p+k}}{(p+k-m)!}[B k-(A-B) b] z^{p+k-m}\right\}\left(w_{1} z+w_{2} z^{2}+\ldots\right) \\
=-\sum_{k=1}^{\infty} k \frac{(p+k)!a_{p+k} b_{p+k}}{(p+k-m)!} z^{p+k-m} .
\end{gathered}
$$

Equating the coefficient of z^{p-m+1} and z^{p-m+2} on both sides, we obtain

$$
\frac{-(A-B) b p!}{(p-m)!} w_{1}=-a_{p+1} b_{p+1} \frac{(p+1)!}{(p+1-m)!}
$$

or,

$$
\begin{equation*}
a_{p+1}=\frac{(A-B) b(p+1-m)}{(p+1) b_{p+1}} w_{1} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{gather*}
\frac{-(A-B) b p!}{(p-m)!} w_{2}+\frac{(p+1)!a_{p+1} b_{p+1}}{(p+1-m)!}[B-(A-B) b] w_{1}=-\frac{2(p+2)!a_{p+2} b_{p+2}}{(p+2-m)!} \\
a_{p+2}=\frac{-(A-B)(p+2-m)(p+1-m)\left[[B-(A-B) b] w_{1}^{2}-w_{2}\right\}}{2(p+2)(p+1) b_{p+2}} . \tag{2.4}
\end{gather*}
$$

Now, for any complex number ζ, we write

$$
\begin{align*}
& \quad\left|a_{p+2}-\zeta a_{p+1}^{2}\right|= \tag{2.5}\\
& \left|\frac{-(A-B)(p+2-m)(p+1-m)\left\{[B-(A-B) b] w_{1}^{2}-w_{2}\right\}}{2(p+2)(p+1) b_{p+2}}-\zeta\left\{\frac{(A-B) b(p+1-m)}{(p+1) b_{p+1}} w_{1}\right\}^{2}\right| \\
& \quad=\frac{(A-B) b \mid(p+2-m)(p+1-m)}{2(p+2)(p+1)\left|b_{p+2}\right|}\left|w_{2}-\xi w_{1}^{2}\right| \tag{2.6}
\end{align*}
$$

where

$$
\begin{equation*}
\xi=\frac{[(A-B) b-B](p-m+2)(p+1) b_{p+1}^{2}+2 \zeta b(A-B)(p-m+1)(p+2) b_{p+2}}{(p+1) b_{p+1}^{2}(p-m+2)} . \tag{2.7}
\end{equation*}
$$

From the result of Keogh and Merker [8], it is known that for any complex number ξ,

$$
\left|w_{2}-\xi w_{1}^{2}\right| \leq \max \{1,|\xi|\},
$$

and the estimate is sharp for the functions $f_{0}(z)=z^{p}$ and $f_{1}(z)=z^{p+1}$ for $|\xi| \geq 1$ and $|\xi|<1$ respectively. From (2.5), it follows that

$$
\left|a_{p+2}-\zeta a_{p+1}^{2}\right| \leq \frac{(A-B)|b|(p+2-m)(p+1-m)}{2(p+2)(p+1)\left|b_{p+2}\right|} \max \{1,|\xi|\}
$$

where ξ is given by (2.6).

III. Integral Representation For The Classes $S_{p}(g, b, m ; \psi)$ And $S_{p}(g, b, m ; A, B)$

Theorem 3.1 Let $g(z) \in A_{p}$ of the form (1.2) then a function $f \in S_{p}$ be in the class $S_{p}(g, b, m ; \psi)$ if and only if there exist a Schwarz function $w(z)$ such that

$$
\begin{equation*}
(f * g)^{m}(z)=z^{p-m} \exp \int_{0}^{z} \frac{b\{\psi(w(z))-1\}}{t} d t \tag{3.1}
\end{equation*}
$$

In particular, if $f \in S_{p}(g, b, m ; A, B)$ then

$$
\begin{align*}
& \qquad(f * g)^{m}(z)=\exp \left((p-m) \int_{0}^{z} \frac{\left[1-\left\{B+\frac{(A-B) b}{(p-m)}\right\} Q(z)\right]}{t(1-B Q(t))} d t\right) \tag{3.2}\\
& \text { where } \mid Q(z)<1 \text { and }(f * g)^{m}(z)=z^{p-m} \exp \int_{x} \log (1-B x z)^{\frac{(A-B) b}{B}} d \mu(x), \tag{3.3}
\end{align*}
$$

where $\mu(x)$ is the probability measure on $X=\{x:|x|=1\}$.
Proof. Since $f \in A_{p}$ is said to be in the class $S_{p}(g, b, m ; \psi)$, if and only if

$$
1+\frac{1}{b}\left\{\left(\frac{z(f * g)^{m+1}(z)}{(f * g)^{m}(z)}\right)-(p-m)\right\} \prec \psi(z)
$$

or,

$$
\frac{(f * g)^{m+1}(z)}{(f * g)^{m}(z)}-\frac{(p-m)}{z}=\frac{b\{\psi(w(z))-1\}}{z}
$$

On integrating with respect to z, we get

$$
(f * g)^{m}(z)=z^{p-m} \exp \int_{0}^{z} \frac{b\{\psi(w(z))-1\}}{t} d t
$$

Again, from the definition of the class $S_{p}(g, b, m ; A, B)$

$$
\left|\frac{w-1}{B w-\left\{B+\frac{(A-B) b}{(p-m)}\right\}}\right|<1
$$

where

$$
w=\frac{1}{(p-m)}\left\{\frac{z(f * g)^{m+1}(z)}{(f * g)^{m}(z)}\right\}
$$

Let

$$
\frac{w-1}{B w-\left\{B+\frac{(A-B) b}{(p-m)}\right\}}=Q(z) \text {, then }|Q(z)|<1 \text {. }
$$

Finally we can write

$$
\frac{1}{(p-m)}\left\{\frac{z(f * g)^{m+1}(z)}{(f * g)^{m}(z)}\right\}=\frac{1-\left\{B+\frac{(A-B) b}{(p-m)}\right\} Q(z)}{(1-B Q(z))}
$$

or,

$$
\frac{(f * g)^{m+1}(z)}{(f * g)^{m}(z)}=\frac{(p-m)\left[1-\left\{B+\frac{(A-B) b}{(p-m)}\right\} Q(z)\right]}{z(1-B Q(z))}
$$

Integrating with respect to z, we get

$$
\log \left\{(f * g)^{m}(z)\right\}=(p-m) \int_{0}^{z} \frac{\left[1-\left\{B+\frac{(A-B) b}{(p-m)}\right\} Q(t)\right]}{t(1-B Q(t))} d t
$$

therefore, we get (3.2).
For obtaining the third representation let $X=\{x:|x|=1\}$ then, we have

$$
\frac{w-1}{B w-\left\{B+\frac{(A-B) b}{(p-m)}\right\}}=x z, x \in X, z \in \Delta
$$

and then we conclude that

$$
\frac{(f * g)^{m+1}(z)}{(f * g)^{m}(z)}=(p-m)\left\{\frac{1}{z}-\frac{\frac{(A-B) b}{(p-m)} x}{1-B x z}\right\}
$$

Again integrating with respect to z, we get

$$
\log \frac{(f * g)^{m}(z)}{z^{p-m}}=\frac{(A-B) b}{B} \log (1-B x z)
$$

or,

$$
(f * g)^{m}(z)=z^{p-m} \exp \int_{x} \log (1-B x z)^{\frac{(A-B) b}{B}} d \mu(x)
$$

where $\mu(x)$ is the probability measure on $X=\{x:|x|=1\}$.

IV. Structural Formula For The Classes $S_{p}(g, b, m ; \psi)$ And $S_{p}(g, b, m ; A, B)$

Theorem 4.1 Let $g(z) \in A_{p}$ of the form (1.2) then a function $f \in S_{p}(g, b, m ; \psi)$ if and only if there exist a Schwarz function $w(z)$ such that

$$
\begin{equation*}
f(z) * g(z)=\left[\sum_{k=0}^{\infty} \frac{(p+1-m)_{k}}{(p+1)_{k}} z^{p+k}\right] *\left[\frac{(p-m)!}{p!} z^{p} \exp \int_{0}^{z} \frac{b\{\psi(w(z))-1\}}{t} d t\right] . \tag{4.1}
\end{equation*}
$$

$$
\begin{gather*}
\text { Also let } f \in S_{p}(g, b, m ; A, B) \text { then } \\
f(z) * g(z)=\left[\sum_{k=0}^{\infty} \frac{(p+1-m)_{k}}{(p+1)_{k}} z^{p+k}\right] *\left[\frac{(p-m)!}{p!} z^{m} \exp (p-m) \int_{0}^{z} \frac{\left[1-\left\{B+\frac{(A-B) b}{(p-m)}\right\} Q(z)\right]}{t(1-B Q(t))} d t\right] \tag{4.2}
\end{gather*}
$$

where $p>m,-1 \leq B<A \leq 1, m \in N_{0}=\{0,1,2 \ldots\}, b \in C \backslash\{0\},|Q(z)|<1$. Also

$$
\begin{equation*}
f(z) * g(z)=\left[\sum_{k=0}^{\infty} \frac{(p+1-m)_{k}}{(p+1)_{k}} z^{p+k}\right] *\left[\frac{(p-m)!}{p!} z^{p} \exp \int_{x} \log (1-B x z)^{\frac{(A-B) b}{B}} d \mu(x)\right] \tag{4.3}
\end{equation*}
$$

where $\mu(x)$ is the probability measure on $X=\{x:|x|=1\}$.

Proof. Let $f \in S_{p}(g, b, m ; \psi)$. Then from the definition of the class $S_{p}(g, b, m ; \psi)$ we have

$$
1+\frac{1}{b}\left\{\left(\frac{z(f * g)^{m+1}(z)}{(f * g)^{m}(z)}\right)-(p-m)\right\}=\psi(w(z))
$$

where $\psi \in P$ and $|w(z)|<1$ in Δ with $w(0)=0=\psi(0)-1$. Therefore

$$
\begin{array}{ll}
& \frac{(f * g)^{m+1}(z)}{(f * g)^{m}(z)}-\frac{(p-m)}{z}=\frac{b\{\psi(w(z))-1\}}{z} \\
\text { Thus } \quad & \log \frac{(f * g)^{m}(z)}{z^{p-m}}=\int_{0}^{z} \frac{b\{\psi(w(z))-1\}}{t} d t \\
\text { or, } & \frac{(f * g)^{m}(z)}{z^{p-m}}=\exp \int_{0}^{z} \frac{b\{\psi(w(z))-1\}}{t} d t
\end{array}
$$

Therefore from (1.6) we obtain

$$
f(z) * g(z) * \sum_{k=0}^{\infty} \frac{(p+1)_{k}}{(p+1-m)_{k}} z^{p+k}=\frac{(p-m)!}{p!} z^{p} \exp \int_{0}^{z} \frac{b\{\psi(w(z))-1\}}{t} d t
$$

and our assertion (4.1) follows immediately.
Again, from (3.2) and (1.6) we obtain

$$
f(z) * g(z) * \sum_{k=0}^{\infty} \frac{(p+1)_{k}}{(p+1-m)_{k}} z^{p+k}=\frac{(p-m)!}{p!} z^{m} \exp (p-m) \int_{0}^{z} \frac{\left[1-\left\{B+\frac{(A-B) b}{(p-m)}\right\} Q(z)\right]}{t(1-B Q(t))} d t
$$

which gives assertion (4.2). Similarly

$$
f(z) * g(z) * \sum_{k=0}^{\infty} \frac{(p+1)_{k}}{(p+1-m)_{k}} z^{p+k}=\frac{(p-m)!}{p!} z^{p} \exp \int_{x} \log (1-B x z)^{\frac{(A-B) b}{B}} d \mu(x)
$$

which gives assertion (4.3), where $\mu(x)$ is the probability measure on $X=\{x:|x|=1\}$.

References

[1]. R. Aghalary, R.M. Ali, S.B. Joshi and V. Ravichandran, "Inequalities for analytic functions defined by certain linear operators", Int. J. Math. Sci. 4 (2) (2005), 267-274.
[2]. Al-Oboudi, "On univalent functions defined by a generalized Salagean operator". Internat. J. Math. Sci. 27 (2004), 1429--1436.
[3]. O. Altinta S, H.M. Srivastava, "Some majorization problems associated with p-valently starlike and convex functions of complex order", East Asian Math J. 17 (2) (2001), 207-218.
[4]. B.C. Carlson and D.B. Shaffer, "Starlike and prestarlike hypergeometric functions". SIAM J. Math. Anal. 154 (1984), $737--745$.
[5]. J. Dziok and H. M. Srivastava, "Classes of analytic functions associated with the generalized hypergeometric functions". Appl. Math. Comput. 103 (1999), 1--13.
[6]. H.Ö. Güney and S.S. Eker, "On a new class of p-valent functions with negative coefficients", Int. J. Contemp. Math. Sci., 1 (2006), no.2, 67-79.
[7]. YU. E. Hohlov, "Operators and operations on the class of univalent functions", Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1978), 83--89.
[8]. F.R. Keogh, and E.P. Mcrker, "A coefficient inequality for certain classes of analytic functions", Proc. Amer. Math. Soc. 20 (1969), 8--12.
[9]. S. Owa, "On the distortion theorems", I, Kyungpook Math. J. 18 (1) (1978), 53-59.
[10]. J. Patel, A.K. Mishra, "On certain subclasses of multivalent functions associated with an extended fractional differintegral operator", J. Math. Anal. Appl. 332 (2007), 109-122.
[11]. D.A. Patil and N.K. Thakare, "On convex hulls and extreme points of p-valent starlike and convex classes with applications", Bull. Math. Soc. Sci. Math. R.S.Roumanie (N.S) 27 (75) (1983), 145-160.
[12]. S. Ruscheweyh, "New criteria for univalent functions", Proc. Amer. Math. Soc. 49 (1975), 109--115.
[13]. G. Salagean, "Subclasses of univalent functions", Lect. Notes in Math. (Springer verlag), 10 (13) (1983), 362--372.
[14]. H.M. Srivastava and S. Owa (Eds.), "Univalent Functions, Fractional Calculus, and Their Applications", Halsted Press, (1989), (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York.

