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I. Introduction and Preliminaries 

     Let pA  denotes the class of functions of the form: 
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    which are analytic and p -valent in the unit disk  1<;= zCz . 

Let   pAzg   be of the form: 

  .=
1=

kp
kp

k

p zbzzg 




                                                (1.2) 

A convolution (Hadamard product) of   pAzf   of the form (1.1) with   pAzg   of the form (1.2) is 

defined by 
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This convolution generalizes several convolution operators such as: 

   Dziok Srivastava operator [5], involving a generalized hypergeometric function sq F : 
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which again generalizes Hohlov operator [7], involving Gaussian hypergeometric function 12 F : 

         ,;;,:= 12112112 zfzFzzfH pp   

  

as well as Carlson and Shaffer operator [4], involving incomplete beta function: 

                                ,;,1;:=, 111211 zfzFzzfL p
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 which further reduces to Ruschweyh derivative operator [12]: 
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     if 0>=1 pn , 1=1  and    zfzfD 0
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  In addition, the convolution (1.3) reduces to the Salagean operator [13], if 
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 and to a generalized Salagean operator [2], if 
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 the convolution (1.3) reduces to the multiplier transformation, which is denoted as 
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The multiplier transformation has been studied by Aghalary et al. [1]. 

Further, the convolution (1.3) reduces to an integral operator involving fractional integral 

   operator  zfDz


, if 
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 Again, this convolution (1.3) reduces to the derivative operator involving fractional derivative  
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The fractional integral and fractional derivative operators of order   is defined by Owa [9] and   

 Srivastava and [14]. 

Recently, Patel and Mishra [10] defined a calculus operator 
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 for a function pAf   and for 

a real number  1<<  p  by 
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A function   pAzf   is said to be p -valently starlike of order   in  , if it satisfies the inequality 
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The class of all p -valent starlike functions of order   is denoted by  
pS  and write  

1S   S . 

On the other hand, a function   pAzf   is said to be p -valently convex of order   in  , if it satisfies the 

inequality 
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The class of all p -valent convex functions of order   is denoted by  pK  and write  1K   K . 

Furthermore, a function   pAzf   is said to be p -valently close-to-convex of order   in  , if it satisfies 

the inequality 

   .;<0;>Re 1 Nppzzfz
'p 







    

 

The class of all p -valent close-to-convex functions of order   is denoted by  pCK .   pp CKCK 0  

and denote  01CK CK . 

A function pAf   is said to be in the class  P  if and only if  
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For two functions f  and g  analytic in  , we say that the function f  is subordinate to g  in  , and we 

write 

   ,zgzf   

 

if there exists a Schwarz function w , which is analytic in  , with   0=0w  and   1<zw  for all z , 

such that 

      . ,= zzwgzf  

 

Let P  be the class of the functions   with normalization   1=0 , which are convex and univalent in   and 

satisfy the condition    0>Re z  for z . 

 

  Definition 1.1 A function pAf   is said to be in the class  ;,, mbgS p , if and only if 

   

   
   ,

1
1

1

zmp
zgf

zgfz

b m

m




































     (1.5) 

with mp > ,  0,1,2=0Nm ,  0\Cb , 
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where    zgf
r

  denotes the 
thr  derivative of  gf   and is given by 
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It is observe that for 1<1  AB ,   
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 is studied by Güney and Eker [6] for negative   

  coefficients. 

 

In this paper, we obtain Fekete-Szegö inequality, Integral representation and structural formula are also obtained 

for the classes  ;,, mbgS p  and  BAmbgS p ,;,, . 

 

II. Fekete-Szegö inequality for the class  BAmbgS p ,;,,  

Theorem 2.1 Let pAg  be of the form (1.2) with mp > , 1<1  AB ,  0,1,2=0Nm ,   

 0\Cb , if    BAmbgSzf p ,;,, , then 
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The estimate (21) is sharp.  

 

Proof. Since    BAmbgSzf p ,;,, , we have 
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    and  1<z  for z , or 
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  Writing corresponding series expansions in (2.2), we get 
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Equating the coefficient of 
1mpz  and 

2mpz  on both sides, we obtain 
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and 
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Now, for any complex number  , we write 
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From the result of Keogh and Merker [8], it is known that for any complex number  , 
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and the estimate is sharp for the functions   pzzf =0  and   1
1 = pzzf  for 1  and 1<  respectively. 

From (2.5), it follows that 
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III. Integral Representation For The Classes  ;,, mbgS p  And  BAmbgS p ,;,,  

    Theorem 3.1 Let   pAzg   of the form (1.2) then a function pSf  be in the class 

          ;,, mbgS p  if and only if there exist a Schwarz function  zw  such that 
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      where  x  is the probability measure on  .1=:= xxX   

 Proof. Since pAf   is said to be in the class  ;,, mbgS p , if and only if 
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On integrating with respect to z , we get 
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Integrating with respect to z , we get 
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For obtaining the third representation let  1=:= xxX  then, we have 
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Again integrating with respect to z , we get 
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IV. Structural Formula For The Classes  ;,, mbgS p  And  BAmbgS p ,;,,  

 

   Theorem 4.1 Let   pAzg   of the form (1.2) then a function   ;,, mbgSf p  if and only if   
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Also let  BAmbgSf p ,;,,  then 
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 where  x  is the probability measure on  .1=:= xxX   
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and our assertion (4.1) follows immediately. 

Again, from (3.2) and (1.6) we obtain 
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