A Note on K_r Excellent Domination Parameter

N. Venkataraman

Assistant professor The department of mathematics Gac Ooty 14.4.2015

Abstract: Let G = (V, E) be a simple graph of order p and size q. A subset S of V is said to be a K_r - dominating set of G if for every vertex $v \in (V - S)$ is K_r - adjacent to atleast one vertex in S. Since v is always a K_r - dominating set, for every r, the existence of K_r -dominating set in G is guaranteed. A K_r - dominating set of minimum cardinality is called a minimum K_r - dominating set and its cardinality is denoted by γ_{kr} . Clearly $\gamma = \gamma_{K2}$ and $\gamma \leq \gamma_{kr}$ for every r > 2

I. Introduction

A vertex v is said to be k_r -adjacent to a vertex u if u and v are contained in a r- clique of G. Let $u \in V$ (G), define k_r - neighbourhood, denoted by N_{kr} (v) = { $v \in V/visk_r - adjacenttou$ }. If N_{kr} (u) = φ then u is called a k_r -isolated vertex. Let G = (V, E) be a graph. A subset $S \subseteq V$ is said to be a K_r -dominating set of G if for every vertex $v \in (V - S)$ is K_r -adjacent to I atleast one vertex in S. A tree T is said to be γ_{kr} -excellent if for every vertex of T is some γ_{Kr} -set.

Results:

For any n, if G does not contain any r-clique, then $\gamma_{kr} = p$. In particular, if r > p then $\gamma_{kr} = p$. Therefore we assume that $r \le p$.

(i)
$$\gamma_{k_{r}}(K_{p}) = 1$$

(ii) $\gamma_{k_{r}}(S_{1}, p) = \begin{bmatrix} 1 & \text{ifr} = 2 \\ = (p+1) & \text{ifr} > 2 \end{bmatrix}$
(iii) $\gamma_{k_{r}}(W_{n}) = \begin{bmatrix} y(p/3)e & \text{ifr} = 3 \\ = (p+1) & \text{ifr}_{2} \end{bmatrix}$
(iv) $\gamma_{k_{r}}(P_{p}) = \begin{bmatrix} 0 & \text{ifr} > 2 \\ (p) & \text{ifr} > 2 \end{bmatrix}$
(v) $\gamma_{k_{r}}(C_{p}) = \begin{bmatrix} 0 & \text{ifr} > 2 \\ (p) & \text{ifr} > 2 \end{bmatrix}$
(vi) $\gamma_{k_{r}}(G) = \begin{bmatrix} p & \text{ifr} = 2 \\ (p) & \text{ifr} = 2 \end{bmatrix}$
(vi) $\gamma_{k_{r}}(G) = \begin{bmatrix} p & \text{ifr} = 2 \\ (p+1) & \text{ifr} > 2 \end{bmatrix}$

Where G is the graph obtained from $K_{1,p}\,$ by dividing each edge exactly

once
(vii)
$$\gamma_{k_r}(K_{p_1,p_2}) = \begin{cases} \zeta & \text{ifr} = 2 \\ =(p_1 + p_2) & \text{Otherwise} \end{cases}$$

 $\begin{array}{ll} (viii) \mbox{ If } r>2 \mbox{ then any } \gamma_{k_{r}}\mbox{-set contains all pendent vertices. Therefore} \\ \gamma_{k_{r}}(GoK_{1}) = & & & & \\ & & & (p+\gamma_{k_{r}})(G) \mbox{ ifr}>2. \end{array}$

Ore's Theorem

II Statement:

A K_r -dominating set S of a graph G is minimal if and only if for every $u \in S$ either or both of the following conditions hold.

(i) $N_{kr}(u) \cap S = \varphi$ (ii) \exists a vertex $v \in (V - S)$ such that $N_{kr}(u) \cap S = u$.

Proof :

Let S be a K_r-dominating set. Then obviously any $u \in S$, Condi-tions (i) (or) (ii) (or) both. Conversely, assume that for every $u \in S$, conditions (i) (or) (ii) (or) both holds. Claim : S is a minimal K_r-dominating set. Suppose not. Then there exists $u \in S$ such that (S - u) is a K_r -dominating set. That is, there exists $v \in S$ such that u is K_r -adjacent to v. (i.e) $N_{kr} \cap S$ $6= \phi$. (i.e) (i) is not satisfied. Therefore u satisfies condition(ii). (i.e) there exists $v \in (V - S)$ such that

 $N_{kr}(v) \cap S = u.$ (i.e) $N_{kr}(v) \cap (S - u) = \phi$. Therefore (S - u) is not a K_r - dominating, Which is a contradiction. Hence the thm.

Remark:

Let G = (V, E) be a graph with a vertices. Let $r \ge 2$. Then $1 \le \gamma_{kr} \le n$ and these bounds are Sharp.

Remark:

Any K_r dominating set with $r\geq 3$ contains all pendent vertices. Also, for a tree T , V (T) is the minimum K_r dominating set for all $r\geq 3.$

iii Result

A graph G has V , as its unique K_r dominating set if and if G contains no r – clique.

Proof

\Rightarrow

Assume that G contains no r-clique. To prove that G has V as its unique $K_{\rm r}\text{-}dominating$ set. The proof is Obvious.

⇐=

Assume that graph G has V as its unique $K_{\rm r}$ dominating set. To prove that

G contains no r-clique. Suppose G contains a r-clique say $\{v_1, v_2, ..., v_r\}$. Then $(V - \{v_2, v_3,, v_r\})$ is a K_r -dominating set. Which is a contradiction to our hypothesis.

Corollary

If their exists $v \in V$ such that N[V] contains a r – clique. Then $\gamma_{kr}(G) \leq n - r + 1$.

Observation

A graph G has γ_{kr} (G) = 1 if and only if there exists a point $u \in V$ (G) such that every point is in a r-clique containing u. (i.e) if and only if G is K_r with $r \ge n$ or G is obtained from union of cliques, each of size $\ge n - 1$ and joining every point of each clique to a new point.

Result

Let S be a γ -set. Let the number of points in (V - S) which are not K_r -adjacent to any of the vertices of S be t. Then $\gamma_{kr}(G) = \gamma(G) + t$.

iv

Examples:

$$\gamma = 1 = \gamma_{k2} \gamma_{k3} = 1 + 1 = 2$$

Theorem

Statement

Every graph of order p is an induced subgraph of a γ_{kr} -excellent graph.

Proof

Let G be a graph of order p. Attach at each point v, a complete graph K_{r-1} with v as one of the vertices. The resulting graph is denoted by GoK_r . The graph G is an induced subgraph of GoK_r which is γ_{kr} -excellent. Hence the theorem.

Corollary:

DOI: 10.9790/5728-11320711

There does not exists a forbidden sub graph characterization of the class of v γ_{kr} -excellent graphs.

Examples :

Subdivided graph (or) Star is not K_2 -excellent.

 C_4 is K_2 -excellent but not K_3 -excellent.

vi

K_n-is not K_r-excellent.

Note:

AtreeTis γ_{kr} – excellent, for all $n \geq 3,$ γ_{k2} -excellent, tree has already been characterized by sumner.

Definition:

A connected graph G is called a K_r-tree if every vertex is in a K_r-clique and G does not contain C_m where $m \ge r + 1$.

Remark:

DOI: 10.9790/5728-11320711

A K₂-tree is simply a tree.

vii **Example:**

v₄ v3 K₃-tree.

Definition:

A pendent vertex v of a K_r-tree of a graph G is a vertex which is contain exactly one K_r-clique.

Note:

For any r, if G does not contain any r-clique, then $\gamma_{kr} = p$. In particular if r > p then $\gamma_{kr} = p$. Therefore we assume that $r \le p$

 $(i)\gamma_{kr}(K_p) = 1$

 $^{(ii)\gamma}k_r(P_p)=d(p/3)e^{if r = 2}$

 γ_{kr} (P_p) = p if r > 2. Where P is Peterson's graph.

Definition:

A K_r -path is a K_r -tree containing exactly K_r -pendent vertices and every other point is contained in exactly two K_r -cliques.

Note:

A K_3 -path is a K_3 -Tree in which there are exactly three K_3 -pendant vertices.

viii

Remark:

(i) $d_{kr}(v) = K_r$ -degree of v = number of r-cliques containing v.

(ii) Length of a K_r -path P denoted by l(P) is the number of K_r 's (r-cliques) present in the path.

Theorem:

DOI: 10.9790/5728-11320711

A k_r-path P is γ k_r-excellent \Leftrightarrow l(P) = 1(or)l(P) = 0(mod3).

Uses:

Kr-domination has application in communication network system for rapid transfer of shared information among the members of the core group.

References

- [1]. M.A.Henning, "Kn-domination sequences of graphs. J.Combin.Math.Comput;10;161-172,1991.
- [2]. M.A.Henning and H.C.Swart Bounds relating generalized domination parameters Discrete Math, 120:93-105, 1993. "A note on packing two trees into K_n " Peter.J.SlaterandHedetinime.ARSCombin11, 149 – 153, 1981.
- [3].
- [4]. "Fundamentalsofdominationingraphs"
- TeresaW.Haynes, StephenT.Hedetnime, PeterJ.Slater, MarcelDekkerInc, NewY ork, 1998.
- [5]. [6]. P.ErdosandM.A.Henning, andH.C.."The smallestorder of agraph with domination $number equal to two and with every vertex contained in K_n. ``Ars.Combin, 35A: 217-224, 1993.$