A Note on K_r Excellent Domination Parameter

N. Venkataraman
Assistant professor The department of mathematics Gac Ooty 14.4.2015

Abstract: Let $G = (V, E)$ be a simple graph of order p and size q. A subset S of V is said to be a K_r-dominating set of G if for every vertex $v \in (V - S)$ is K_r-adjacent to at least one vertex in S. Since v is always a K_r-dominating set, for every r, the existence of K_r-dominating set in G is guaranteed. A K_r-dominating set of minimum cardinality is called a minimum K_r-dominating set and its cardinality is denoted by γ_{K_r}. Clearly $\gamma = \gamma_{K_2}$ and $\gamma \leq \gamma_{K_r}$ for every $r > 2$.

I. Introduction

A vertex v is said to be k_r-adjacent to a vertex u if u and v are contained in a r-clique of G. Let $u \in V(G)$, define k_r-neighbourhood, denoted by $N_{k_r}(v) = \{v \in V : v k_r-adjacent to u\}$. If $N_{k_r}(u) = \emptyset$ then u is called a k_r-isolated vertex. Let $G = (V, E)$ be a graph. A subset $S \subseteq V$ is said to be a K_r-dominating set of G if for every vertex $v \in (V - S)$ is K_r-adjacent to at least one vertex in S. A tree T is said to be γ_{K_r}-excellent if for every vertex of T is some γ_{K_r}-set.

Results: For any n, if G does not contain any r-clique, then $\gamma_{K_r} = p$. In particular, if $r > p$ then $\gamma_{K_r} = p$. Therefore we assume that $r \leq p$.

(i) $\gamma_{K_r}(K_r) = 1$
(ii) $\gamma_{K_r}(S_1, p) = \begin{cases} 1 & \text{if } r = 2 \\ (p + 1) & \text{if } r > 2 \end{cases}$
(iii) $\gamma_{K_r}(W_n) = \begin{cases} (\frac{p(p-3k)}{2}) & \text{if } r = 3 \\ (p + 1) & \text{if } r \geq 4 \end{cases}$
(iv) $\gamma_{K_r}(P_n) = \begin{cases} (p) & \text{if } r > 2 \\ \emptyset & \text{otherwise} \end{cases}$
(v) $\gamma_{K_r}(G) = \begin{cases} (p) & \text{if } r = 2 \\ (p + 1) & \text{if } r > 2 \end{cases}$
(vii) $\gamma_{K_r}(K_{p_1,p_2}) = \begin{cases} 2 & \text{if } r = 2 \\ (p_1 + p_2) & \text{Otherwise} \end{cases}$
(viii) If $r > 2$ then any γ_{K_r}-set contains all pendant vertices. Therefore $\gamma_{K_r}(G \circ K_1) = (p + \gamma_{K_r}(G))$ if $r > 2$.

Ore’s Theorem

II Statement:

A K_r-dominating set S of a graph G is minimal if and only if for every $u \in S$ either or both of the following conditions hold.
(i) $N_{k_r}(u) \cap S = \emptyset$
(ii) \exists a vertex $v \in (V - S)$ such that $N_{k_r}(u) \cap S = u$.

Proof: Let S be a K_r-dominating set. Then obviously any $u \in S$. Conditions (i) (or) (ii) (or) both. Conversely, assume that for every $u \in S$, conditions (i) (or) (ii) (or) both holds.

Claim: S is a minimal K_r-dominating set.
Suppose not. Then there exists \(u \in S \) such that \((S - u) \) is a \(K_r \)-dominating set. That is, there exists \(v \in S \) such that \(u \) is \(K_r \)-adjacent to \(v \). (i.e) \(N_u \cap S \neq \varnothing \). (i.e) (i) is not satisfied. Therefore \(u \) satisfies condition(ii). (i.e) there exists \(v \in (V - S) \) such that \(N_v(v) \cap (S - u) \neq \varnothing \). Therefore \((S - u) \) is not a \(K_r \)-dominating. Which is a contradiction. Hence the thm.

Remark:
Let \(G = (V, E) \) be a graph with a vertices. Let \(r \geq 2 \). Then \(1 \leq \gamma_k \leq n \) and these bounds are Sharp.

Remark:
Any \(K_r \) dominating set with \(r \geq 3 \) contains all pendent vertices. Also, for a tree \(T \), \(V(T) \) is the minimum \(K_r \) dominating set for all \(r \geq 3 \).

iii Result
A graph \(G \) has \(V \), as its unique \(K_r \) dominating set if and if \(G \) contains no \(r \) \(-\) clique.

Proof
\[\Rightarrow \]
Assume that \(G \) contains no \(r \)-clique. To prove that \(G \) has \(V \) as its unique \(K_r \)-dominating set. The proof is Obvious.

\[\Leftarrow \]
Assume that graph \(G \) has \(V \) as its unique \(K_r \) dominating set. To prove that \(G \) contains no \(r \)-clique. Suppose \(G \) contains a \(r \)-clique say \(\{v_1, v_2, ..., v_r\} \). Then \((V - \{v_2, v_3, ..., v_r\}) \) is a \(K_r \)-dominating set. Which is a contradiction to our hypothesis.

Corollary
If their exists \(v \in V \) such that \(N[V] \) contains a \(r \)-clique. Then \(\gamma_k (G) \leq n - r + 1 \).

Observation
A graph \(G \) has \(\gamma_k (G) = 1 \) if and only if there exists a point \(u \in V(G) \) such that every point is in a \(r \)-clique containing \(u \). (i.e) if and only if \(G \) is \(K_n \) with \(r \geq n \) or \(G \) is obtained from union of cliques, each of size \(\geq n - 1 \) and joining every point of each clique to a new point.

Result
Let \(S \) be a \(\gamma \)-set. Let the number of points in \((V - S) \) which are not \(K_r \)-adjacent to any of the vertices of \(S \) be \(t \). Then \(\gamma_k (G) = \gamma(G) + t \).

iv **Examples:**

\[\gamma = 1 = \gamma_k \gamma_k = 1 + 1 = 2 \]

Theorem
Statement
Every graph of order \(p \) is an induced subgraph of a \(\gamma_k \)-excellent graph.

Proof
Let \(G \) be a graph of order \(p \). Attach at each point \(v \), a complete graph \(K_{r-1} \) with \(v \) as one of the vertices. The resulting graph is denoted by \(GoK_r \). The graph \(G \) is an induced subgraph of \(GoK_r \) which is \(\gamma_k \)-excellent. Hence the theorem.

Corollary:
There does not exists a forbidden sub graph characterization of the class of \(v_{\gamma_{k_2}} \)-excellent graphs.

Examples:

Subdivided graph (or) Star is not \(K_2 \)-excellent.

\(C_4 \) is \(K_2 \)-excellent but not \(K_3 \)-excellent.

\(K_3 \) is \(K_3 \)-excellent.

\(K_n \) is not \(K_r \)-excellent.

Note:
A tree \(T \) is \(\gamma_{k_2} \)-excellent, for all \(n \geq 3 \), \(\gamma_{k_2} \)-excellent, tree has already been characterized by sumner.

Definition:
A connected graph \(G \) is called a \(K_r \)-tree if every vertex is in a \(K_r \)-clique and \(G \) does not contain \(C_m \) where \(m \geq r + 1 \).

Remark:
A K_r-tree is simply a tree.

Example:

\[v_4, v_3 \text{ K}_3 \text{-tree.} \]

Definition:
A pendant vertex \(v \) of a K_r-tree of a graph \(G \) is a vertex which contain exactly one K_r-clique.

Note:
For any \(r \), if \(G \) does not contain any \(r \)-clique, then \(\gamma_{kr} = p \). In particular if \(r > p \) then \(\gamma_{kr} = p \). Therefore we assume that \(r \leq p \).

(i) \(\gamma_{kr}(K_p) = 1 \)

(ii) \(\gamma_{kr}(P_p) = \frac{d(p/3)e}{r-2} \) if \(r = 2 \)

\(\gamma_{kr}(P_p) = p \) if \(r > 2 \). Where \(P \) is Peterson’s graph.

Definition:
A K_r-path is a K_r-tree containing exactly K_r-pendant vertices and every other point is contained in exactly two K_r-cliques.

Note:
A K_r-path is a K_3-Tree in which there are exactly three K_3-pendant vertices.

Examples:

Remark:
(i) \(d_{kr}(v) = K_r \)-degree of \(v \) = number of \(r \)-cliques containing \(v \).

(ii) Length of a K_r-path \(P \) denoted by \(l(P) \) is the number of K_r’s (r-cliques) present in the path.

Theorem:
A k_r-path P is γ_{k_r}-excellent $\iff l(P) = 1 \text{(or)} l(P) = 0 \text{(mod 3)}$.

Uses:
K_r-domination has application in communication network system for rapid transfer of shared information among the members of the core group.

References

 "A note on packing two trees into K_r,”
[4]. "Fundamentals of domination in graphs”