On A Certain Class of Multivalent Functions with Negative Coefficients

C. Selvaraj ${ }^{1}$ And G.Thirupathi ${ }^{2}$
${ }^{l}$ Department of Mathematics, Presidency College, Chennai - 600 005, Tamilnadu, India.
${ }^{2}$ Department of Mathematics, RMK Engineering College, R.S.M. Nagar, Kavaraipettai - 601206. Tamilnadu, India.

Abstract: In the present paper, we introduce the class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \delta)$ of p-valent functions in the unit disc $U=\{z:|z|<1\}$. We obtain coefficient estimate, distortion and closure theorems, radii of close-to-convexity and ε - neighborhood for this class.
Keywords and phrases: multivalent function, distortion theorems, radius theorems, ε - neighborhood. 2000 Mathematics Subject Classification: 30C45.

I. Introduction And Definition

Let A_{P} be the class of functions analytic in the open unit disc $U=\{z:|z|<1\}$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \tag{1.1}
\end{equation*}
$$

and let $A_{1}=A$.
Let $f(z)$ and $g(z)$ be analytic in U. Then we say that the function $f(z)$ is subordinate to $g(z)$ in U, if there exists an analytic function $w(z)$ in U such that $|w(z)|<|z|$ and $f(z)=g(w(z))$, denoted by $f(z) \prec g(z)$. If $g(z)$ is univalent in U, then the subordination is equivalent to $f(0)=g(0)$ and $f(U) \subset g(U)$.

For the functions $f(z)$ of the form (1.1) and $g(z)=z^{p}+\sum_{n=1}^{\infty} b_{n+p} z^{n+p}$, the hadamard product (or convolution) of f and g is defined by

$$
(f * g)(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} b_{n+p} z^{n+p}
$$

A function f belonging to A_{P} is said to be p-valently starlike of order β if it satisfies

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\beta \quad(z \in U)
$$

for some $\beta(0 \leq \beta<p)$. We denote by $S_{P}^{*}(\beta)$ the subclass of A_{P} consisting of functions which are p valently starlike of order β in U.
Recently, M.K. Aouf et. al. [1] introduced the operator $\mathfrak{R}_{\beta, p}^{\alpha, \gamma}: A_{p} \rightarrow A_{p}$ as follows:

$$
\begin{align*}
\mathfrak{R}_{\beta, p}^{\alpha, \gamma} f(z) & =\frac{\Gamma(p+\alpha+\beta-\gamma+1)}{\Gamma(p+\beta)} \frac{1}{z^{p}} \int_{0}^{z}\left(1-\frac{t}{z}\right)^{\alpha-\gamma} t^{\beta-1} f(\mathrm{t}) \mathrm{dt} \\
& =z^{p}+\frac{\Gamma(p+\alpha+\beta-\gamma+1)}{\Gamma(p+\beta)} \sum_{n=1}^{\infty}\left[\frac{\Gamma(p+\beta+n)}{\Gamma(p+\alpha+\beta+n-\gamma+1)}\right] a_{n+p} z^{n+p} \tag{1.2}
\end{align*}
$$

$$
(\beta>-p ; \alpha>\gamma-1 ; \gamma \in \square ; p \in \square ; z \in U)
$$

From (1.2), it is easy to verify that

$$
\begin{equation*}
z\left(\mathfrak{R}_{\beta, p}^{\alpha+1, \gamma} f(\mathrm{z})\right)^{\prime}=(\alpha+\beta+p-\gamma+1) \mathfrak{R}_{\beta, p}^{\alpha, \gamma} f(\mathrm{z})-(\alpha+\beta-\gamma+1) \mathfrak{R}_{\beta, p}^{\alpha+1, \gamma} f(\mathrm{z}) \tag{1.3}
\end{equation*}
$$

Remark:1.1. If we let $\gamma=1$, then this operator $\mathfrak{R}_{\beta, p}^{\alpha, \gamma}$ reduces to the operator introduced and studied by Liu and Owa [2] and $Q_{\beta, 1}^{\alpha}=Q_{\beta}^{\alpha}$ introduced and studied by Jung et.al.[3]. For other choices of α and β then the operator $\mathfrak{R}_{\beta, p}^{\alpha, \gamma}$ reduces to the familiar other well- known integral operators introduced and discussed by various authors $[4,5,6,7]$.

Let $\quad T_{p}(n)$ be the subclass of A_{P}, consisting of functions of the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad(p \geq 1) \tag{1.4}
\end{equation*}
$$

Motivated by the earlier investigations of Aouf [8], Darwish and Aouf [9], Magesh et. al. [10], Guney, H.O and Sumer Eker.S [11] and Mahzoon [12], we investigate, in the present paper, the various properties and characteristics of analytic p -valent functions belonging to the subclass $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \delta)$.

Definition: 1.1. A function $f \in T_{p}(n)$ is said to in the class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ if it satisfies the following differential condition:

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{F(z)} \prec \frac{p+[p B+(A-B)(p-\delta)]}{1+B z}, \tag{1.5}
\end{equation*}
$$

where

$$
F(\mathrm{z})=(1-\lambda)\left(\mathfrak{R}_{\beta, p}^{\alpha, \gamma} f(\mathrm{z})\right)+\lambda z\left(\mathfrak{R}_{\beta, p}^{\alpha, \gamma} f(\mathrm{z})\right)^{\prime}
$$

The condition (1.5) is equivalent to

$$
\begin{equation*}
\left|\frac{\frac{z F^{\prime}(z)}{F(z)}-p}{[p B+(A-B)(p-\delta)]-B \frac{z F^{\prime}(z)}{F(z)}}\right|<1, \tag{1.6}
\end{equation*}
$$

where the parameters $\alpha, p, \delta, \lambda, \gamma$ are constrained as follows:
$\alpha>\gamma-3, \beta>-p, \gamma \in \square, 0 \leq \delta<p,-1 \leq B<A \leq 1,-1 \leq B<0,0 \leq \lambda \leq 1$ and $p \in \square$.

II. Coefficient Estimates

Theorem: 2.1. A function $f(z)$ defined by (1.4) is in $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ if it satisfies the following inequality:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n(1-B)+(A-B)(p-\delta)] a_{n+p} \leq(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1)) \tag{2.1}
\end{equation*}
$$

where $\phi(n, \alpha, \beta, \gamma)=\frac{\Gamma(p+\alpha+\beta-\gamma+1) \Gamma(p+\beta+n)}{\Gamma(p+\beta) \Gamma(p+\alpha+\beta+n-\gamma+1)}[1+\lambda(n+p-1)]$
$0 \leq \delta<p,-1 \leq B<A \leq 1,-1 \leq B<0$ and $0 \leq \lambda \leq 1$.

Equality holds for the function $f(z)$ given by

$$
f(z)=z^{p}-\frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(p-1)]}{(p+\beta)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} z^{p+1}
$$

Proof: Assume that the inequality (2.1) holds true and let $|z|=1$. Then we obtain

$$
\begin{aligned}
& \left|\frac{\frac{z F^{\prime}(z)}{F(z)}-p}{\left.[p B+(A-B)(p-\delta)]-B \frac{z F^{\prime}(z)}{F(z)} \right\rvert\,}\right| \\
& \quad=\frac{\left|\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma) n a_{n+p} z^{n}\right|}{\left|(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))+\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n B-(A-B)(p-\delta)] a_{n+p} z^{n}\right|} \\
& \leq(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))
\end{aligned}
$$

by hypothesis. Hence, by the maximum modulus theorem, we have $f \in S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Conversely, assume that $f(z) \in S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$, then in the view of (1.2) and (1.5), we get

$$
\begin{aligned}
& \left|\frac{\frac{z F^{\prime}(z)}{F(z)}-p}{\left.[p B+(A-B)(p-\delta)]-B \frac{z F^{\prime}(z)}{F(z)} \right\rvert\,}\right| \\
& =\frac{\left|\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma) n a_{n+p} z^{n}\right|}{\left|(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))+\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n B-(A-B)(p-\delta)] a_{n+p} z^{n}\right|}<1
\end{aligned}
$$

Since $\operatorname{Re}(z) \leq|z|$ for all z, we have

$$
\operatorname{Re}\left\{\frac{\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma) n a_{n+p} z^{n}}{(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))+\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n B-(A-B)(p-\delta)] a_{n+p} z^{n}}\right\}<1
$$

Choosing values of z on the real axis and letting $z \rightarrow 1^{-}$through real values, we obtain
$\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n(1-B)+(A-B)(p-\delta)] a_{n+p} \leq(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))$.
The proof is completed.
Corollary: 2.1. Let the function $f(z)$ defined by (1.4) be in $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then

$$
a_{n+p} \leq \frac{(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))}{[n(1-B)+(A-B)(p-\delta)] \phi(n, \alpha, \beta, \gamma)}
$$

for $n \geq 1$. Equality holds for the function $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{p}-\frac{(A-B)(p-\delta)[1+\lambda(p-1)]}{[n(1-B)+(A-B)(p-\delta)] \phi(n, \alpha, \beta, \gamma)} z^{n+p} . \tag{2.3}
\end{equation*}
$$

III. Distortion Bounds

Theorem: 3.1. A function $f(z)$ defined by (1.4) is in $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then for $|z|=r$, we have

$$
\begin{align*}
& r^{p}-\frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(p-1)]}{(p+\beta)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} r^{p+1} \leq|f(z)| \leq \tag{3.1}\\
& r^{p}+\frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(p-1)]}{(p+\beta)[(1-B)+(A-B)(p-\delta)][1+\lambda p]}
\end{align*} r^{p+1}
$$

for $z \in U$. The result is sharp.
Proof: Since $f(z)$ belongs to the class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$, in view of Theorem 2.1, we obtain

$$
\begin{aligned}
& \frac{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]}{(p+\alpha+\beta-\gamma+1)} \sum_{n=1}^{\infty} a_{n+p} \leq \\
& \quad \sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n(1-B)+(A-B)(p-\delta)] a_{n+p} \leq(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)]
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n+p} \leq \frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)]}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} \tag{3.2}
\end{equation*}
$$

Using (1.4) and (3.2), we obtain

$$
\begin{aligned}
|f(z)| & \leq|z|^{p}+|z|^{p+1} \sum_{n=1}^{\infty} a_{n+p} \\
& \leq r^{p}+r^{p+1} \sum_{n=1}^{\infty} a_{n+p} \\
& \leq r^{p}+\frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)]}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} r^{p+1} .
\end{aligned}
$$

Similarly,

$$
|f(z)| \geq r^{p}-\frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)]}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} r^{p+1}
$$

This completes the proof of Theorem 3.1.

Theorem: 3.2. A function $f(z)$ defined by (1.4) is in $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then for $|z|=r$, we have

$$
\begin{gather*}
p r^{p-1}-\frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(p-1)](p+1)}{(p+\beta)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} r^{p} \leq\left|f^{\prime}(z)\right| \leq \tag{3.3}\\
p r^{p-1}+\frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(p-1)](p+1)}{(p+\beta)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} r^{p}
\end{gather*}
$$

for $z \in U$. The result is sharp.
Proof: Since $f(z)$ belongs to the class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$, in view of Theorem 2.1, we obtain

$$
\begin{aligned}
& \frac{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]}{(p+\alpha+\beta-\gamma+1)(p+1)} \sum_{n=1}^{\infty}(n+p) a_{n+p} \leq \\
& \quad \sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n(1-B)+(A-B)(p-\delta)] a_{n+p} \leq(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)]
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+p) a_{n+p} \leq \frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)](p+1)}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} \tag{3.4}
\end{equation*}
$$

Using (1.4) and (3.4), we obtain

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leq p|z|^{p-1}+|z|^{p} \sum_{n=1}^{\infty}(n+p) a_{n+p} \\
& \leq p r^{p-1}+r^{p} \sum_{n=1}^{\infty}(n+p) a_{n+p} \\
& \leq p r^{p-1}+\frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)](p+1)}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} r^{p} .
\end{aligned}
$$

Similarly,

$$
\left|f^{\prime}(z)\right| \geq p r^{p-1}-\frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)](p+1)}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} r^{p}
$$

This completes the proof.

IV. Closure Theorems

Theorem: 4.1. Let the functions

$$
\begin{equation*}
f_{j}(z)=z^{p}-\sum_{n=1}^{\infty} a_{n+p, j} z^{n+p} \quad\left(a_{n+p, j} \geq 0\right) \tag{4.1}
\end{equation*}
$$

be in the class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ for every $j=1,2,3, \cdots, m$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\sum_{j=1}^{\infty} c_{j} f_{j}(z) \quad\left(c_{j} \geq 0\right) \tag{4.2}
\end{equation*}
$$

is also in the same class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$, where

$$
\begin{equation*}
\sum_{j=1}^{m} c_{j}=1 \tag{4.3}
\end{equation*}
$$

Proof: By means of the definition of $h(z)$, we can write

$$
\begin{equation*}
h(z)=z^{p}-\sum_{n=1}^{\infty}\left(\sum_{j=1}^{m} c_{j} a_{n+p, j}\right) z^{n+p} . \tag{4.4}
\end{equation*}
$$

Now, since $f_{j}(z) \in S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ for every $j=1,2,3, \cdots, m$, we obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n(1-B)+(A-B)(p-\delta)] a_{n+p, j} \leq(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1)) \tag{4.5}
\end{equation*}
$$

for every $j=1,2,3, \cdots, m$, by virtue of Theorem 2.1. Consequently, with the aid of (4.5) we can see that $\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n(1-B)+(A-B)(p-\delta)]\left(\sum_{j=1}^{m} c_{j} a_{n+p, j}\right)$

$$
\begin{aligned}
& =\sum_{j=1}^{m} c_{j}\left\{\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n(1-B)+(A-B)(p-\delta)] a_{n+p, j}\right\} \\
& \leq\left(\sum_{j=1}^{m} c_{j}\right)(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))=(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))
\end{aligned}
$$

This proves that the function $h(z)$ belongs to the class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$.

Theorem: 4.2. Let

$$
\begin{equation*}
f_{p}(z)=z^{p} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{n+p}(z)=z^{p}-\frac{(A-B)(p-\delta)[1+\lambda(p-1)]}{[n(1-B)+(A-B)(p-\delta)] \phi(n, \alpha, \beta, \gamma)} z^{n+p} \tag{4.7}
\end{equation*}
$$

for $-1 \leq B<A \leq 1,-1 \leq B<0,0 \leq \delta<p$ and $\phi(n, \alpha, \beta, \gamma)$ is defined by (2.2). Then $f(z)$ is in the class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \zeta_{n+p} f_{n+p}(z) \quad\left(\zeta_{n+p} \geq 0\right) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \zeta_{n+p}=1 \tag{4.9}
\end{equation*}
$$

Proof: Assume that

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \zeta_{n+p} f_{n+p}(z)=z^{p}-\sum_{n=1}^{\infty} \frac{(A-B)(p-\delta)[1+\lambda(p-1)]}{[n(1-B)+(A-B)(p-\delta)] \phi(n, \alpha, \beta, \gamma)} \zeta_{n+p} z^{n+p} \tag{4.10}
\end{equation*}
$$

Then we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma) & {[n(1-B)+(A-B)(p-\delta)] } \\
& \times \frac{(A-B)(p-\delta)[1+\lambda(p-1)]}{[n(1-B)+(A-B)(p-\delta)] \phi(n, \alpha, \beta, \gamma)} \zeta_{n+p} \\
& \leq(A-B)(p-\delta)[1+\lambda(p-1)]
\end{aligned}
$$

By virtue of Theorem 2.1 this shows that $f(z)$ is in the class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$.
Conversely, assume that $f(z)$ belongs to the class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Again, by virtue of Theorem 2.1, we have

$$
a_{n+p} \leq \frac{(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))}{[n(1-B)+(A-B)(p-\delta)] \phi(n, \alpha, \beta, \gamma)}
$$

Next, setting

$$
\zeta_{n+p} \leq \frac{[n(1-B)+(A-B)(p-\delta)] \phi(n, \alpha, \beta, \gamma)}{(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))} a_{n+p}
$$

and

$$
\zeta_{p}=1-\sum_{n=1}^{\infty} \zeta_{n+p}
$$

we have the representation (4.8). This completes the proof of the theorem.
V. Inclusion And Neighborhood Results

In this section, we prove certain relationship for functions belonging to the class
$S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ and also, we determine the neighborhood properties of functions belonging to the subclass $S_{P}^{*}(\rho, \alpha, \beta, \gamma, A, B, \lambda, \delta)$.

Following the works of Goodman [13], Ruschweyh [14] and Altintas et. al. [15, 16], we define the $(n, \varepsilon)-$ neighborhood of a function $f \in T_{p}(n)$ by

$$
\begin{equation*}
N_{n, \varepsilon}(f)=\left\{g \in T_{p}(n): g(z)=z^{p}-\sum_{n=1}^{\infty} b_{n+p} z^{n+p} \text { and } \sum_{n=1}^{\infty}(n+p)\left|a_{n+p}-b_{n+p}\right| \leq \varepsilon\right\} \tag{5.1}
\end{equation*}
$$

In particular, for the function $e(z)=z^{p}(p \in \square)$

$$
\begin{equation*}
N_{n, \varepsilon}(e)=\left\{g \in T_{p}(n): g(z)=z^{p}-\sum_{n=1}^{\infty} b_{n+p} z^{n+p} \text { and } \sum_{n=1}^{\infty}(n+p)\left|b_{n+p}\right| \leq \varepsilon\right\} \tag{5.2}
\end{equation*}
$$

A function $f \in T_{p}(n)$ defined by (1.4) is said to be in the class $S_{P}^{*}(\rho, \alpha, \beta, \gamma, A, B, \lambda, \delta)$ if there exists a function $h \in S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{h(z)}-1\right|<p-\rho \quad(z \in U, 0 \leq \rho<p) \tag{5.3}
\end{equation*}
$$

Theorem: 5.1. Let

$$
\begin{equation*}
\varepsilon=\frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)](p+1)}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} \tag{5.4}
\end{equation*}
$$

Then $\quad S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta) \subseteq N_{n, \varepsilon}(e)$.
Proof: Let $f \in S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then in view of assertion (2.1) of Theorem 2.1, we have

$$
\begin{align*}
& \frac{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]}{} \begin{array}{l}
(p+\alpha+\beta-\gamma+1) \\
\sum_{n=1}^{\infty} a_{n+p} \leq \\
\quad \sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma)[n(1-B)+(A-B)(p-\delta)] a_{n+p} \leq(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)] \\
\Rightarrow \quad \sum_{n=1}^{\infty} a_{n+p} \leq \frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)]}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]}
\end{array} .
\end{align*}
$$

Applying assertion (2.1) of Theorem 2.1 in conjunction with (5.6), we obtain

$$
\begin{aligned}
& \quad \frac{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]}{(p+\alpha+\beta-\gamma+1)} \sum_{n=1}^{\infty} a_{n+p} \leq(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)] \\
& \frac{(p+1)(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]}{(p+\alpha+\beta-\gamma+1)} \sum_{n=1}^{\infty} a_{n+p} \leq(p+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)]
\end{aligned}
$$

Hence,

$$
\sum_{n=1}^{\infty}(n+p) a_{n+p} \leq \frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)](p+1)}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]}=\varepsilon
$$

which by virtue of (5.2) establishes the inclusion relation (5.5).

Theorem: 5.2. Let

$$
\begin{equation*}
\rho=p-\frac{\varepsilon}{p+1} \times \tag{5.7}
\end{equation*}
$$

$\left[\frac{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]-(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)]}\right]$
Then $\quad N_{n, \varepsilon}(h) \subseteq S_{P}^{*}(\rho, \alpha, \beta, \gamma, A, B, \lambda, \delta)$.
Proof: Suppose that $f \in N_{n, \varepsilon}(h)$, we can find from (5.1) that

$$
\sum_{n=1}^{\infty}(n+p)\left|a_{n+p}-b_{n+p}\right| \leq \varepsilon
$$

which readily implies the following coefficient inequality,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|a_{n+p}-b_{n+p}\right| \leq \frac{\varepsilon}{p+1} . \quad(n \in \square) \tag{5.9}
\end{equation*}
$$

Next, since $f \in S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ in the view of (5.6), we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n+p} \leq \frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(\mathrm{p}-1)]}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} \tag{5.10}
\end{equation*}
$$

Using (5.9), (5.10) together with (5.3), we get the required assertion.

VI. Radii Of Close-To-Convexity, Starlikeness And Convexity

Theorem: 6.1. Let $f \in S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then f is p-valently close-to-convex of order $\eta(0 \leq \eta<p)$ in $|z|<R_{1}$, where

$$
\begin{equation*}
R_{1}=\inf _{n}\left\{\left[\frac{[n(1-B)+(A-B)(p-\delta)] \phi(n, \alpha, \beta, \gamma)}{(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))}\left(\frac{p-\eta}{n+p}\right)\right]^{\frac{1}{n}}\right\} \tag{6.1}
\end{equation*}
$$

and $\phi(n, \alpha, \beta, \gamma)$ is defined by (2.2).
Theorem: 6.2. Let $f \in S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then f is p-valently starlike of order $\eta(0 \leq \eta<p)$ in $|z|<R_{2}$, where

$$
\begin{equation*}
R_{2}=\inf _{n}\left\{\left[\frac{[n(1-B)+(A-B)(p-\delta)] \phi(n, \alpha, \beta, \gamma)}{(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))}\left(\frac{p-\eta}{n+p-\eta}\right)\right]^{\frac{1}{n}}\right\} \tag{6.2}
\end{equation*}
$$

and $\phi(n, \alpha, \beta, \gamma)$ is defined by (2.2).

Theorem: 6.3. Let $f \in S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then f is p-valently convex of order $\eta(0 \leq \eta<p)$ in $|z|<R_{3}$, where

$$
\begin{equation*}
R_{3}=\inf _{n}\left\{\left[\frac{[n(1-B)+(A-B)(p-\delta)] \phi(n, \alpha, \beta, \gamma)}{(A-B)(p-\delta)(1+\lambda(\mathrm{p}-1))}\left(\frac{p(p-\eta)}{(n+p)(n+p-\eta)}\right)\right]^{\frac{1}{n}}\right\} \tag{6.3}
\end{equation*}
$$

In order to establish the required results in Theorems 6.1, 6.2 and 6.3 , it is sufficient to show that

$$
\left|\frac{f^{\prime}(\mathrm{z})}{z^{p-1}}-p\right| \leq p-\eta \quad \text { for } \quad|z|<R_{1}
$$

$$
\begin{aligned}
& \left|\frac{z f^{\prime}(\mathrm{z})}{f(\mathrm{z})}-p\right| \leq p-\eta \quad \text { for } \quad|z|<R_{2} \text { and } \\
& \left|\left[1+\frac{z f^{\prime \prime}(\mathrm{z})}{f^{\prime}(\mathrm{z})}\right]-p\right| \leq p-\eta \quad \text { for } \quad|z|<R_{3},
\end{aligned}
$$

respectively.
Remark 6.1: The results in Theorems 6.1, 6.2 and 6.3 are sharp with the extremal function f given by (2.3). Furthermore, taking $\eta=0$ in Theorems 6.1, 6.2 and 6.3 , we obtain radius of close-to-convexity, starlikeness and convexity respectively.

References

[1]. Aouf M. K., El-Ashwah and Ahmed M Abd Eltawab, On certain subclass of p-valent functions Journal of classical Analyis, 4, 1(2014), 63-68.
[2]. Liu, Jin-Lin; Owa, Shigeyoshi. Properties of certain integral operator. Int. J. Math. Sci. 3 (2004), no. 1, 69-75.
[3]. Jung, Il Bong; Kim, Yong Chan; Srivastava, H. M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 176 (1993), no. 1, 138-147.
[4]. Bernardi, S. D. Convex and starlike univalent functions. Trans. Amer. Math. Soc. 135, 1969, 429-446.
[5]. Libera, R. J. Some classes of regular univalent functions. Proc. Amer. Math. Soc. 16 1965, 755 - 758.
[6]. Livingston, A. E. On the radius of univalence of certain analytic functions. Proc. Amer. Math. Soc. 17, 1966, 352 - 357.
[7]. Saitoh, Hitoshi; Owa, Shigeyoshi; Sekine, Tadayuki; Nunokawa, Mamoru; Yamakawa, Rikuo. An application of a certain integral operator. Appl. Math. Lett. 5 (1992), no. 2, $21-24$.
[8]. Aouf, M. K. On certain subclasses of multivalent functions with negative coefficients defined by using a differential operator. Bull. Inst. Math. Acad. Sin. (N.S.) 5 (2010), no. 2, 181-200.
[9]. Darwish, Hanan E.; Aouf, M. K. Neighborhoods of certain subclasses of analytic functions with negative coefficients. Bull. Korean Math. Soc. 48 (2011), no. 4, 689-695.
[10]. Magesh, N.; Mayilvaganan, S.; Mohanapriya, L. Certain subclasses of multivalent functions associated with fractional calculus operator. Int. J. Contemp. Math. Sci. 7 (2012), no. 21-24, 1113-1123.
[11]. Guney, H. O.; Sumer Eker, S. On a certain class of p-valent functions with negative coefficients. JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 97, 10 pp.
[12]. Mahzoon, H. Some properties of subclasses of P-valent functions defined by differential subordination. Acta. Univ. Apulensis Math. Inform. No. 36 (2013), 143-54.
[13]. Goodman, A. W. Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc. 8 (1957), 598-601.
[14]. Ruscheweyh, Stephan. Neighborhoods of univalent functions. Proc. Amer. Math. Soc. 81 (1981), no. 4, 521 - 527.
[15]. Altintas,, O.; Ozkan, O.; Srivastava, H. M. Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Lett. 13 (2000), no. 3, 63-67.
[16]. Altintas,, O.; Ozkan, O.; Srivastava, H. M. Neighborhoods of a certain family of multivalent functions with negative coefficients. Comput. Math. Appl. 47 (2004), no. 10-11, 1667-1672.

