On A Certain Class of Multivalent Functions with Negative Coefficients

C. Selvaraj¹ And G. Thirupathi² ¹Department of Mathematics, Presidency College, Chennai – 600 005, Tamilnadu, India. ²Department of Mathematics, RMK Engineering College, R.S.M. Nagar, Kavaraipettai – 601 206. Tamilnadu, India.

Abstract: In the present paper, we introduce the class $S_p^*(\alpha, \beta, \gamma, A, B, \delta)$ of p - valent functions in the unit disc $U = \{z : |z| < 1\}$. We obtain coefficient estimate, distortion and closure theorems, radii of close-to-convexity and \mathcal{E} - neighborhood for this class. **Keywords and phrases:** multivalent function, distortion theorems, radius theorems, \mathcal{E} - neighborhood. 2000 Mathematics Subject Classification: 30C45.

I. **Introduction And Definition**

Let A_p be the class of functions analytic in the open unit disc $U = \{z : |z| < 1\}$ of the form

$$f(z) = z^{p} + \sum_{n=1}^{\infty} a_{n+p} z^{n+p}$$
(1.1)

and let $A_1 = A$.

Let f(z) and g(z) be analytic in U. Then we say that the function f(z) is subordinate to g(z) in U, if there exists an analytic function w(z) in U such that |w(z)| < |z| and f(z) = g(w(z)), denoted by $f(z) \prec g(z)$. If g(z) is univalent in U, then the subordination is equivalent to f(0) = g(0) and $f(U) \subset g(U).$

For the functions f(z) of the form (1.1) and $g(z) = z^p + \sum_{n=1}^{\infty} b_{n+p} z^{n+p}$, the hadamard product (or

convolution) of f and g is defined by

$$(f * g)(z) = z^{p} + \sum_{n=1}^{\infty} a_{n+p} b_{n+p} z^{n+p}$$

A function f belonging to A_p is said to be p-valently starlike of order β if it satisfies

$$\operatorname{Re}\left\{\frac{f'(z)}{z^{p-1}}\right\} > \beta \qquad (z \in U),$$

for some $\beta (0 \le \beta < p)$. We denote by $S_p^*(\beta)$ the subclass of A_p consisting of functions which are pvalently starlike of order β in U.

Recently, M.K. Aouf et. al. [1] introduced the operator $\mathfrak{R}^{\alpha,\gamma}_{\beta,p}: A_p \to A_p$ as follows:

$$\Re_{\beta,p}^{\alpha,\gamma}f\left(z\right) = \frac{\Gamma\left(p+\alpha+\beta-\gamma+1\right)}{\Gamma\left(p+\beta\right)} \frac{1}{z^{p}} \int_{0}^{z} \left(1-\frac{t}{z}\right)^{\alpha-\gamma} t^{\beta-1}f(t) dt$$

$$= z^{p} + \frac{\Gamma\left(p+\alpha+\beta-\gamma+1\right)}{\Gamma\left(p+\beta\right)} \sum_{n=1}^{\infty} \left[\frac{\Gamma\left(p+\beta+n\right)}{\Gamma\left(p+\alpha+\beta+n-\gamma+1\right)}\right] a_{n+p} z^{n+p}$$
(1.2)

DOI: 10.9790/5728-11242432

$$(\beta > -p; \alpha > \gamma - 1; \gamma \in \Box; p \in \Box; z \in U).$$

From (1.2), it is easy to verify that

$$z\left(\Re_{\beta,p}^{\alpha+1,\gamma}f(\mathbf{z})\right)' = \left(\alpha + \beta + p - \gamma + 1\right)\Re_{\beta,p}^{\alpha,\gamma}f(\mathbf{z}) - \left(\alpha + \beta - \gamma + 1\right)\Re_{\beta,p}^{\alpha+1,\gamma}f(\mathbf{z}).$$
(1.3)

Remark:1.1. If we let $\gamma = 1$, then this operator $\Re_{\beta,p}^{\alpha,\gamma}$ reduces to the operator introduced and studied by Liu and Owa [2] and $Q_{\beta,1}^{\alpha} = Q_{\beta}^{\alpha}$ introduced and studied by Jung et.al.[3]. For other choices of α and β then the operator $\Re_{\beta,p}^{\alpha,\gamma}$ reduces to the familiar other well- known integral operators introduced and discussed by various authors [4, 5, 6, 7].

Let $T_p(n)$ be the subclass of A_p , consisting of functions of the form

$$f(z) = z^{p} - \sum_{n=1}^{\infty} a_{n+p} z^{n+p} \qquad (p \ge 1).$$
(1.4)

Motivated by the earlier investigations of Aouf [8], Darwish and Aouf [9], Magesh et. al. [10], Guney, H.O and Sumer Eker.S [11] and Mahzoon [12], we investigate, in the present paper, the various properties and characteristics of analytic p-valent functions belonging to the subclass $S_p^*(\alpha, \beta, \gamma, A, B, \delta)$.

Definition: 1.1. A function $f \in T_p(n)$ is said to in the class $S_P^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ if it satisfies the following differential condition:

$$\frac{zF'(z)}{F(z)} \prec \frac{p + \left[pB + (A - B)(p - \delta)\right]}{1 + Bz},$$
(1.5)

where

$$F(\mathbf{z}) = (1 - \lambda) \Big(\mathfrak{R}_{\beta,p}^{\alpha,\gamma} f(\mathbf{z}) \Big) + \lambda z \Big(\mathfrak{R}_{\beta,p}^{\alpha,\gamma} f(\mathbf{z}) \Big)'.$$

The condition (1.5) is equivalent to

$$\frac{\frac{zF'(z)}{F(z)} - p}{\left[pB + (A - B)(p - \delta)\right] - B\frac{zF'(z)}{F(z)}} < 1,$$

$$(1.6)$$

where the parameters α , p, δ , λ , γ are constrained as follows: $\alpha > \gamma - 3$, $\beta > -p$, $\gamma \in \Box$, $0 \le \delta < p$, $-1 \le B < A \le 1$, $-1 \le B < 0$, $0 \le \lambda \le 1$ and $p \in \Box$.

II. Coefficient Estimates

Theorem: 2.1. A function f(z) defined by (1.4) is in $S_P^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ if it satisfies the following inequality:

$$\sum_{n=1}^{\infty} \phi(n,\alpha,\beta,\gamma) \Big[n \big(1-B\big) + \big(A-B\big) \big(p-\delta\big) \Big] a_{n+p} \le \big(A-B\big) \big(p-\delta\big) \big(1+\lambda(p-1)\big), \tag{2.1}$$

where
$$\phi(n,\alpha,\beta,\gamma) = \frac{\Gamma(p+\alpha+\beta-\gamma+1)\Gamma(p+\beta+n)}{\Gamma(p+\beta)\Gamma(p+\alpha+\beta+n-\gamma+1)} [1+\lambda(n+p-1)]$$
 (2.2)
 $0 \le \delta < p, -1 \le B < A \le 1, -1 \le B < 0 \text{ and } 0 \le \lambda \le 1.$

Equality holds for the function f(z) given by

$$f(z) = z^{p} - \frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)\left[1+\lambda(p-1)\right]}{(p+\beta)\left[(1-B)+(A-B)(p-\delta)\right]\left[1+\lambda p\right]} z^{p+1}.$$

Proof: Assume that the inequality (2.1) holds true and let |z| = 1. Then we obtain

$$\frac{\frac{zF'(z)}{F(z)} - p}{\left[pB + (A - B)(p - \delta)\right] - B\frac{zF'(z)}{F(z)}}$$
$$= \frac{\left|\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma) n a_{n+p} z^{n}\right|}{\left|(A - B)(p - \delta)(1 + \lambda(p-1)) + \sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma) \left[nB - (A - B)(p - \delta)\right] a_{n+p} z^{n}\right|}$$
$$\leq (A - B)(p - \delta)(1 + \lambda(p-1))$$

by hypothesis. Hence, by the maximum modulus theorem, we have $f \in S_P^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Conversely, assume that $f(z) \in S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$, then in the view of (1.2) and (1.5), we get

$$\left|\frac{\frac{zF'(z)}{F(z)} - p}{\left[pB + (A - B)(p - \delta)\right] - B\frac{zF'(z)}{F(z)}}\right|$$
$$= \frac{\left|\sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma) n a_{n+p} z^{n}\right|}{\left|(A - B)(p - \delta)(1 + \lambda(p-1)) + \sum_{n=1}^{\infty} \phi(n, \alpha, \beta, \gamma) \left[nB - (A - B)(p - \delta)\right] a_{n+p} z^{n}\right|} < 1$$

Since $\operatorname{Re}(z) \leq |z|$ for all z, we have

$$\operatorname{Re}\left\{\frac{\sum_{n=1}^{\infty}\phi(n,\alpha,\beta,\gamma)na_{n+p}z^{n}}{(A-B)(p-\delta)(1+\lambda(p-1))+\sum_{n=1}^{\infty}\phi(n,\alpha,\beta,\gamma)[nB-(A-B)(p-\delta)]a_{n+p}z^{n}}\right\}<1.$$

Choosing values of z on the real axis and letting $z \rightarrow 1^-$ through real values, we obtain

$$\sum_{n=1}^{\infty} \phi(n,\alpha,\beta,\gamma) \Big[n(1-B) + (A-B)(p-\delta) \Big] a_{n+p} \le (A-B)(p-\delta) (1+\lambda(p-1)).$$

The proof is completed

The proof is completed.

Corollary: 2.1. Let the function f(z) defined by (1.4) be in $S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then $a_{n+p} \leq \frac{(A-B)(p-\delta)(1+\lambda(p-1))}{\left[n(1-B)+(A-B)(p-\delta)\right]\phi(n,\alpha,\beta,\gamma)}$

for $n \ge 1$. Equality holds for the function f(z) of the form

$$f(z) = z^{p} - \frac{(A-B)(p-\delta)\left[1+\lambda(p-1)\right]}{\left[n(1-B)+(A-B)(p-\delta)\right]\phi(n,\alpha,\beta,\gamma)} z^{n+p}.$$
(2.3)

III. **Distortion Bounds**

Theorem: 3.1. A function f(z) defined by (1.4) is in $S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then for |z| = r, we have

$$r^{p} - \frac{\left(p + \alpha + \beta - \gamma + 1\right)\left(A - B\right)\left(p - \delta\right)\left[1 + \lambda\left(p - 1\right)\right]}{\left(p + \beta\right)\left[\left(1 - B\right) + \left(A - B\right)\left(p - \delta\right)\right]\left[1 + \lambda p\right]} r^{p+1} \leq \left|f\left(z\right)\right| \leq$$

$$r^{p} + \frac{\left(p + \alpha + \beta - \gamma + 1\right)\left(A - B\right)\left(p - \delta\right)\left[1 + \lambda\left(p - 1\right)\right]}{\left(p + \beta\right)\left[\left(1 - B\right) + \left(A - B\right)\left(p - \delta\right)\right]\left[1 + \lambda p\right]} r^{p+1}$$
(3.1)

for $z \in U$. The result is sharp.

Proof: Since f(z) belongs to the class $S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$, in view of Theorem 2.1, we obtain $(\beta + p) [(1 - B) + (A - B)(p - \delta)] [1 + 2 - 1 - 2$

$$\frac{(\beta+p)\lfloor(1-B)+(A-B)(p-\delta)\rfloor[1+\lambda p]}{(p+\alpha+\beta-\gamma+1)}\sum_{n=1}^{\infty}a_{n+p} \leq \sum_{n=1}^{\infty}\phi(n,\alpha,\beta,\gamma)\Big[n(1-B)+(A-B)(p-\delta)\Big]a_{n+p} \leq (A-B)(p-\delta)\big[1+\lambda(p-1)\big]$$

which is equivalent to

$$\sum_{n=1}^{\infty} a_{n+p} \leq \frac{\left(p+\alpha+\beta-\gamma+1\right)\left(A-B\right)\left(p-\delta\right)\left[1+\lambda(p-1)\right]}{\left(\beta+p\right)\left[\left(1-B\right)+\left(A-B\right)\left(p-\delta\right)\right]\left[1+\lambda p\right]}$$
(3.2)

Using (1.4) and (3.2), we obtain

$$\begin{split} |f(z)| &\leq |z|^{p} + |z|^{p+1} \sum_{n=1}^{\infty} a_{n+p} \\ &\leq r^{p} + r^{p+1} \sum_{n=1}^{\infty} a_{n+p} \\ &\leq r^{p} + \frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(p-1)]}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} r^{p+1}. \end{split}$$

Similarly,

$$\left|f\left(z\right)\right| \geq r^{p} - \frac{\left(p+\alpha+\beta-\gamma+1\right)\left(A-B\right)\left(p-\delta\right)\left[1+\lambda(p-1)\right]}{\left(\beta+p\right)\left[\left(1-B\right)+\left(A-B\right)\left(p-\delta\right)\right]\left[1+\lambda p\right]} r^{p+1}.$$

This completes the proof of Theorem 3.1.

Theorem: 3.2. A function f(z) defined by (1.4) is in $S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then for |z| = r, we have $pr^{p-1} - \frac{\left(p + \alpha + \beta - \gamma + 1\right)\left(A - B\right)\left(p - \delta\right)\left[1 + \lambda\left(p - 1\right)\right]\left(p + 1\right)}{\left(p + \beta\right)\left[\left(1 - B\right) + \left(A - B\right)\left(p - \delta\right)\right]\left[1 + \lambda p\right]} r^{p} \le \left|f'(z)\right| \le \frac{1}{2}$ (3.3)

$$pr^{p-1} + \frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(p-1)](p+1)}{(p+\beta)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} r^{p}$$

for $z \in U$. The result is sharp.

Proof: Since f(z) belongs to the class $S_{P}^{*}(\alpha, \beta, \gamma, A, B, \lambda, \delta)$, in view of Theorem 2.1, we obtain

$$\frac{(\beta+p)\left[(1-B)+(A-B)(p-\delta)\right]\left[1+\lambda p\right]}{(p+\alpha+\beta-\gamma+1)(p+1)}\sum_{n=1}^{\infty}(n+p)a_{n+p} \leq \sum_{n=1}^{\infty}\phi(n,\alpha,\beta,\gamma)\left[n(1-B)+(A-B)(p-\delta)\right]a_{n+p} \leq (A-B)(p-\delta)\left[1+\lambda(p-1)\right]$$
which is equivalent to

which is equivalent to

$$\sum_{n=1}^{\infty} (n+p) a_{n+p} \leq \frac{\left(p+\alpha+\beta-\gamma+1\right)\left(A-B\right)\left(p-\delta\right)\left[1+\lambda(p-1)\right]\left(p+1\right)}{\left(\beta+p\right)\left[\left(1-B\right)+\left(A-B\right)\left(p-\delta\right)\right]\left[1+\lambda p\right]}$$
(3.4)

Using (1.4) and (3.4), we obtain

$$\begin{split} \left| f'(z) \right| &\leq p \left| z \right|^{p-1} + \left| z \right|^p \sum_{n=1}^{\infty} (n+p) a_{n+p} \\ &\leq p \, r^{p-1} + r^p \sum_{n=1}^{\infty} (n+p) a_{n+p} \\ &\leq p \, r^{p-1} + \frac{(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(p-1)](p+1)}{(\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]} \, r^p. \end{split}$$

Similarly,

$$\left|f'(z)\right| \ge p r^{p-1} - \frac{\left(p+\alpha+\beta-\gamma+1\right)\left(A-B\right)\left(p-\delta\right)\left[1+\lambda(p-1)\right]\left(p+1\right)}{\left(\beta+p\right)\left[\left(1-B\right)+\left(A-B\right)\left(p-\delta\right)\right]\left[1+\lambda p\right]} r^{p}.$$

This completes the proof.

IV. Closure Theorems

Theorem: 4.1. Let the functions

$$f_{j}(z) = z^{p} - \sum_{n=1}^{\infty} a_{n+p,j} z^{n+p} \qquad (a_{n+p,j} \ge 0)$$
(4.1)

be in the class $S_P^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ for every $j = 1, 2, 3, \dots, m$. Then the function h(z) defined by

$$h(z) = \sum_{j=1}^{\infty} c_j f_j(z) \qquad (c_j \ge 0)$$

$$(4.2)$$

is also in the same class $S_{P}^{*}(lpha,eta,\gamma,A,B,\lambda,\delta)$, where

$$\sum_{j=1}^{m} c_{j} = 1.$$
(4.3)

Proof: By means of the definition of h(z), we can write

$$h(z) = z^{p} - \sum_{n=1}^{\infty} \left(\sum_{j=1}^{m} c_{j} a_{n+p,j} \right) z^{n+p}.$$
(4.4)

Now, since $f_j(z) \in S_P^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ for every $j = 1, 2, 3, \dots, m$, we obtain

$$\sum_{n=1}^{\infty} \phi(n,\alpha,\beta,\gamma) \Big[n \big(1-B\big) + \big(A-B\big) \big(p-\delta\big) \Big] a_{n+p,j} \le \big(A-B\big) \big(p-\delta\big) \big(1+\lambda(p-1)\big), \tag{4.5}$$

for every $j = 1, 2, 3, \dots, m$, by virtue of Theorem 2.1. Consequently, with the aid of (4.5) we can see that

$$\sum_{n=1}^{\infty} \phi(n,\alpha,\beta,\gamma) \Big[n(1-B) + (A-B)(p-\delta) \Big] \left(\sum_{j=1}^{m} c_j a_{n+p,j} \right)$$

DOI: 10.9790/5728-11242432

$$=\sum_{j=1}^{m} c_{j} \left\{ \sum_{n=1}^{\infty} \phi(n,\alpha,\beta,\gamma) \Big[n(1-B) + (A-B)(p-\delta) \Big] a_{n+p,j} \right\}$$

$$\leq \left(\sum_{j=1}^{m} c_{j} \right) (A-B)(p-\delta)(1+\lambda(p-1)) = (A-B)(p-\delta)(1+\lambda(p-1))$$

This proves that the function h(z) belongs to the class $S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$.

Theorem: 4.2. Let

$$f_p(z) = z^p \tag{4.6}$$

and

$$f_{n+p}(z) = z^{p} - \frac{(A-B)(p-\delta)[1+\lambda(p-1)]}{[n(1-B)+(A-B)(p-\delta)]\phi(n,\alpha,\beta,\gamma)} z^{n+p}$$

$$(4.7)$$

for $-1 \le B < A \le 1, -1 \le B < 0, 0 \le \delta < p$ and $\phi(n, \alpha, \beta, \gamma)$ is defined by (2.2). Then f(z) is in the class $S_P^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=0}^{\infty} \zeta_{n+p} f_{n+p}(z) \qquad (\zeta_{n+p} \ge 0)$$

$$(4.8)$$

and

$$\sum_{n=0}^{\infty} \zeta_{n+p} = 1.$$
(4.9)

Proof: Assume that

$$f(z) = \sum_{n=0}^{\infty} \zeta_{n+p} f_{n+p}(z) = z^{p} - \sum_{n=1}^{\infty} \frac{(A-B)(p-\delta)[1+\lambda(p-1)]}{[n(1-B)+(A-B)(p-\delta)]} \phi(n,\alpha,\beta,\gamma) \zeta_{n+p} z^{n+p}$$
(4.10)

Then we get

$$\sum_{n=1}^{\infty} \phi(n,\alpha,\beta,\gamma) \Big[n(1-B) + (A-B)(p-\delta) \Big] \\ \times \frac{(A-B)(p-\delta) \Big[1 + \lambda(p-1) \Big]}{\Big[n(1-B) + (A-B)(p-\delta) \Big] \phi(n,\alpha,\beta,\gamma)} \zeta_{n+p} \\ \leq (A-B)(p-\delta) \Big[1 + \lambda(p-1) \Big].$$

By virtue of Theorem 2.1 this shows that f(z) is in the class $S_P^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$.

Conversely, assume that f(z) belongs to the class $S_P^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Again, by virtue of Theorem 2.1, we have

$$a_{n+p} \leq \frac{(A-B)(p-\delta)(1+\lambda(p-1))}{\left[n(1-B)+(A-B)(p-\delta)\right]\phi(n,\alpha,\beta,\gamma)}.$$

Next, setting

$$\begin{aligned} \zeta_{n+p} &\leq \frac{\left[n(1-B) + (A-B)(p-\delta)\right]\phi(n,\alpha,\beta,\gamma)}{(A-B)(p-\delta)(1+\lambda(p-1))} a_{n+p} \\ \zeta_p &= 1 - \sum_{n=1}^{\infty} \zeta_{n+p}, \end{aligned}$$

and

we have the representation (4.8). This completes the proof of the theorem.

V. Inclusion And Neighborhood Results

In this section, we prove certain relationship for functions belonging to the class

 $S_{P}^{*}(\alpha,\beta,\gamma,A,B,\lambda,\delta)$ and also, we determine the neighborhood properties of functions belonging to the subclass $S_{P}^{*}(\rho,\alpha,\beta,\gamma,A,B,\lambda,\delta)$.

Following the works of Goodman [13], Ruschweyh [14] and Altintas et. al. [15, 16], we define the (n, ε) neighborhood of a function $f \in T_p(n)$ by

$$N_{n,\varepsilon}(f) = \left\{ g \in T_p(n) : g(z) = z^p - \sum_{n=1}^{\infty} b_{n+p} z^{n+p} \quad and \quad \sum_{n=1}^{\infty} (n+p) \Big| a_{n+p} - b_{n+p} \Big| \le \varepsilon \right\}.$$
(5.1)

In particular, for the function $e(z) = z^p (p \in \Box)$

$$N_{n,\varepsilon}(e) = \left\{ g \in T_p(n) : g(z) = z^p - \sum_{n=1}^{\infty} b_{n+p} z^{n+p} \text{ and } \sum_{n=1}^{\infty} (n+p) \Big| b_{n+p} \Big| \le \varepsilon \right\}.$$
(5.2)

A function $f \in T_p(n)$ defined by (1.4) is said to be in the class $S_p^*(\rho, \alpha, \beta, \gamma, A, B, \lambda, \delta)$ if there exists a function $h \in S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ such that

$$\left|\frac{f(z)}{h(z)} - 1\right|$$

Theorem: 5.1. Let

$$\varepsilon = \frac{\left(p + \alpha + \beta - \gamma + 1\right)\left(A - B\right)\left(p - \delta\right)\left[1 + \lambda(p - 1)\right]\left(p + 1\right)}{\left(\beta + p\right)\left[\left(1 - B\right) + \left(A - B\right)\left(p - \delta\right)\right]\left[1 + \lambda p\right]}.$$
(5.4)

Then $S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta) \subseteq N_{n,\varepsilon}(e).$

Proof: Let $f \in S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then in view of assertion (2.1) of Theorem 2.1, we have $\frac{(\beta + p)[(1-B) + (A-B)(p-\delta)][1+\lambda p]}{(a+b+b)(p-\delta)} \sum_{n+p}^{\infty} a_{n+p} \leq \frac{(\beta + p)[(1-B) + (A-B)(p-\delta)][1+\lambda p]}{(a+b+b)(p-\delta)} \sum_{n+p}^{\infty} a_{n+p} \leq \frac{(\beta + p)[(1-B) + (A-B)(p-\delta)][1+\lambda p]}{(a+b+b)(p-\delta)} \sum_{n+p}^{\infty} a_{n+p} \leq \frac{(\beta + p)[(1-B) + (A-B)(p-\delta)][1+\lambda p]}{(a+b+b)(p-\delta)} \sum_{n+p}^{\infty} a_{n+p} \leq \frac{(\beta + p)[(1-B) + (A-B)(p-\delta)][1+\lambda p]}{(a+b+b)(p-\delta)} \sum_{n+p}^{\infty} a_{n+p} \leq \frac{(\beta + p)[(1-B) + (A-B)(p-\delta)][1+\lambda p]}{(a+b+b)(p-\delta)} \sum_{n+p}^{\infty} a_{n+p} \leq \frac{(\beta + p)[(1-B) + (A-B)(p-\delta)][1+\lambda p]}{(a+b+b)(p-\delta)} \sum_{n+p}^{\infty} a_{n+p} \leq \frac{(\beta + p)[(1-B) + (A-B)(p-\delta)][1+\lambda p]}{(a+b+b)(p-\delta)} \sum_{n+p}^{\infty} a_{n+p} \leq \frac{(\beta + p)[(1-B) + (A-B)(p-\delta)][1+\lambda p]}{(a+b+b)(p-\delta)} \sum_{n+p}^{\infty} a_{n+p} \leq \frac{(\beta + p)[(1-B) + (A-B)(p-\delta)]}{(a+b+b)(p-\delta)} \sum_{n+p}^{\infty} a_{n+p} < \frac$

Applying assertion (2.1) of Theorem 2.1 in conjunction with (5.6), we obtain $\begin{pmatrix} 0 \\ -1 \end{pmatrix} = \sum_{n=1}^{n} \sum_{j=1}^{n} \sum_{n=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n$

$$\frac{(\beta+p)\lfloor(1-B)+(A-B)(p-\delta)\rfloor[1+\lambda p]}{(p+\alpha+\beta-\gamma+1)}\sum_{n=1}^{\infty}a_{n+p}\leq (A-B)(p-\delta)[1+\lambda(p-1)],$$
$$\frac{(p+1)(\beta+p)\lfloor(1-B)+(A-B)(p-\delta)\rfloor[1+\lambda p]}{(p+\alpha+\beta-\gamma+1)}\sum_{n=1}^{\infty}a_{n+p}\leq (p+1)(A-B)(p-\delta)[1+\lambda(p-1)].$$

Hence,

$$\sum_{n=1}^{\infty} (n+p) a_{n+p} \leq \frac{\left(p+\alpha+\beta-\gamma+1\right)\left(A-B\right)\left(p-\delta\right)\left[1+\lambda(p-1)\right]\left(p+1\right)}{\left(\beta+p\right)\left[\left(1-B\right)+\left(A-B\right)\left(p-\delta\right)\right]\left[1+\lambda p\right]} = \varepsilon,$$

which by virtue of (5.2) establishes the inclusion relation (5.5).

Theorem: 5.2. Let

DOI: 10.9790/5728-11242432

(5.5)

$$\rho = p - \frac{\varepsilon}{p+1} \times \tag{5.7}$$

$$\begin{bmatrix} (\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p] \\ (\beta+p)[(1-B)+(A-B)(p-\delta)][1+\lambda p]-(p+\alpha+\beta-\gamma+1)(A-B)(p-\delta)[1+\lambda(p-1)] \end{bmatrix}$$

Then $N_{n,\varepsilon}(h) \subseteq S_p^*(\rho,\alpha,\beta,\gamma,A,B,\lambda,\delta).$ (5.8)

Proof: Suppose that $f \in N_{n,\varepsilon}(h)$, we can find from (5.1) that

$$\sum_{n=1}^{\infty} (n+p) |a_{n+p} - b_{n+p}| \leq \varepsilon$$

which readily implies the following coefficient inequality,

$$\sum_{n=1}^{\infty} \left| a_{n+p} - b_{n+p} \right| \le \frac{\varepsilon}{p+1}. \qquad (n \in \Box)$$
(5.9)

Next, since $f \in S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$ in the view of (5.6), we have

$$\sum_{n=1}^{\infty} b_{n+p} \leq \frac{\left(p+\alpha+\beta-\gamma+1\right)\left(A-B\right)\left(p-\delta\right)\left[1+\lambda(p-1)\right]}{\left(\beta+p\right)\left[\left(1-B\right)+\left(A-B\right)\left(p-\delta\right)\right]\left[1+\lambda p\right]}.$$
(5.10)

Using (5.9), (5.10) together with (5.3), we get the required assertion.

VI. Radii Of Close-To-Convexity, Starlikeness And Convexity

Theorem: 6.1. Let $f \in S_p^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then f is p-valently close-to-convex of order $\eta (0 \le \eta < p)$ in $|z| < R_1$, where

$$R_{1} = \inf_{n} \left\{ \left[\frac{\left[n(1-B) + (A-B)(p-\delta) \right] \phi(n,\alpha,\beta,\gamma)}{(A-B)(p-\delta)(1+\lambda(p-1))} \left(\frac{p-\eta}{n+p} \right) \right]^{\frac{1}{n}} \right\}$$
(6.1)

and $\phi(n, \alpha, \beta, \gamma)$ is defined by (2.2).

Theorem: 6.2. Let $f \in S_P^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then f is p-valently starlike of order η $(0 \le \eta < p)$ in $|z| < R_2$, where

$$R_{2} = \inf_{n} \left\{ \left[\frac{\left[n(1-B) + (A-B)(p-\delta) \right] \phi(n,\alpha,\beta,\gamma)}{(A-B)(p-\delta)(1+\lambda(p-1))} \left(\frac{p-\eta}{n+p-\eta} \right) \right]^{\frac{1}{n}} \right\}$$
(6.2)

and $\phi(n, \alpha, \beta, \gamma)$ is defined by (2.2).

Theorem: 6.3. Let $f \in S_P^*(\alpha, \beta, \gamma, A, B, \lambda, \delta)$. Then f is p-valently convex of order η $(0 \le \eta < p)$ in $|z| < R_3$, where

$$R_{3} = \inf_{n} \left\{ \left[\frac{\left[n(1-B) + (A-B)(p-\delta)\right]\phi(n,\alpha,\beta,\gamma)}{(A-B)(p-\delta)(1+\lambda(p-1))} \left(\frac{p(p-\eta)}{(n+p)(n+p-\eta)}\right) \right]^{\frac{1}{n}} \right\}.$$
 (6.3)

In order to establish the required results in Theorems 6.1, 6.2 and 6.3, it is sufficient to show that $\int f'(z) dz = \int f'(z) dz$

$$\left|\frac{f'(\mathbf{z})}{z^{p-1}} - p\right| \le p - \eta \quad \text{for} \quad |z| < R_1,$$

$$\left| \frac{zf'(\mathbf{z})}{f(\mathbf{z})} - p \right| \le p - \eta \quad \text{for} \quad |\mathbf{z}| < R_2 \text{ and}$$
$$\left| \left[1 + \frac{zf''(\mathbf{z})}{f'(\mathbf{z})} \right] - p \right| \le p - \eta \quad \text{for} \quad |\mathbf{z}| < R_3,$$

respectively.

Remark 6.1: The results in Theorems 6.1, 6.2 and 6.3 are sharp with the extremal function f given by (2.3). Furthermore, taking $\eta = 0$ in Theorems 6.1, 6.2 and 6.3, we obtain radius of close-to-convexity, starlikeness and convexity respectively.

References

- [1]. Aouf M. K., El-Ashwah and Ahmed M Abd Eltawab, On certain subclass of p-valent functions Journal of classical Analyis, 4, 1(2014), 63 68.
- [2]. Liu, Jin-Lin; Owa, Shigeyoshi. Properties of certain integral operator. Int. J. Math. Sci. 3 (2004), no. 1, 69 75.
- [3]. Jung, Il Bong; Kim, Yong Chan; Srivastava, H. M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 176 (1993), no. 1, 138 - 147.
- [4]. Bernardi, S. D. Convex and starlike univalent functions. Trans. Amer. Math. Soc. 135, 1969, 429 446.
- [5]. Libera, R. J. Some classes of regular univalent functions. Proc. Amer. Math. Soc. 16 1965, 755 758.
- [6]. Livingston, A. E. On the radius of univalence of certain analytic functions. Proc. Amer. Math. Soc. 17, 1966, 352 357.
- [7]. Saitoh, Hitoshi; Owa, Shigeyoshi; Sekine, Tadayuki; Nunokawa, Mamoru; Yamakawa, Rikuo. An application of a certain integral operator. Appl. Math. Lett. 5 (1992), no. 2, 21 24.
- [8]. Aouf, M. K. On certain subclasses of multivalent functions with negative coefficients defined by using a differential operator. Bull. Inst. Math. Acad. Sin. (N.S.) 5 (2010), no. 2, 181 - 200.
- [9]. Darwish, Hanan E.; Aouf, M. K. Neighborhoods of certain subclasses of analytic functions with negative coefficients. Bull. Korean Math. Soc. 48 (2011), no. 4, 689 - 695.
- [10]. Magesh, N.; Mayilvaganan, S.; Mohanapriya, L. Certain subclasses of multivalent functions associated with fractional calculus operator. Int. J. Contemp. Math. Sci. 7 (2012), no. 21-24, 1113 - 1123.
- [11]. Guney, H. O.; Sumer Eker, S. On a certain class of p-valent functions with negative coefficients. JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 97, 10 pp.
- [12]. Mahzoon, H. Some properties of subclasses of P-valent functions defined by differential subordination. Acta. Univ. Apulensis Math. Inform. No. 36 (2013), 143 - 54.
- [13]. Goodman, A. W. Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc. 8 (1957), 598 601.
- [14]. Ruscheweyh, Stephan. Neighborhoods of univalent functions. Proc. Amer. Math. Soc. 81 (1981), no. 4, 521 527.
- [15]. Altintas, O.; Ozkan, O.; Srivastava, H. M. Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Lett. 13 (2000), no. 3, 63 - 67.
- [16]. Altintas,, O.; Ozkan, O.; Srivastava, H. M. Neighborhoods of a certain family of multivalent functions with negative coefficients. Comput. Math. Appl. 47 (2004), no. 10 -11, 1667 - 1672.