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I. Introduction And Definition 
 

      Let PA  be the class of functions analytic in the open unit disc  : 1U z z  of the form 
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                                                                                                   (1.1) 

and let 1 .A A  
 

     Let  f z  and  g z be analytic in U . Then we say that the function  f z is subordinate to  g z  in 

,U  if there exists an analytic function  w z in U  such that  w z z  and  f z    g w z ,  denoted 

by    f z g z . If  g z is univalent inU , then the subordination is equivalent to    0 0f g  and 

   f U g U . 

For the functions  f z  of the form (1.1) and  
1
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   , the hadamard product (or 

convolution) of f and g  is defined by  
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   . 

A function f  belonging to PA  is said to be p-valently starlike of order   if it satisfies  
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for some  0 p   . We denote by ( )PS 
 the subclass of PA  consisting of functions which are p-

valently starlike of order   in U  . 

Recently, M.K. Aouf et. al. [1] introduced the operator 
,

, :p p pA A 

  as follows:   
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                                                                                 ; 1; ; ; .p p z U            
 
From (1.2), it is easy to verify that                              

                   1, , 1,

, , ,(z) 1 (z) 1 (z).p p pz f p f f     

        
                               (1.3) 

Remark:1.1. If we let 1  , then this operator 
,

, p

 

 reduces to the operator introduced and studied by Liu 

and Owa [2] and ,1Q Q 

   introduced and studied by Jung et.al.[3]. For other choices of  and   then the 

operator 
,

, p

 

  reduces to the familiar other well- known integral operators introduced and discussed by various 

authors [4, 5, 6, 7]. 

Let  pT n be the subclass of PA , consisting of functions of the form  
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1 .p n p

n p

n

f z z a z p








                                                                       (1.4) 

Motivated by the earlier investigations of Aouf [8], Darwish and Aouf [9], Magesh et. al. [10], Guney, H.O 

and Sumer Eker.S [11] and Mahzoon [12], we investigate, in the present paper, the various properties and 

characteristics of analytic p-valent functions belonging to the subclass  , , , , ,PS A B   
 . 

Definition: 1.1. A function   pf T n  is said to in the class  , , , , , ,PS A B    
  if it satisfies the 

following differential condition: 
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 ,                                                                       (1.5) 

where 

                                , ,

, ,(z) 1 (z) (z)p pF f z f   

  


     . 

The condition (1.5) is equivalent to  
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                                                                   (1.6) 

where the parameters , , , ,p    are constrained as follows: 

3, , , 0 , 1 1, 1 0, 0 1p p B A B                      and p . 

 

II. Coefficient Estimates 

Theorem: 2.1. A function  f z defined by (1.4) is in  , , , , , ,PS A B    
 if it satisfies the following 

inequality: 
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where   
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 0 , 1 1, 1 0p B A B          and 0 1.   
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Equality holds for the function  f z given by 
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. 

Proof: Assume that the inequality (2.1) holds true and let 1z   . Then we obtain  
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by hypothesis. Hence, by the maximum modulus theorem, we have  , , , , , ,Pf S A B     . Conversely, 

assume that    , , , , , ,Pf z S A B     , then in the view of (1.2) and (1.5), we get 
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Since  Re z z  for all z , we have 
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Choosing values of z  on the real axis and letting 1z  through real values, we obtain  
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The proof is completed. 

 

Corollary: 2.1. Let the function  f z defined by (1.4) be in  , , , , , ,PS A B    
 . Then  
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for 1n   . Equality holds for the function  f z
 
of the form 
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III. Distortion Bounds 

Theorem: 3.1. A function  f z defined by (1.4) is in  , , , , , ,PS A B    
. Then for z r , we have 
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for z U . The result is sharp. 

Proof: Since  f z
 
belongs to the class  , , , , , ,PS A B    

, in view of Theorem 2.1, we obtain 
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which is equivalent to 
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Using (1.4) and (3.2), we obtain 
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Similarly, 
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This completes the proof of Theorem 3.1. 

 

 

Theorem: 3.2. A function  f z defined by (1.4) is in  , , , , , ,PS A B    
. Then for z r , we have 
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for z U . The result is sharp. 

Proof: Since  f z
 
belongs to the class  , , , , , ,PS A B    

, in view of Theorem 2.1, we obtain 
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which is equivalent to 
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Using (1.4) and (3.4), we obtain 
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Similarly, 
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This completes the proof. 

 

IV. Closure Theorems 
Theorem: 4.1. Let the functions  
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be in the class  , , , , , ,PS A B    
 for every 1,2,3, ,j m  . Then the function  h z defined by  
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                                                                   (4.2) 

is also in the same class  , , , , , ,PS A B    
 , where 
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Proof: By means of the definition of  h z , we can write 
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Now, since    , , , , , ,j Pf z S A B      for every 1,2,3, , ,j m   we obtain 
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for every 1,2,3, , ,j m  , by virtue of Theorem 2.1. Consequently, with the aid of (4.5) we can see that 
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This proves that the function  h z  belongs to the class  , , , , , ,PS A B    
. 

 

Theorem: 4.2. Let  
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for 1 1, 1 0, 0B A B p         and  , , ,n    is defined by (2.2). Then  f z
 
is in the 

class  , , , , , ,PS A B    
 if and only if it can be expressed in the form                                 
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Then we get 
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By virtue of Theorem 2.1 this shows that  f z  is in the class  , , , , , ,PS A B    
. 

        Conversely, assume that  f z belongs to the class  , , , , , ,PS A B    
. Again, by virtue of Theorem 

2.1, we have 
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we have the representation (4.8). This completes the proof of the theorem. 

V. Inclusion And Neighborhood Results 
In this section, we prove certain relationship for functions belonging to the class 
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 , , , , , ,PS A B    

 
and also, we determine the neighborhood properties of functions belonging to the 

subclass  , , , , , , ,PS A B     
. 

     Following the works of Goodman [13], Ruschweyh [14] and Altintas et. al. [15, 16], we define the  ,n  

neighborhood of a function  pf T n by 

               ,

1 1

: .p n p

n p n p n p n p

n n

N f g T n g z z b z and n p a b 
 



  

 

 
       
 

          (5.1) 
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defined by (1.4) is said to be in the class  , , , , , , ,PS A B     

 if there 

exists a function  , , , , , ,Ph S A B     such that 
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Theorem: 5.1. Let 
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Applying assertion (2.1) of Theorem 2.1 in conjunction with (5.6), we obtain 
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which by virtue of (5.2) establishes the inclusion relation (5.5). 

 

 

 

Theorem: 5.2. Let 
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which readily implies the following coefficient inequality, 
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Next, since  , , , , , ,Pf S A B    
 
in the view of (5.6), we have  
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Using (5.9), (5.10) together with (5.3), we get the required assertion. 

 

VI. Radii Of Close-To-Convexity, Starlikeness And Convexity 

Theorem: 6.1. Let  , , , , , ,Pf S A B     . Then f  is p-valently close-to-convex of order 

 0 p   in 1z R , where 
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and  , , ,n    is defined by (2.2).  

Theorem: 6.2. Let  , , , , , ,Pf S A B     . Then f  is p-valently starlike of order  0 p   in 
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and  , , ,n    is defined by (2.2). 

 

Theorem: 6.3. Let  , , , , , ,Pf S A B     . Then f  is p-valently convex of order    0 p  in 
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   In order to establish the required results in Theorems 6.1, 6.2 and 6.3, it is sufficient to show that 
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respectively.  

 

Remark 6.1: The results in Theorems 6.1, 6.2 and 6.3 are sharp with the extremal function f  given by (2.3). 

Furthermore, taking 0   in Theorems 6.1, 6.2 and 6.3, we obtain radius of close-to-convexity, starlikeness 

and convexity respectively. 
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