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Abstract: An arbitrary ring with unity can be thought of as a category with one object. In this paper we have 

shown how an arbitrary ring with unity can be thought as a category with one object. Also we have defined 

quotient category of a ring. The categorical approach to the fundamental theorem of homomorphism of ring 

theory has been provided. Moreover the isomorphism theorems of ring have been proved categorically. 
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I. Introduction 
Here we discussed some categorical aspects of Rings in details. We have proved the fundamental 

theorem of homomorphism of rings categorically. We have also   provided categorical proof of isomorphism 

theorems of ring . 

 

Preliminaries 
For notions of category theory we shall in general follow the notation  and terminology of Popescu [6]. 

However, we do deviate somewhat.  

For  C a category and A, B objects of C,  Mor(A, B) denotes the set  of morphisms from A to B. 

It will be shown that an arbitrary ring with unity  can be thought of as a  category with one object. 

Next we shall use the definition of quotient category from Mitchel [3] and  quotient category of a ring 

will be defined. 

If R and S are ringss, regarded as categories, then we can consider arbitrary functors between them   f: 

R→S. It is obvious that a functor between rings is exactly the same thing as a ring   homomorphism.  

We will also think the fundamental theorem of homomorphism of ring theory in categorical way. 

Lastly the 2nd and 3rd isomorphism theorems of ring will be  proved  categorically by using the fact that 

“every morphism in the category of  rings(Ring) has a cokernel.” 

 

Main  Results:- 

 1. In the category of  rings (Ring) every morphism has a kernel. 
Proof:  Let us consider the morphism  f: R →S.  

             Let kerf = K be the kernel of f. 

Let us consider the diagram  

                   K     i                      R         f                 S       ,where  i  is inclusion map. 

                                                           

Clearly foi = 0 ,  0: K→S being  zero morphism. 

Suppose that g: M → R be another morphism such that   

         fog = 0......................................(i) 

Let us define j: M → K  by j(m) = g(m)  for all m∈M. 
This  is well defined as……….. 

f(g(m)) = (fog)(m) 

             = 0(m)  [from (i)] 

    = > g(m)∈ K 

Now (ioj)(m) =  i(j(m)) 

                         =  j(m) 

                         =  g(m)  for all m∈M . 

  = > ioj = g. 

If  j‟: M →K be another morphism such that ioj‟= g. 

Then ioj = ioj‟ 

         = > i(j(m)) = i(j‟(m)) for all m ∈M. 

         = > j(m)     =  j‟(m)    [i is inclusion] 

         = > j= j‟ 

  Thus j is unique. 
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Hence i: K → R is a kernel of  f : R → S. 

 

1. In the category of rings(Ring) every morphism has a  cokernel. 
Proof: Let f : R→S be morphism in Ring. Let us consider the diagram  

                    R     f            S        p             S/J      ,  where J is the ideal generated by f(R). 

Let us consider a morphism  g: S→T such that gof= 0. 

Let us define   j: S/J →  T  by   j(s+J) = g(s). 

It is well defined as ……….. 

       x+J = y+J   for x ,y ∈S 

 = >  x-y∈ J 

 = >  x-y  is a finite sum  of elements of the   

                 form  sf(r) ,where r ∈R and s ∈S.  
Since       g(s f(r))  =  g(s)g(f(r))  

                                     =  g(s)(gof)(r)g(s-1) 

                                     =  g(d)0(r) 

                                     =  g(r)eT 

                                     =  eT  

Thus         g(x-y) = eT  

            = > g(x)-g(y) = eT  

            = >g(x) = g(y) 

            = > j(x+J)= j(y+J). 

Now (jop)(s) = j(p(s)) 

                            = j(s+J) 

                            = g(s)   for all s ∈S. 
      = > jop= g. 

Also  „j‟ is unique as p is epimorphism. 

Hence p: S →S/J is cokernel of f: R→S. 

 

2. A Ring With Unity Can Be Thought Of As Category With One Object : 

Let us consider an arbitrary  ring with unity (R,+,.). 

Let us consider the collection  R‟ as follows------ 

i)     ObR‟={R} 

ii)    The only  set Mor( R,R)  and  the morphisms are the elements of R  

       i.e. r∈R <=> r:R→R. 
iii)   The composition in Mor(R,R) is defined as  , 

       if r:R→R ,s: R→R then sor: R→R is defined as sor=s.r 

Then we have the following------- 

 a) For   r,s,t∈ Mor(R,R), 

    to(sor)    = to(s.r) 

                    = t.(s.r) 

  = (t.s).r 

  = (tos) or 

 “o” is associative. 

b) let “u” be the unity  in R i.e. u:R→R and for r:R→R, s: R→R we have   
      rou=r.u=r and uos=u.s=s 

Therefore u:R→R is the identity morphism in Mor(R,R). 

(we shall  frequently write 1R  for u :R→R) 

Hence R’ is a category. 

Here onwards we call the category corresponding to the ring R as R‟. 

 

3.  Quotient Category Of A Ring : 

Let K  be an ideal of R. 

Let us define a relation” ≈ " in Mor (R,R) as follows---- 

For any r,s ∈ Mor (R,R), 

    r≈s < =>  r-s ∈ K. 

Then we have the followings………….. 

(i)  r≈r as r-r = 0∈K, so ≈ is reflexive. 

(ii)  let r ≈ s then r-s∈ K 

  =>s-r= -(r-s)∈ K 



Some Categorical Aspects Of Rings 

DOI: 10.9790/5728-11240107                                www.iosrjournals.org                                                3 | Page 

  => s≈r , so ≈ is symmetric. 

(iii) Let r≈s and s≈t then we have 

 r-s=∈ K and s-t∈ K 

=> (r-s) +(s-t) ∈K 

=> r-t ∈K 

=> r≈t, so ≈ is transitive. 

Thus  ′ ≈ ′ is an equivalence relation. 

Next assume that  r≈s and r‟ ≈s‟  then  

 r- s ∈ K => rs‟ – ss‟  ∈ K    and 

r‟ –s‟ ∈ K => rr‟ - rs‟ ∈ K 

 from which it follows that 

(rr‟ – rs‟) + (rs‟ – ss‟) = rr‟ – ss‟ ∈ K 

=> rr‟≈ss‟ 

Also   r‟‟≈s‟‟ and r ≈ s  

= >r‟‟-s‟‟ ∈ K => r‟‟r – s‟‟r  ∈ K    and    r – s ∈ K => s‟‟r -  s‟‟s ∈ K 
 from which it follows that 

(r‟‟r – s‟‟r) + (s‟‟r – s‟‟s) = r‟‟r – s‟‟s ∈ K 

=> r‟‟r ≈ s‟‟s 

 

Hence  ′ ≈ ′  is a congruence  relation on Mor (R,R). 

Next we define  quotient category R‟/≈ (= QR‟)  of R‟ as follows-------- 

i)  Ob(QR‟) =Ob(R‟), 

ii)  Mor QR‟ ={the equivalence classes E(r) :  r∈ Mor (R,R)} 

where E(r) =  {s ∈  Mor(R,R)|  s≈r }. 

Let us define composition in Mor(QR‟) as E(x)oE(y)=E(xoy), which is well defined as…….. 

 If E(x)= E(a) and E(y)=E(b) 

 then  x≈a and y≈b. 

=>x-a ∈ K and y-b ∈K. 

=> xy - ay∈K  and  ay – ab ∈ K 

Now,  (xy - ay) + (ay – ab ) ∈K 

=> xy – ab ∈ K 

=>xy ≈ ab 

=>  E(xoy)=E(aob) 

 

 

4.  Categorical Approach To The Fundamental Theorem Of Homomorphism Of Ring   Theory : 

Let  f: R S  be a homomorphism of the ring R on to the ring S. 

Then K=kerf is an ideal of R.  

Clearly  f : R‟ S‟ will be a full functor which is surjective on   object. (where R‟ and S‟ are the corresponding 

categories of the rings R and S respectively.) 

Let us consider the quotient category QR‟  of R‟. 
Let us define F: QR‟  S‟ by  

                        F(R) =S and   

                        F(E(r)) =f(r),   where r: RR and f(r): S S, which is well 

  defined as……… 

E(r) =E(s) => r ≈s 

                 => r – s ∈ K 

                 => f(r - s) = 0 

                => f(r) = f(s).  

Now,  

  i)     F(E(s)oE(r))          =  F(E(sor)) 
             = f(s.r) 

             = f(s).f(r) 

             = F(E(s)) o F(E(r)). 

ii)   F(E(u))            =   f(u) 

  =1S 

  =1F(R) 

 Therefore „F‟  is a covariant functor. 

Conversely, let us define G: S‟  QR‟   by  
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   G(S) = R 

   G(f(r))=E(r),   which is well defined as K=kerf is an   ideal of R. 

Now,   
 i) G(f(s)of(r))  = G(f(sor)) 

   = E(sor) 

   = E(s)oE(r) 

   = G(f(s)) o G(f(r)). 

ii) G(1S)  =  G(f(u)) 

  = E(u) 

  = 1R  

  = 1G(S). 

 Therefore „G‟ is a  covariant functor. 

Thus FoG(f(r))     = F(G(f(r))) 

   = F(E(r)) 
   = f(r) 

   = IdS‟(f(r)). 

 i.e. FoG = IdS‟. 

Similarly it can be proved that  GoF = IdQR′ . 

Hence    QR‟ ≅  S‟. 

 

5.  Lemma :  Let f: R→S be a ring homomorphism such that f kills K   (i.e. f(K)= 0S)where K is  an  

                    ideal of  R. Then  there exists a unique homomorphism f’ : R/K → S with f’ o p = f , i.e.  

                    the diagram 

 

 
   Where p : R  → R/K   is natural homomorphism. 

 

Proof :    Let K be an ideal of R. Then we have 

              K → R → R/K          [where the elements of R/K are the equivalence classes of the form E(r) for all 

r∈R    
                                                 and  p:R→R/K is natural  homomorphism and i: K→R   is inclusion] 

 

such that  p o i = u , where u: K→R/K  is a zero homomorphism. 

Because,           (poi)(k)    =  p(i(k)) 

              =  p(k) 

              =  K 

              =  zero element in R/K. 

             =  u(k). 

  =>       poi  = u. 

Let f: R→S be a ring  homomorphism such that  foi = u  i.e. 

(foi)(k) = u(k) 
=>  f(i(k)) = 0S 

=>  f(k) = 0S 

=>  f(K) =0S. 

=>  f kills K. 

Next let us define f‟: R/K → S by 

  f‟(E(r)) = f(r). 

which  is well defined as…….. 

if  E(r) = E(s) 

then r≈s 

 => r - s∈ K 
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 => f(r – s ) =0S (since f kills N) 

 => f(r) - f(s) = 0S 

 => f(r) =f(s). 
Also (f‟op)(r) = f‟(p(r)) 

  =  f‟(E(r)) 

  =f(r). 

=> f‟op = f. 

Suppose ,if possible ,f‟‟: R/K → S  be another homomorphism such that  

f‟‟ o p = f. 

Then  f‟‟op = f‟op 

 => f‟‟=f‟  (since p is surjective).  

Hence f‟ is unique. 

 

6. Categorical  Proof Of Isomorphism Theorems Of Ring. 

 

Theorem 1: Let H ,K  are ideals of R such that H ⊆ K.      

                      Then R/H/K/H ≅ R/K. 

Proof :    As K is an ideal of R so  pK :  R→ R/K is a ring  homomorphism  and it kills H ( since H ⊆ K ). 

 Therefore by above   lemma  we have a unique ring homomorphism  f: R/H→R/K such that  the following 

diagram 

 

 
f o pH  =  pK   …………………………………………………………………………...(i) 

Now   f: R/H → R/K is a ring homomorphism which kills K/H.  

Therefore  by  above lemma there exists a unique  ring homomorphism  f‟ : R/H/K/H → R/K such that  the  
following diagram 

                                 

 
 

f‟ o pK/H =  f           …………………………………………………………………..(ii) 

 But we have also        

                                                     

 
 

which kills K.  

 

So we have a unique ring homomorphism k : R/K → R/H/K/H such that 

 
The following diagram……. 
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 kopK = pK/H o pH     ………………………………………………………………..(iii)  
 

From (ii) we have     k o f‟ o pK/H o pH = k o f o pH 

    =  k o pK       [from (i)] 

    =    pK/H o pH         [from (iii)] 

Therefore kof‟ = IdR/H/K/H …………………………………………….(iv) 

Similarly from (iii) we have    f‟ o k o pK  =  f‟ o pK/H o pH 

                        =  f o pH     [from (ii)] 

                       =  pK           [from (i)] 

 

Thus            f‟ o k = IdR/K. ……………………………………...(v) 

 From (iv) and (v) we have 

                                                                       R/K  ≅ R/H/K/H. 

 

Theorem 2:  Let H , K are ideals of R.  Then 

                            H+K/H  ≅   K/H∩K. 

 

Proof :   As  H is an ideal of R so it is ideal of  H+K. 

So we may compose the inclusion i : K → H+K with the natural   homomorphism p‟‟ : H+K → H+K / H to get 

a  

homomorphism 

 
             g :  K → H+K / H   [ i.e. p‟‟oi = g]. 

 

It kills H∩K. Therefore by  above lemma  we have a unique ring  homomorphism   f : K/H∩K → H+K/H  such 

that the   

following  diagram  

 

 
 
     fop‟ = g ……………………………………………………………..(i) 

Also   g‟ : H+K  →  K/H∩K      is a  ring homomorphism which kills H. 

So by above   lemma we have a unique homomorphism   f‟ : H+K/H → K/H∩K   such that the following 

diagram 
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     f‟ o p‟‟ = g‟…………………….(ii) 

So from (i) we  have 

                     f‟ o f o p‟ = f‟og 
        = p‟  

Therefore f‟ o f  =  IdK/H∩K................................................... (iii) 

Also from (ii) we have  

    fof‟op‟‟ = fog‟ 

                   = p‟‟ 

Thus  fof‟ = Id H+K/H. ………………………………………………(iv) 

From (iii) and (iv) we have  

 

                                          H+K / H  ≅   K / H∩K. 

 

II. Conclusion 
In this paper we have used some categorical notions  to prove some theorems of Ring  theory.Basically 

kernel of a morphism and cokernel of a morphism play an important role in this case . This can be extended to 

the product of two rings i.e the product of two rings can be proved as a category of one object and the elements 

of the product as its morphisms.  
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