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Abstract:  In this paper, we obtain the characterization on pair of weights v  and w  so that the Hardy-Steklov 

operator dttf

xb

xa
)(

)(

)(  is bounded from )(0,, qp
vL  to )(0,, sr

wL  for <,,,<0 srqp . 
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I. Introduction 

 
By a weight function u  defined on )(0,  we mean a non-negative locally integrable measurable function. We 

take ))(),((0,00 dxxu  MM  to be the set of functions which are measurable, non-negative and finite a.e. on 

)(0,  with respect to the measure dxxu )( . Then the distribution function 
u
f  of 

 0Mf  is given by  
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The non-increasing rearrangement 
*

uf  of f  with respect to )(xdu  is defined as  
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For  qp <0  ,<<0 , the two exponent Lorentz spaces )(0,, qp
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 0Mf  for which  
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 is finite. 

 

In this paper, we characterize the weights v  and w  for which a constant 0>C  exists such that  
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where T  is the Hardy-Steklov operator defined as    
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The functions )(= xaa  and )(= xbb  in (3) are strictly increasing and differentiable on )(0, .  

Also, they satisfy  

 

    .<<0for  )(<)(and=)(=)(0;=(0)=(0)  xxbxababa  

 

Clearly, 
1a  and 

1b  exist, and are strictly increasing and differentiable. The constant C attains  

different bounds for different appearances. 
 

 

II. Lemmas 

 
Lemma 1.  We have  
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Proof.  Applying the change of variable )(= ty v
f  to the R.H.S. of (1) and integrating by parts we  

get the lemma.  
 

Lemma 2.  If f  is nonnegative and non-decreasing, then  
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Proof.  We obtain the above equality by evaluating the two iterated integrals of )()(
1
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where })(:{sup=)( txfxtx   for a fixed t , and .)(=)( dttvxh
x


  

Integrating with respect to ‘ t ’ first, the L.H.S. of (6) gives us the R.H.S. of (5). Further  
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 Hence the lemma now follows in view of Lemma 1.  
 
 

III. Main Results 

 
Theorem 1.  Let <,,,<0 srqp  be such that .<<1  sq  Let T  be the Hardy-Steklov operator 

given in (3) with functions a and b satisfying the conditions given thereat. Also, we assume that )(<)( xbxa   

for ).(0,x  Then the inequality  
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 holds for all nonnegative non-decreasing functions f if and only if  
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Proof. Using differentiation under the integral sign, the condition )(<)( xbxa   for )(0,x  ensures  

that Tf  is nonnegative and non-decreasing. Consequently, by Lemma 2, the inequality (7) is equivalent to  
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Thus it suffices to show that (9) holds if and only if (8) holds. The result now follows in view of  

Theorem 3.11 [2].  
 

Similarly, in view of Theorem 2.5 [1], by making simple calculations, we may obtain the following: 

 

Theorem 2. Let <,,,<0 srqp  be such that .<<,1<<0 qqs  Let T  be the Hardy-Steklov 

operator given in (3) with functions a and b satisfying the conditions given thereat. Also, we assume that 

)(<)( xbxa   for ).(0,x  Then the inequality (7) holds for all nonnegative non-decreasing functions f  

if and only if  
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11

=
1

  ,
11

=
1

qslpqr
  and   is the normalizing  function  as  defined  in [3]. 

 

Remark. The condition )(<)( xbxa   for )(0,x  cannot be relaxed since otherwise the monotonicity of 

Tf  would be on stake. For example, consider the functions  
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Note that a  and b  satisfy all the aforementioned conditions, except that, we have )(>)( xbxa   for 

20<10 x . 
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