Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing functions

Arun Pal Singh
Department of Mathematics, Dyal Singh College (University of Delhi)
Lodhi Road, New Delhi - 110 003, INDIA
Email: arunps12@yahoo.co.in

```
Abstract: In this paper, we obtain the characterization on pair of weights \(v\) and \(w\) so that the Hardy-Steklov operator \(\int_{a(x)}^{b(x)} f(t) d t\) is bounded from \(L_{v}^{p, q}(0, \infty)\) to \(L_{w}^{r, s}(0, \infty)\) for \(0<p, q, r, s<\infty\).
```

2010 AMS Mathematics Subject Classification: 26D10, 26 D15.
Keywords: Hardy-Steklov operator, Lorentz spaces, non-decreasing.

I. Introduction

By a weight function u defined on $(0, \infty)$ we mean a non-negative locally integrable measurable function. We take $\mathrm{M}_{0}^{+} \equiv \mathrm{M}_{0}^{+}((0, \infty), u(x) d x)$ to be the set of functions which are measurable, non-negative and finite a.e. on $(0, \infty)$ with respect to the measure $u(x) d x$. Then the distribution function λ_{f}^{u} of $f \in \mathrm{M}_{0}^{+}$is given by

$$
\lambda_{f}^{u}(t):=\int_{\{x \in(0, \infty): f(x)>t\}} u(x) d x, \quad t \geq 0 .
$$

The non-increasing rearrangement f_{u}^{*} of f with respect to $d u(x)$ is defined as

$$
f_{u}^{*}(y):=\inf \left\{t: \lambda_{f}^{u}(t) \leq y\right\}, \quad y \geq 0
$$

For $0<p<\infty, 0<q \leq \infty$, the two exponent Lorentz spaces $L_{v}^{p, q}(0, \infty)$ consist of $f \in \mathrm{M}_{0}^{+}$for which

$$
\|f\|_{L_{v}^{p, q}}:=\left\{\begin{array}{cc}
\left(\int_{0}^{\infty} \frac{q}{p}\left[t^{1 / p} f_{v}^{*}(t)\right]^{q} \frac{d t}{t}\right)^{1 / q}, & 0<q<\infty \tag{1}\\
\sup _{t>0}^{1 / p} f_{v}^{*}(t), & q=\infty
\end{array}\right.
$$

is finite.

In this paper, we characterize the weights v and w for which a constant $C>0$ exists such that

$$
\begin{equation*}
\|T f\|_{L_{w}^{r, s}} \leq C\|f\|_{L_{v}^{p, q}}, \quad f \geq 0 \tag{2}
\end{equation*}
$$

where T is the Hardy-Steklov operator defined as

$$
\begin{equation*}
(T f)(x)=\int_{a(x)}^{b(x)} f(t) d t \tag{3}
\end{equation*}
$$

The functions $a=a(x)$ and $b=b(x)$ in (3) are strictly increasing and differentiable on $(0, \infty)$.
Also, they satisfy

$$
a(0)=b(0)=0 ; \quad a(\infty)=b(\infty)=\infty \quad \text { and } \quad a(x)<b(x) \text { for } 0<x<\infty .
$$

Clearly, a^{-1} and b^{-1} exist, and are strictly increasing and differentiable. The constant C attains different bounds for different appearances.

II. Lemmas

Lemma 1. We have

$$
\|f\|_{L_{v}^{r, s}}=\left\{\begin{array}{cc}
\left(\int_{0}^{\infty} s t^{s-1}\left[\lambda_{f}^{v}(t)\right]^{s / r} d t\right)^{1 / s}, & 0<s<\infty \tag{4}\\
\sup _{t>0} t\left[\lambda_{f}^{v}(t)\right]^{1 / r}, & s=\infty .
\end{array}\right.
$$

Proof. Applying the change of variable $y=\lambda_{f}^{v}(t)$ to the R.H.S. of (1) and integrating by parts we get the lemma.

Lemma 2. If f is nonnegative and non-decreasing, then

$$
\begin{equation*}
\|f\|_{L_{v}^{r, s}}^{s}=\frac{s}{r} \int_{0}^{\infty} f^{s}(x)\left(\int_{x}^{\infty} v(t) d t\right)^{\frac{s}{r}-1} v(x) d x \tag{5}
\end{equation*}
$$

Proof. We obtain the above equality by evaluating the two iterated integrals of $s t^{s-1}\left(\frac{s}{r}\right) h^{\frac{s}{r}-1}(x) v(x)$ over the set $\{(x, t) ; 0<t<f(x), 0<x\}$, so that we have

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{f(x)} s t^{s-1}\left(\frac{s}{r}\right) h^{\frac{s}{r}-1}(x) v(x) d t d x=\int_{0}^{\infty} \int_{x(t)}^{\infty} s t^{s-1}\left(\frac{s}{r}\right) h^{\frac{s}{r}-1}(x) v(x) d x d t \tag{6}
\end{equation*}
$$

where $x(t)=\sup \{x: f(x) \leq t\}$ for a fixed t, and $h(x)=\int_{x}^{\infty} v(t) d t$.
Integrating with respect to ' t ' first, the L.H.S. of (6) gives us the R.H.S. of (5). Further

$$
\frac{s}{r} \int_{x(t)}^{\infty} h^{\frac{s}{r}-1}(x) v(x) d x=h(x(t))^{\frac{s}{r}}=\left(\int_{x(t)}^{\infty} v(s) d s\right)^{s / r}=[v\{x: f(x)>t\}]^{\frac{s}{r}}=\left[\lambda_{f}^{v}(t)\right]^{\frac{s}{r}}
$$

Hence the lemma now follows in view of Lemma 1.

III. Main Results

Theorem 1. Let $0<p, q, r, s<\infty$ be such that $1<q \leq s<\infty$. Let T be the Hardy-Steklov operator given in (3) with functions a and b satisfying the conditions given thereat. Also, we assume that $a^{\prime}(x)<b^{\prime}(x)$ for $x \in(0, \infty)$. Then the inequality

$$
\begin{equation*}
\left(\int_{0}^{\infty} \frac{s}{r}[T f(x)]_{w}^{* s} x^{s / r} \frac{d x}{x}\right)^{1 / s} \leq C\left(\int_{0}^{\infty} \frac{q}{p}\left[f_{v}^{*}(x)\right]^{q} x^{q / p} \frac{d x}{x}\right)^{1 / q} \tag{7}
\end{equation*}
$$

holds for all nonnegative non-decreasing functions f if and only if

$$
\begin{equation*}
\sup _{\substack{0<t<x<\infty \\ a(x)<b(t)}}\left(\frac{s}{r} \int_{t}^{x}\left(\int_{y}^{\infty} w(z) d z\right)^{\frac{s}{r}-1} w(y) d y\right)^{1 / s} \times\left(\int_{a(x)}^{b(t)}\left[\left(\int_{y}^{\infty} v(z) d z\right)^{\frac{q}{p}-1} v(y)\right]^{1-q^{\prime}} d y\right)^{1 / q^{\prime}}<\infty \tag{8}
\end{equation*}
$$

Proof. Using differentiation under the integral sign, the condition $a^{\prime}(x)<b^{\prime}(x)$ for $x \in(0, \infty)$ ensures that $T f$ is nonnegative and non-decreasing. Consequently, by Lemma 2 , the inequality (7) is equivalent to

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left(\int_{a(x)}^{b(x)} f(t) d t\right)^{s} W(x) d x\right)^{1 / s} \leq C\left(\int_{0}^{\infty} f^{q}(x) V(x) d x\right)^{1 / q} \tag{9}
\end{equation*}
$$

where $W(x)=\frac{s}{r}\left(\int_{x}^{\infty} w(z) d z\right)^{\frac{s}{r}-1} w(x)$ and $V(x)=\frac{q}{p}\left(\int_{x}^{\infty} v(z) d z\right)^{\frac{q}{p}-1} v(x)$.
Thus it suffices to show that (9) holds if and only if (8) holds. The result now follows in view of Theorem 3.11 [2].

Similarly, in view of Theorem 2.5 [1], by making simple calculations, we may obtain the following:
Theorem 2. Let $0<p, q, r, s<\infty$ be such that $0<s<q, 1<q<\infty$. Let T be the Hardy-Steklov operator given in (3) with functions a and b satisfying the conditions given thereat. Also, we assume that $a^{\prime}(x)<b^{\prime}(x)$ for $x \in(0, \infty)$. Then the inequality (7) holds for all nonnegative non-decreasing functions f if and only if

$$
\left(\int_{0}^{\infty} \int_{b^{-1}(a(t)}^{t}\left[a^{s / r}(t)-b^{s / r}(x)\right]^{l / p^{\prime}}\left[x^{q / p}-t^{q / p}\right]^{l / p} \times \frac{q}{p}\left(\int_{x}^{\infty} v(y) d y\right)^{\frac{q}{p}-1} v(x) d x \sigma(t) d t\right)^{1 / l}<\infty
$$

and

$$
\left(\int_{0}^{\infty} \int_{t}^{a^{-1}(b(t))}\left[a^{s / r}(x)-b^{s / r}(t)\right]^{l / p^{\prime}}\left[t^{q / p}-x^{q / p}\right]^{l / p} \times \frac{q}{p}\left(\int_{x}^{\infty} v(y) d y\right)^{\frac{q}{p}-1} v(x) d x \sigma(t) d t\right)^{1 / l}<\infty
$$

where $\frac{1}{r}=\frac{1}{q}-\frac{1}{p}, \frac{1}{l}=\frac{1}{s}-\frac{1}{q}$, and σ is the normalizing function as defined in [3].
Remark. The condition $a^{\prime}(x)<b^{\prime}(x)$ for $x \in(0, \infty)$ cannot be relaxed since otherwise the monotonicity of $T f$ would be on stake. For example, consider the functions

$$
a(x)=\left\{\begin{array}{cc}
\sqrt{\frac{x}{10}}, & 0 \leq x<10 \\
\sqrt{10 x}-9, & 10 \leq x<20 \\
\sqrt{\frac{x}{10}}+9(\sqrt{2}-1), & x \geq 20
\end{array}\right.
$$

and

$$
b(x)=\left\{\begin{array}{cc}
10 \sqrt{10 x}, & 0 \leq x<10 \\
\sqrt{\frac{x}{10}}+99, & 10 \leq x<20 \\
10 \sqrt{10 x}+99(\sqrt{2}-1), & x \geq 20
\end{array}\right.
$$

Note that a and b satisfy all the aforementioned conditions, except that, we have $a^{\prime}(x)>b^{\prime}(x)$ for $10 \leq x<20$.

Acknowledgement

This work was supported in part by the Department of Science and Technology (DST), INDIA.

References

[1]. H.P.Heinig and G.J. Sinnamon, Mapping properties of integral averaging operators, Studia Math., 129(1998), 157-177.
[2]. A. Kufner and L.E. Persson, Weighted Inequalites of Hardy Type, World Scientific Publishing Co. Pte. Ltd, Singapore, 2003.
[3]. E. Sawyer, Weighted Lebesgue and Lorentz norm inequalites for the Hardy operator, Trans. of Amer. Math. Soc., Vol. 281(1984), 329-337.

