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Abstract: The fractionalspace and time, as ageneralization of telegraph, diffusion and the waveequations, are 

considered. The (direct case and the modified cases) of Adomiandecompositionmethod are adopted to treat the 

certain space-time fractional partial differentialequations, in thispaper, four distinguished  cases willbemodified 

and applied to solvedifferent certain space-timefractionalorder (homogeneous or inhomogeneous; linear or 

nonlinear), the steps of solutions willbegiven, sevendifferentexampleswillbesolved to show the powerful of 

thismethod to solvedifferentkinds of problems, finally figures and tables of resultswillbegiven by using programs 

of matlab. 
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I. Introduction 
George  Adomian  (1980s),  [1,  2,  3],  introduced  a  powerful method for solving linear and nonlinear 

partial  functional  equations. Since then, this method is known as an Adomian decomposition method (ADM).  

Adomian method, [4,5,6], relatively new approaches  to  provide  an  analytical  and  approximation  solution,  

moreover  they  are  particularly  valuable  as  tools  for  scientists  and  applied  mathematicians,  because  they  

provide  immediate  and  visible  symbolic  terms  of  analytic  solutions,  as  well  as  numerical  approximate  

solutions  to  both  linear  and  nonlinear  differential  equations, without linearization or discretization. 

Application of this method is extended for fractional differential equations. The  convergence,  of  Adomian  

decomposition  method,  was  been  discussed  similarity,  with  other  analytical and  numerical  solutions  of  

initial  value  problems  for  differential  equations,  are solved by  many  authors.  N. Bellomo and D.Sarafyan  

[7],  On  Adomian’s  decomposition  methods  and  some  comparisons  with Picard’s iterative  scheme,  
identifies  carefully  all  substantial  differences  between  the  two  methods.  M.  A. Golberg,  in  his  work    

[8] “notes,  on  the  decomposition  method  for  operator  equation”  has  illustrated  that  Adomian's  

decomposition  method  is  equivalent  to  the  classical  method  of  successive  approximations  (Picard  

iterations)  for  linear  operator  equations. A. M.  Wazwaz  [9], A  comparison  between  Adomian  

decomposition  method  and  Taylor  series  method in the series solutions, it been show compare the  

performance of the  ADM and  the Taylor series method  applied  to  the  solution  of  linear  and  nonlinear  

ODE.  J.Y. Edwards,  J.  A.  Roberts,and  N.  J.  Ford  [10],  A  comparison  of  Adomian’s decomposition  

method  and  Runge-Kutta methods for approximation  solution of some  model  equations,  the  relationship  

between  existence/uniqueness  of  solutions  of  the  model  equations.  D.B. dhaigude and Gunvant a.birajdar 

[11],  numerical solution of system of time  FPDE  by discrete  Adomian  decomposition  method.  Mehdi  

Safari,  Mohammad  Danesh  [12],  Application  of  Adomian’s  Decomposition  Method  for  the  Analytical  

Solution  of Space  Fractional  Diffusion  Equation    by  Adomian’s  decomposition method. guo -
chengwuyong-guoshikai- tengwu  [13], Adomian  decomposition  method  and non- analytical solutions  of  

fractional  differential  equations. Using Adomian decomposition method to approximate solution of fractional 

differential equations.The iteration procedure is based on a fractional Taylor series.  jinfacheng and yu-

mingchu[14], use  ADM  for  Solution  of  the  general  form  of  the  linearFDE  with  constant  coefficients,  

A.M.A.  EL-Sayed, S.H.Behiry, W.E. Raslan  [15],  Adomian’s  decomposition  method  for  solving  an  

intermediate  fractional  advection  dispersion  equation,  the  Caputo  sense  and Adomian’s  decomposition  

method  was  been  used  for  solving  the   process between advection and dispersion via fractional  derivative. 

our working in this paper, are showing the powerful of ADM and modified ADM in applying for 

fractional order PDE, with the Caputo’s Fractional derivatives and R-L fractional Integral, andgiving the short 

steps for solving certain S-TFPDE, Our discussion will be given, through solving  of seven different examples 

of our considering the fractional telegraph equation as a model, the generalized telegraph equation to fractional 
order has the form, 
∂αu(x,t)

∂xα
= a

∂βu(x,t)

∂tβ
+ b

∂σu(x,t)

∂tσ
+ cu x, t + f(x, t)      (1) 

Where 0< x< L; t > 0; 0 <𝜎 ≤ 1<(α& β) ≤ 2; a, b and c are constants, f is given function, Subject to initial and 

boundary conditions respectively: 

I.C     u(0, t) = f1(t ) ,   ux(0,t) = f2(t), 
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B.C   u(x, 0) = g1(x),  ut(x,0) = g2(x), 

One can see easy these cases, if (f = 0), then equation will be liner homogeneous S-TFPDE,if  

(a = c = 0), then equation yields the S-TFPDE heat equation, If (b = c = 0), then equation will be the S-TFPDE 
wave equation. 

 

II. Definitions And Theorems[1-15] 
Fractional integral and derivatives with its properties will be given: 

2.1 Riemann-Liouville Fractional integral (R-LFI)of order β > 0, given by the formula: 

Jt
β
f t =

1

Γ β 
  t − s β−1t

0
f s dt   whereJt

0 = I (2) 

 

2.2 Caputo fractional derivative (CFD) of order β,n − 1 < β ≤ n ∈ ℕ, given by the form: 

D0
C

t
β

=  Jt
n−β

Dt
n f t ∶ 

D0
C

t
β
f(t) =

 
 

  
1

Γ n−β 
  t − s n−β−1f (n) s ds

t

0  n − 1 < β < 𝑛

dn

dt n  f t β = n

  (3)                             

 

2.3 Properties of R-LFI and CFD:  

 let α ≥ 0  , β ≥ 0  then:   Jt
β
Jt
α =  Jt

αJt
β

= Jt
α+β

 

 let p > -1 and α > 0 then ,Jt
αtp =

Γ(p+1)

Γ(p+1+α)
t(p+α) ,   Dt

αtp =
Γ(p+1)

Γ(p+1−α)
t(p−α) 

if β→(n-1) then , D0
C

t
β
f t →  Jt

1  Dt
n f t = Dt

n−1f t − Dt
n−1f 0  

  
D0

C
t
β
Jt
β
f t = f t 

Jt
β

D0
C

t
β
f t = f t −  f  k (0+)

tk

k!

n−1
k=0

     , t > 0 

Note1:  why the using of Caputo’s fractional derivative is better than other formula, for PDE? The reason for 

adopting the Caputo definition to solve differential equations (both integer and fractional order), we need to 

specify additional conditions in order to produce a unique solution. For the case of Caputo fractional differential 

equations, these additional conditions are just the traditional conditions, which are akin to those of classical 

differential equations, and are therefore familiar to us. In contrast, for Riemann-Liouville fractional differential 

equations, these additional conditions constitute certain fractional derivatives (and/or integrals) of the unknown 

solution at the initial point x = 0, which are functions of x. These initial conditions are not physical; furthermore, 

it is not clear how such quantities are to be measured from experiment, say, so that they can be appropriately 

assigned in an analysis. For more details of the geometric and physical interpretation for fractional derivatives of 

both the Riemann-Liouville and Caputo types. 

 
Note2: The fractional derivatives of some functions: 

One can use thelinearity and the fractional derivatives of power function to find fractional derivatives 

ofexpansion of some functions as the following: 

If f(x) is developed in the form: 

f x =  ai
xi

i!

+∞
i=−∞     Then for α ϵ R,the fractional derivatives of order α of f(x) given by: 

 f (α) x =  ai
x(i−α)

 Γ(i−α+1)

+∞
i=−∞  (4) 

 if   f x = eax  then  ( eax )(α) = aαeax , α ϵ R    (5) 

if f x = cos x =  ak
xk

k!

+∞
k=−∞ ,  where a2k+1 = 0 ; a2k =  −1 k  

andf x = sin x =  bk
xk

k!

+∞
k=−∞       , where b2k+1 =  −1 k  ; b2k = 0, then 

 sin α  x = sin x +
απ

2
   (6a) 

 cos α  x = cos x +
απ

2
  (6b) 

 (ex sin(x)) α = 2α 2  ex sin  x +
απ

4
  (7) 

 (ex cos(x)) α = 2α 2  ex cos x +
απ

4
  (8) 

we can see easy these three functional derivatives be true if the sum define from -∞ to +∞, and these 

derivatives are not true if the sum define from 0 to -∞.   
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lim
x→0

 sin x (
1

2
) = 0 ; while lim

x→0
 sin( x +

π

4
) =

 2

2
 

lim
x→0

 cos x (
1

2
) = ±∞ ; while lim

x→0
 cos( x +

π

4
) =

 2

2
 

lim
x→0

 ex (
1

2
) = ±∞ ; while lim

x→0
 ex = 1  

 

2.4 The Adomian decomposition method: 
This method proved to be powerful, effective, and it can easy handle so kinds of differential equations. 

(integer and fractional  order), this method attacks the problems in a direct way  and  thea straightforward  

fashion  without  using  linearization,  perturbation  or  any  other  restrictive  assumption  that  may  change  the  

physical  behavior  of  the  model  under  discussion,  moreover  it  consists  ofdecomposing  the  unknown  
function  u(x,  t)  of  an y  equation  into  a  sum  of  an  infinite  number  of  components defined by 

decomposition series, where the  components  are  to  be  determined  in recursive  manner.  In this paper, Four 

different cases that used in applied of  this  method  will  be  discussed,  and  used  to  solve 

S-TFPDE’s. 

 

Case1: (direct way)  

In this casethe general steps of Adomian decomposition for linear S-TFPDE will be given in the following:  

Consider the boundary partial differential equation which has the form: 
𝜕𝛼

𝜕𝑡 𝛼
𝑢 𝑥, 𝑡 =

𝜕𝛽

𝜕𝑥 𝛽
𝑢 𝑥, 𝑡 + 𝑓 𝑥, 𝑡 ;𝑤𝑒𝑟𝑒 0 < 𝑥 < 𝑙; 𝑡 ≥ 0 ; 0 <  𝛼,𝛽 ≤ 2  (9) 

Subject to boundary and initial conditions respectively: 

B.C 𝑢 0, 𝑡 = 𝐹1  𝑡  ;  𝑢 𝑙, 𝑡 = 𝐹2  𝑡  ; 
𝐼.𝐶 𝑢 𝑥, 0 = 𝑔1  𝑥   ;  𝑢′ 𝑥, 0 = 𝑔2  𝑥 (10) 

 

Step1: write the FPDE eq(9) by using the operators form as 

𝐷𝑡
𝛼𝑢 𝑥, 𝑡 = 𝐷𝑥

𝛽
𝑢 𝑥, 𝑡 + 𝑓 𝑥, 𝑡  ;      Where𝐷𝑡

𝛼 =  
𝜕𝛼

𝜕𝑡 𝛼
;𝐷𝑥

𝛽
=  

𝜕𝛽

𝜕𝑡 𝛽
. 

 

Step2: take the invers operator (𝐽𝑡
𝛼  in eq(2)) to both side of equation in step1:  

𝐽𝑡
𝛼𝑢 𝑥, 𝑡 = 𝐽𝑡

𝛼𝐷𝑥
𝛽
𝑢 𝑥, 𝑡 + 𝐽𝑡

𝛼𝑓 𝑥, 𝑡  ; then use the property in section (2.3) to write  

𝑢 𝑥, 𝑡 =  
𝜕 𝑗

𝜕𝑡 𝑗
𝑚−1
𝑗=0 𝑢 𝑥, 0+ 

𝑡 𝑗

𝑗 !
+ 𝐽𝑡

𝛼𝑓 𝑥, 𝑡 ] + 𝐽𝑡
𝛼𝐷𝑥

𝛽
𝑢 𝑥, 𝑡 ,   Where    m-1< α ≤ m 

 

 

Step3: set the  solution u(x,t) into decomposition finite series in step1 as: 

𝑢 𝑥, 𝑡 =  𝑢𝑛  𝑥, 𝑡 =  ( 𝑢0 + 𝑢1 + ⋯ )

∞

𝑛=0

=  
𝜕𝑗

𝜕𝑡𝑗

𝑚−1

𝑗=0

𝑢 𝑥, 0+ 
𝑡𝑗

𝑗!
+ 𝐽𝑡

𝛼𝑓 𝑥, 𝑡 + 𝐽𝑡
𝛼  𝐷𝑥

𝛽
𝑢𝑛  𝑥, 𝑡 

∞

𝑛=0

 

 

Step4: write the recursive relation equations as: 

𝑢0 𝑥, 𝑡 = [ 
𝜕 𝑗

𝜕𝑡 𝑗
𝑚−1
𝑗=0 𝑢 𝑥, 0+ 

𝑡 𝑗

𝑗 !
+ 𝐽𝑡

𝛼𝑓 𝑥, 𝑡 ]    (11) 

𝑢𝑘+1 𝑥, 𝑡 =  𝐽𝑡
𝛼𝐷𝑥

𝛽
𝑢𝑘 𝑥, 𝑡   ;    𝑘 ≥ 0 (12) 

 

Step 5: use the recursive scheme eq’s(11-12) to determine the successive components of the approximate 

solutions uk(x,t), to find kth solution, 𝑢𝑘 𝑥, 𝑡 =  𝑢𝑗  𝑥, 𝑡 𝑘
𝑗=0 . 

use the determined component approximation solutions in first equation in step3to obtain solution in series 

form. 

𝑢 𝑥, 𝑡 =  𝑢𝑛  𝑥, 𝑡 =

∞

𝑛=0

𝑙𝑖𝑚
𝑘→∞

 𝑢𝑗  𝑥, 𝑡 

𝑘

𝑗=0

 

so that we can find the approximate solution uk(x,t)and the exact solution u(x,t) can be obtained in 

many equations if such a closed form solution exact.( see example 1,2 and 3). 

 

Case2(using Adomian polynomials Ak)  

 In this case, the steps of ADM which are using the helping of Ak to find the approximation solution  

and exact solutions for nonlinear S-TFPDE which has the general form:  
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𝐷𝑡
𝛼𝑢 𝑥, 𝑡 = 𝐷𝑥

𝛽
𝑢 𝑥, 𝑡 + 𝐺 𝑢 + 𝑓 𝑥, 𝑡 . Where G (u) is the nonlinear term. 

Adomian polynomials (Ak) which were be defined by Adomian himself as the following:  

𝐴𝑛  (𝑢0 ,𝑢1 ,… , 𝑢𝑛 ) =  
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[ 𝐺 (  𝑢𝑖𝜆𝑖

∞
𝑖=0 )]𝜆=0 (13) 

he used this polynomial to  define the nonlinear term as: 

G (u)=  𝐴𝑛  (𝑢0 ,𝑢1 ,𝑢2 ,… , 𝑢𝑛 )∞
𝑛=0 . 

The easy way to calculate these polynomials is: 

Assume the inverse operator Jαexists, now if we set :𝑢 𝑥, 𝑡 =  𝑢𝑛  𝑥, 𝑡 ∞
𝑛=0   and  

The nonlinear S-TFPDE will be yield: 

𝑢 𝑥, 𝑡 =  
𝜕𝑗

𝜕𝑡𝑗

𝑚−1

𝑗=0

𝑢 𝑥, 0+ 
𝑡𝑗

𝑗!
+ 𝐽𝑡

𝛼𝑓 𝑥, 𝑡  

                                         +𝐽𝑡
𝛼 [𝐷𝑥

𝛽
𝑢 𝑥, 𝑡 + 𝐺  𝑢 ] 

 And the recursive relation equations for this equation are: 

𝑢0 𝑥, 𝑡 = [ 
𝜕 𝑗

𝜕𝑡 𝑗
𝑚−1
𝑗=0 𝑢 𝑥, 0+ 

𝑡 𝑗

𝑗 !
+ 𝐽𝑡

𝛼𝑓 𝑥, 𝑡 ]                                                               (14) 

𝑢𝑘+1 =  𝐽𝑡
𝛼 [𝐷𝑥

𝛽
𝑢 𝑥, 𝑡 + 𝐺  𝑢 ]; G (u)=  𝐴𝑛  

∞
𝑛=0 (15) 

So we need to calculate Adomian polynomials to find approximate solutions and exact solutions, the following 

steps, which be given below, will be shown the  easy way to calculate Adomian polynomials and series-

solutions: 

 

Step1: from general equation get the nonlinear term G(u) and choose the integer number k, The number of 

Adomian polynomials calculate. 

 

step2: put the zeros solution as:  𝑨𝟎 = 𝑮  (𝒖𝟎), and calculate k Adomian’s  polynomials  𝑨𝒌 where: 

 𝑘 = 0,1,… , 𝑛 − 1,n the number of approximate solutions you want to calculate, where: 

𝐴𝑘  (𝑢0 ,… , 𝑢𝑘)= 𝐴𝑘  (𝑢0 + 𝑢1𝜆,… , 𝑢𝑘 + (𝑘 + 1)𝑢𝑘+1  𝜆) 

by using: 

𝐴𝑘 ∶ 𝑢𝑖  ⟶  𝑢𝑖 + (𝑖 + 1)𝑢𝑖+1  𝜆for i = 0,1,2,…, k 

take the first order derivative of  𝐴𝑘  withrespect λ, and put λ = 0 so from step2 yield:  
𝑑

𝑑𝜆
𝐴𝑘 |𝜆=0 = (𝑘 + 1)𝐴𝑘+1we can get the n polynomials 

 

Step3: calculate the approximate or the exact solution by using the recursive relations equations in: eq’s (13-

14). (see example 4). 

 

Case3:( the noise term):one from the powerful of ADM is the finding of noise term, which is helping us to find 

the exact solutions of inhomogeneous differential equations in second or third steps.  

 

Noise Term:A useful summary about noise term phenomenon can be drawn as follows: 

1. The noise terms are the identical terms with opposite signs that may appear in the components u0 and u1. 

2. The noise terms appear only for specific types of inhomogeneous equations whereas   noise terms do not 

appear  
3. for homogeneous equations. 

4. Noise terms may appear if the exact solution is part of the zeros component u0. 

5. Verification that the remaining non-canceled terms satisfy the equation is necessary and essential.(See 

example 5and 6). 

 

Case4: (using both the boundary and initial conditions):  

In this case the boundary condition will be usedboundary and initial conditions to find the first start  

approximation solution u0. 

Consider the linear homogeneous S-TFPDE heat equation: 

𝐷𝑡
𝛼𝑢 𝑥, 𝑡 = 𝐷𝑥

𝛽
𝑢 𝑥, 𝑡 where 0 < x< L ; t ≥ 0,0< α ≤ 1 < β ≤ 2 , 

subject to boundary  and initial conditions  
B.C u(0,t) = f0 (t)  ; u(L,t)= fL (t) ; 

I.C u( x,0) = g(x). 

If we solve this equation by using the general steps in case1for t and for x respectively as the following: 

recursive relation equations for t given as: 
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𝑢0 = 𝑔(𝑥)

𝑢𝑘+1 = 𝐽𝑡
𝛼𝐷𝑥

𝛽
𝑢𝑘
     (16a) 

Take the approximation of  the first derivative as 𝑢𝑡
′  0, 𝑡 =  

𝑓𝐿−𝑓0

𝐿−0
, and 

Solve equation for x, then the recursive relation equations will be  given as: 

 
𝑢0 = 𝑓0 +

𝑥

𝐿
[𝑓𝐿 − 𝑓0 ]

𝑢𝑘+1 =
1


𝐽𝑥
𝛽
𝐷𝑡
𝛼𝑢𝑘

      (16b) 

Now the new recursive relation equations by adding half of equations (16a and 16b), then the new recursive 

relation equations will be given as: 

 
𝑢0 =

1

2
[𝑔 𝑥 + 𝑓0 +

𝑥

𝐿
 𝑓𝐿 − 𝑓0 ]

𝑢𝑘+1 =   
1

2
[𝐽𝑡

𝛼𝐷𝑥
𝛽

+
1


𝐽𝑥
𝛽
𝐷𝑡
𝛼 ]𝑢𝑘

  (17) 

At the end we can find the numerical solution by the same way in Adomian decomposition (see example 7). 

 

III. Convergence Of Adomian Decomposition Method 
Since our problems (ODE’s, PDE’s fractional or not), in different sciences, can be written as the 

general form: 

u = f + N(u), where N(u) is the nonlinear operator term. Since the Adomian decomposition method and (DJM) 

method, is placed the solution as infinite series. 

𝑢 𝑥, 𝑡 =  𝑢𝑛  𝑥, 𝑡 ∞
𝑛=0 , and the nonlinear term in infinite composition of known functions, which can be 

calculated by easy way, as: 

N(u)=  𝐴𝑛
∞
𝑛=0  Where 𝐴𝑛  are the Adomian polynomials given by : 

𝐴𝑛  (𝑢0 ,𝑢1 ,𝑢2 ,… , 𝑢𝑛 ) =  
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[ 𝑁 (  𝑢𝑖𝜆𝑖

∞
𝑖=0 )]𝜆=0.we can see the same way in (DJM), 

𝑁 𝑢 =  𝐺𝑖
∞
𝑖=0 where𝐺𝑛 = 𝑁( 𝑢𝑖) −

𝑛
𝑖=0  𝑁( 𝑢𝑖), 𝑛 = 1,2,…𝑛−1

𝑖=0 and 𝐺0 = 𝑁(𝑢0)       where  

N(u) = N(𝑢0)+ [ N(𝑢0+𝑢1) – N(𝑢0)]+ [ N(𝑢0 + 𝑢1 + 𝑢2) –N(𝑢0 + 𝑢1)]+ … 

The recursive relation equations given as: 

𝑢0 = 𝑓,   𝑢𝑛 =  𝐺𝑛−1,  n=1,2,… 

two facts, that is used to prove of convergence of Adomian method, the equivalent between Adomian and 

(DJM) methods, and the similarity between the infinite series of nonlinear term and the Taylor series expanded 

round the solution. See [15].  

 

IV. Material And Method 
considerthe general linear FPDE  telegraph equation (1), 
𝜕𝛼𝑢(𝑥 ,𝑡)

𝜕𝑥 𝛼
= 𝑎

𝜕𝛽𝑢(𝑥 ,𝑡)

𝜕𝑡 𝛽
+ 𝑏

𝜕𝜎𝑢(𝑥 ,𝑡)

𝜕𝑡 𝜎
+ 𝑐𝑢 𝑥, 𝑡 + 𝑓(𝑥, 𝑡), Where 0< x< L; t > 0; 0 <𝜎 ≤ 1< α& β ≤ 2; 

a, b and c are constants, f is given function, Subject to boundary conditions respectively: 

B.C   u(x, 0) = g1(x),  ut(x,0) = g2(x) 

I.C     u(0, t) = f1(t ) ,   ux(0,t) = f2(t), 
if f = 0 (see example 1), if a = c = 0,(see example 3), If b = c = 0, (see example 2). 

Now the steps in not1will be used to find the general solution of this equation by using Adomian method. 

 

Step1: write this equation by the operators: 

 (
𝜕𝛽

𝜕𝑥 𝛽
= 𝐷𝑥

𝛽
; 
𝜕𝛼

𝜕𝑡 𝛼
= 𝐷𝑡

𝛼 ; 
𝜕𝜎

𝜕𝑡 𝜎
= 𝐷𝑡

𝜎 ; 𝐽𝑥
𝛽
𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑠 𝑜𝑓𝐷𝑥

𝛽
 

𝐷𝑥
𝛽

 𝑢 = 𝑎𝐷𝑡
𝛼  𝑢 + 𝑏 𝐷𝑡

𝜎  𝑢 + 𝑐 𝑢 + 𝑓(𝑥, 𝑡), Subject to same conditions, 

 

Step2: take the invers 𝐽𝑥
𝛽

 and using properties of Caputo fractional derivatives and the initial and boundary 

condition, the equations has the form: 

𝑢 =[f1(t) +x f2(t)+𝐽𝑥
𝛽

f(x,t) ]+ 𝐽𝑥
𝛽

[𝑎𝐷𝑡
𝛼𝑢 + 𝑏𝐷𝑡

𝜎𝑢 +  𝑐 𝑢]    (18) 

By using decomposition 

𝑢 𝑥, 𝑡 =  𝑢𝑛  𝑥, 𝑡 ∞
𝑛=0  =  (𝑢0 ,𝑢1 ,𝑢2 ,… ) 

 

Step3: now the recursive equations given by: 

 
𝑢0 =   𝑓1 𝑡 + 𝑥 𝑓2 𝑡  + 𝐽𝑥

𝛽
𝑓 𝑥, 𝑡 

𝑢𝑘+1 = 𝐽𝑥
𝛽

[𝑎𝐷𝑡
𝛼𝑢𝑘 + 𝑏 𝐷𝑡

𝜎𝑢𝑘 + 𝑐 𝑢𝑘  ]𝑘 ≥  0
   (19) 
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V. Numerical Andexamples 
Example 1: consider linear-homogeneous S-TFPDE  from stander telegraph equation (1)   

where (a = b =1 and c= -1), and f(x,t)=0,  

𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑥𝛼
=
𝜕𝛽𝑢(𝑥, 𝑡)

𝜕𝑡𝛽
+
𝜕𝜎𝑢(𝑥, 𝑡)

𝜕𝑡𝜎
− 𝑢 𝑥, 𝑡  

Subject by these initial conditions: 

I.C 𝑢 0, 𝑡 =  𝑒−𝑡  ;  𝑢𝑥 0, 𝑡 =  𝑒−𝑡  
We can write the recursive equations (19) as: 

𝑢0 𝑥, 𝑡 =  𝑒−𝑡 + 𝑥 𝑒−𝑡  =  𝑒−𝑡 + 𝑥𝑒−𝑡  
𝑢0 𝑥, 𝑡 =  (1 + 𝑥)𝑒−𝑡  

𝑢𝑘 = 𝐽𝑥
𝛽   (𝐷𝑡𝑡

𝛼  + 𝐷𝑡
𝜎 − 1 𝑢𝑘  (𝑥, 𝑡) ];k ≥ 0 

From equation (4) we get: 
  (𝐷𝑡𝑡

𝛼  + 𝐷𝑡
𝜎 − 1 𝑢0 𝑥, 𝑡 = (1 + 𝑥)𝑒−𝑡 then by proprieties of Caputo’s fractional derivatives and the fractional 

derivatives in note2, let 𝑎𝑘=(−1)𝑘  

𝑢1 = 𝐽𝑥
𝛽   (𝐷𝑡𝑡

𝛼  + 𝐷𝑡
𝜎 − 1 𝑢0  (𝑥, 𝑡) ] 

= 𝐽𝑥
𝛽

(1 + 𝑥)𝑒−𝑡  

= [
𝑥 (𝛽 )

 𝛤(𝛽+1)
+

𝑥 (𝛽+1)

 𝛤(𝛽+2)
 ](𝑎𝛼 + 𝑎𝜎 + 1)𝑒−𝑡  

𝑢2 = [
𝑥 (2𝛽 )

 𝛤(2𝛽+1)
+

𝑥 (2𝛽+1)

 𝛤(2𝛽+2)
 ]( 𝑎𝛼 + 𝑎𝜎 + 1)2𝑒−𝑡  

⋮ 

𝑢𝑘 = [
𝑥(𝑘𝛽 )

 𝛤(𝑘𝛽 + 1)
+

𝑥(𝑘𝛽+1)

 𝛤(𝑘𝛽 + 2)
 ]( 𝑎𝛼 + 𝑎𝜎 + 1)𝑘𝑒−𝑡  

This is approximate solution   𝑢𝑘(𝑥, 𝑡), since the solution in this method given as: 

𝑢 𝑥, 𝑡 =  𝑢𝑘 𝑥, 𝑡 

∞

𝑘=0

= 𝑙𝑖𝑚
𝑘→∞

 𝑢𝑗  𝑥, 𝑡 

𝑘

𝑗=0

 

  = 𝑒−𝑡  
𝑥 (𝑘𝛽 )

 𝛤(𝑘𝛽+1)
+

𝑥 (𝑘𝛽 +1)

 𝛤(𝑘𝛽+2)
 ]( 𝑎𝛼 + 𝑎𝜎 + 1)𝑘∞

𝑛=0 , 

If β = α =2 and 𝜎 = 1 then the series yield: 

𝑢 𝑥, 𝑡 =𝑒𝑥
2
( 𝑒−𝑡), then this closed with exact solution. 

 

 
 

Figure1 Figure2 

 

Figure1 shows the approximate solution 𝑢𝑘  where k = 7, at (β = α =2 and 𝜎 = 1). 

Figure2,in 2a shows the approximate solution 𝑢𝑘  where k=7; at (β = 1.5; α =2 and 𝜎 = 1); in 2b shows the appr-

oximate solution 𝑢𝑘  where k=7; at (β = 2, α =1.5 and 𝜎 = 1). 

 

Example 2: consider the telegraph equation (16) where (b=c=0 and f(x,t)=0) we get the stander fractional wave 

equation given by the form: 
𝜕𝛼𝑢(𝑥 ,𝑡)

𝜕𝑡 𝛼
= 𝑎

𝜕𝛽𝑢(𝑥 ,𝑡)

𝜕𝑥 𝛽
 Where 1 < β, α ≤ 2; 0 < x < L; t > 0 subject by initial conditions: 

I.C u(x, 0) = f1(x) = cos(x), ut(x ,0) = f2(x) = cos(x). 

by using the general steps in case1 to solve this equation: then the recursive relation equations are been given 

by:  

𝑢0(𝑥, 𝑡) =  [f1(𝑥) + 𝑡 f2(𝑥)]; 

𝑢𝑘+1(𝑥, 𝑡) = 𝐽𝑡
𝛼 [ 𝐷𝑥

𝛽
𝑢𝑘  (𝑥, 𝑡) ]Where 𝐽𝑡

𝛼  invers of 𝐷𝑡
𝛼 . 
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Let 0 < x <1 ; t > 0; a=1 

I.C   f1(x) = cos(x);  f2(x) = cos(x) for t ≥ 0. 

 
Solution: by using recursive relation equations in case1we get: 

𝑢0 𝑥, 𝑡 =  
𝜕𝑗

𝜕𝑡𝑗

2−1

𝑗=0

𝑢 𝑥, 0+ 
𝑡𝑗

𝑗!
=  1 + 𝑡 𝑐𝑜𝑠(𝑥) 

𝑢1(𝑥, 𝑡) = 𝐽𝑡
𝛼 [ 𝐷𝑥

𝛽
𝑢0  (𝑥, 𝑡) ] 

𝑢1 = 𝐽𝑡
𝛼 1 + 𝑡 [𝑐𝑜𝑠  𝑥 +

𝛽𝜋

2
 ] 

𝑢1 = [
𝑡 (𝛼)

 𝛤(𝛼+1)
+

𝑡 (𝛼+1)

 𝛤(𝛼+2)
 ] [𝑐𝑜𝑠  𝑥 +

𝛽𝜋

2
 ]  by the same way we get: 

𝑢2 𝑥, 𝑡 = [
𝑡 (2𝛼)

 𝛤(2𝛼+1)
+

𝑡 (2𝛼+1)

 𝛤(2𝛼+2)
 ] [𝑐𝑜𝑠  𝑥 +

2𝛽𝜋

2
 ] 

⋮ 

𝑢𝑘 𝑥, 𝑡 = [
𝑡 (𝑘𝛼 )

 𝛤(𝑘𝛼+1)
+

𝑡 (𝑘𝛼+1)

 𝛤(𝑘𝛼+2)
 ] [𝑐𝑜𝑠  𝑥 +

𝑘𝛽𝜋

2
 ] 

or we can write: 

𝑢𝑘 𝑥, 𝑡 = [
𝑡 (𝑘𝛼 )

 𝛤(𝑘𝛼+1)
+

𝑡 (𝑘𝛼+1)

 𝛤(𝑘𝛼+2)
 ] [𝑐𝑜𝑠  𝑥 +

𝑘𝛽𝜋

2
 ] 

 

Then the uk approximate solution will be given as: 

𝑢𝑘 𝑥, 𝑡 =  𝑢𝑗  𝑥, 𝑡 𝑘
𝑗=0  ; then Since: 

𝑢 𝑥, 𝑡 =  𝑢𝑛  𝑥, 𝑡 =

∞

𝑛=0

𝑙𝑖𝑚
𝑘→∞

 𝑢𝑗  𝑥, 𝑡 

𝑘

𝑗=0

 

𝑢 =  [
𝑡(𝑘𝛼 )

 𝛤(𝑘𝛼 + 1)
+

𝑡(𝑘𝛼+1)

 𝛤(𝑘𝛼 + 2)
 ] [𝑐𝑜𝑠  𝑥 +

𝑘𝛽𝜋

2
 ]

∞

𝑘=0

 

If α=β=2 then the series become: 

𝑢 =  [
(𝑡)(2𝑘)

 𝛤(2𝑘 + 1)
+

(𝑡)(2𝑘+1)

 𝛤(2𝑘 + 2)
 ] [𝑐𝑜𝑠 𝑥 + 𝑘𝜋 ]

∞

𝑘=0

 

𝑢 = 𝑐𝑜𝑠 𝑥  (−1)𝑘 [
(𝑡)(2𝑘)

 𝛤(2𝑘 + 1)
+

(𝑡)(2𝑘+1)

 𝛤(2𝑘 + 2)
 ]

∞

𝑘=0

 

𝑢 = 𝑐𝑜𝑠 𝑥  𝑐𝑜𝑠 𝑡 + 𝑠𝑖𝑛 𝑡  . 
This solution closed with exact solution at β = α=2. 

 

  
Figure3 Figure4 

 

Figure3 shows the exact and the approximate solutions at fixed t=0.4 and for x=(0:0.1:1), Uk=10, at β = α=2, and 
he approximate Uk at different values of (β and α).  

Figure4 shows the exact solution at β = α=2, and approximate solution at k=10 and at β = α=1.8. 

 

Example 3: if (a=c=0 and f(x,t) = 0)then the S-TFPDE Telegraph equation yield the general linear-

homogeneous S-TFPDE heat equation will be given by 
𝜕𝛼𝑢(𝑥 ,𝑡)

𝜕𝑡 𝛼
= 𝑏

𝜕𝛽𝑢(𝑥 ,𝑡)

𝜕𝑥 𝛽
where 0< α ≤ 1 < β ≤ 2, and 0 < x < 1; t > 0, 
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subject by initial conditions, I.C  u(x,0) =f1(x)=sin(x). 

 

Solution: using the general steps in case1and property in section (2.3) and Note2. Then the recursive relation  

𝑢0 𝑥, 𝑡 =  𝑓1 𝑥 = 𝑠𝑖𝑛 𝑥 . 

𝑢𝑘+1(𝑥, 𝑡) = 𝐽𝑡
𝛼 [ 𝐷𝑥𝑥

𝛽
𝑢𝑘  (𝑥, 𝑡) ]. Then:  

𝑢0 𝑥, 𝑡 = 𝑠𝑖𝑛(𝑥). 

𝑢1(𝑥, 𝑡) = 𝐽𝑡
𝛼 [ 𝐷𝑥𝑥

𝛽
𝑢0 (𝑥, 𝑡) ] = 

𝑡 (𝛼)

 𝛤(𝛼+1)
[𝑠𝑖𝑛  𝑥 +

𝛽𝜋

2
 ] 

By the same way we have the approximate solution 𝑢𝑘(𝑥, 𝑡) k=0, 1, 2, 3,… 

𝑢𝑘(𝑥, 𝑡)= 
𝑡 (𝑘𝛼 )

 𝛤(𝑘𝛼+1)
[𝑠𝑖𝑛  𝑥 +

𝑘𝛽𝜋

2
 ], then the solution is: 

𝑢 𝑥, 𝑡 =  𝑢𝑛  𝑥, 𝑡 =

∞

𝑛=0

𝑙𝑖𝑚
𝑘→∞

 𝑢𝑗  𝑥, 𝑡 

𝑘

𝑗=0

 

At α=1 and β=2 the series become: 

𝑢 𝑥, 𝑡 = 𝑠𝑖𝑛(𝑥) 𝑙𝑖𝑚𝑘→∞  (−1)𝑘
𝑡𝑘

 𝛤(𝑘+1)

𝑘
𝑗=0 , then series become the exact solution 𝑢 𝑥, 𝑡 = 𝑒−𝑡 𝑠𝑖𝑛 𝑥 . 

 

 
t x u 𝑈𝛽=2

𝛼=1 𝑈𝛽=1.5
𝛼=1  𝑈𝛽=2

𝛼=0.7 

 

 

 

 

0.05 

0 0 0.0000 0.0341 0.0000 

0.1000 0.0950 0.0950 0.1303 0.0875 

0.2000 0.1890 0.1890 0.2251 0.1741 

0.3000 0.2811 0.2811 0.3177 0.2589 

0.4000 0.3704 0.3704 0.4071 0.3412 

0.5000 0.4560 0.4560 0.4924 0.4201 

0.6000 0.5371 0.5371 0.5728 0.4947 

0.7000 0.6128 0.6128 0.6475 0.5644 

0.8000 0.6824 0.6824 0.7158 0.6285 

0.9000 0.7451 0.7451 0.7769 0.6863 

1.0000 0.8004 0.8004 0.8302 0.7373 

Table 1 
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Figure5a-b show the exact solution and the approximate solutions at different values of β and α, we can see that 

in the titles of sub-figures. 

Figure6(a and b) show the carves of exact and approximate Uk=10 solutions at different values of α with fixed β 
at left figures and the carves at different values of β with fixed α at right figures and all at k=10, x=0:0.1:1 and 

(t=0.05 and 0.1) respectively.   

Table1 shows the comparison between exact and approximate solutions at different values of  β, α and at x with 

fixed t=0.5, at all these work we calculate the approximate solutions at k=10. 

 

Example 4: consider the nonlinear S-TFPDE which has the form: 

𝐷𝑡
𝛼𝑢 𝑥, 𝑡 = 𝐷𝑥

𝛽
𝑢 𝑥, 𝑡 + 6𝑢(1 − 𝑢 ) where 

0< α ≤1< β ≤ 2, and I.C   u 𝑥, 0 =  
1

(1+𝑒𝑥 )2 

In this case of zero solution, the using of Taylor series is good way with using of Adomian polynomials to 

calculate the solutions. 

Solution: since the Taylor series for I.C given by: 
1

(1+𝑒𝑥 )2 =  𝑢𝑛  𝑥, 0 =∞
𝑛=0

1

4
−

𝑥

4
+

𝑥2

16
+

𝑥2

48
−

𝑥2

96
+ ⋯; then the 

nonlinear term is F(u)=𝑢2 =  𝐴𝑛
∞
𝑛=0 . Now by using the steps in case2 and the information in note2 and section 

(2.3).we can write the recursive relation equation for this problem will be given in one equation only as: 

𝑢𝑘+1 𝑥, 𝑡 = 𝑢𝑘+1 𝑥, 0 + 𝐽𝑡
𝛼 [𝐷𝑥

𝛽
𝑢𝑘 𝑥, 𝑡 + 6𝑢𝑘 𝑥, 𝑡   − 6𝐴𝑛  

Where 𝑢0 𝑥, 0 =
1

4
;𝑢1 𝑥, 0 =

−𝑥

4
;𝑢2 𝑥, 0 =

𝑥2

16
;⋯ 

And 𝐴0 = 𝑢0
2;𝐴0 = 𝑢0

2;𝐴1 = 2𝑢1𝑢0;𝐴0 = 2𝑢2𝑢0 + 𝑢1
2 

Then we can write the solutions in the following: 

𝑢0 =
1

4
 ;  𝑢1 = −

𝑥

4
+

9

8

𝑡𝛼

Г 𝛼+1 
 

𝑢2 =
𝑥2

16
−

3𝑥

4

𝑡𝛼

Г 𝛼 + 1 
+

27

8

𝑡2𝛼

Г(2𝛼 + 1)
 

𝑢2 =
𝑥2

16
−

3𝑥

4

𝑡𝛼

Г 𝛼 + 1 
+

27

8

𝑡2𝛼

Г(2𝛼 + 1)
 

𝑢3 =
𝑥3

48
−

3𝑥2

16

𝑡𝛼

Г(𝛼+1)
+

𝑥2−𝛽

8Г 3−𝛽 

𝑡𝛼

Г 𝛼+1 
+

9𝑥

16

𝑡2𝛼

Г 2𝛼+1 
−

27

16

𝑡−3𝛼

Г(3𝛼+1)
, 

𝑢4 = −
𝑥4

96
+
𝑥3

4

𝑡𝛼

Г 𝛼 + 1 
+

𝑥3−𝛽

8Г 4 − 𝛽 

𝑡𝛼

Г 𝛼 + 1 
−

117𝑥2

64

𝑡2𝛼

Г 2𝛼 + 1 
−

3𝑥2−𝛽

8Г 3 − 𝛽 
 

we can write solution by series; u 𝑥, 𝑡 = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 + ⋯ 

atα=1 and β =2  this solution agreement with the exact solution in [14] 

 

Example5: solve the linear-inhomogeneous S-TFPDE 

𝐷𝑎
𝐶

𝑡
0.5𝑢 𝑥, 𝑡 = 𝐷𝑎

𝑐
𝑥
1.5𝑢 𝑥, 𝑡 + 𝑔 𝑥, 𝑡 ; 0 < 𝑥 < 1 , 𝑡 ≥ 0 

Where   g(x,t) = 
1

 𝛤(1.5)
𝑥2𝑗𝑡

0.5𝑒−𝑡 −
 𝛤(3)

 𝛤(1.5)
𝑥0.5𝑒−𝑡  ; subject to conditions : 

B.C  u(0,t) =0; u( l ,t) =𝑒−𝑡𝑡 ≥ 0 

I C   u( x ,0) = 𝑥2    ;  0 < x<1 

 

Solution: we solve the equation for general Real number α ;β , since from recursive relation 

  𝑢0 𝑥, 𝑡 = 𝐹 𝑥, 𝑡 where F(x ,t) = u(x,0) + 𝐽𝑡
𝛼𝑔 𝑥, 𝑡  

𝑢𝑟+1(𝑥, 𝑡) = 𝐽𝑡
𝛼 𝐷𝑎
𝑐

𝑥
𝛽
𝑢𝑟(𝑥, 𝑡)for r ≥ 0 . we have 

 𝑢0 𝑥, 𝑡   = 𝐹 𝑥, 𝑡 = u(x,0) + 𝐽𝑡
𝛼𝑔 𝑥, 𝑡  

 𝑢0 𝑥, 𝑡   = 𝑥2 + 𝑗𝑡
𝛼 [𝑥2𝐷𝑡

𝛼𝑒−𝑡 − 𝑒−𝑡
𝛤 3 

𝛤 3 − 𝛽 
𝑥2−𝛽 ] 

 𝑢0 𝑥, 𝑡   = 𝑥2 + 𝑥2 𝑒−𝑡 − 1 − 𝑗𝑡
𝛼𝑒−𝑡

𝛤 3 

𝛤 3 − 𝛽 
𝑥2−𝛽  

 𝑢0 𝑥, 𝑡   = 𝑥2𝑒−𝑡 − 𝑗𝑡
𝛼𝑒−𝑡

𝛤 3 

𝛤 3 − 𝛽 
𝑥2−𝛽  

 𝑢1 𝑥, 𝑡 = 𝐽𝑡
𝛼 𝐷𝑎
𝑅

𝑥
𝛽
𝑢0(𝑥, 𝑡) ; so 

 𝑢1 𝑥, 𝑡 = 𝑗𝑡
𝛼𝑒−𝑡

𝛤 3 𝑥2−𝛽

𝛤 3 − 𝛽 
− 𝑗𝑡

2𝛼𝑒−𝑡
𝛤 3 𝑥2−2𝛽

𝛤 3 − 2𝛽 
 

Now from    𝑢1 and  𝑢0  we can see the noise term is [  
 𝛤(3)

 𝛤(3−𝛽)
𝑥2−𝛽 𝑗𝑡

𝛼𝑒−𝑡  ] 
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If we deleted it and the other term of zeros 𝑢0 satisfy the equation and all conditions, so that the exact solution is  

𝑢0 𝑥, 𝑡 = 𝑥2𝑒−𝑡  . 
 

Example6: solve the linear-inhomogeneous S-TFPDE; 

𝐷𝑎
𝐶

𝑡
0.5𝑢 𝑥, 𝑡 = 𝐷𝑎

𝑐
𝑥
1.5𝑢 𝑥, 𝑡 + 𝑔 𝑥, 𝑡 ;Where 0 < 𝑥 <  𝜋 , 𝑡 ≥ 0; and 

g(x,t) = - 𝑐𝑜𝑠 𝑥 𝐷𝑎
𝑐

𝑡
0.5 𝑒−𝑡 − 𝐷𝑎

𝑐
𝑥
1.5 𝑐𝑜𝑠 𝑥  + 𝑒−𝑡 𝐷𝑎

𝑐
𝑥
1.5 𝑐𝑜𝑠(𝑥)  , Subject by conditions: 

B.C  u( 0 ,t)  = 1 − 𝑒−𝑡 ;( π ,t) = 𝑒−𝑡 − 1 𝑡 ≥ 0 

I .C  u( x ,0) = 0     0≤ x ≤ π 

 

Solution: 

𝑢0 𝑥, 𝑡 = 𝐹 𝑥, 𝑡  = u(x,0) + 𝐽𝑡
0.5𝑔 𝑥, 𝑡  

= −𝑐𝑜𝑠 𝑥  𝑒−𝑡 − 𝑒0 − 0 + 𝐽𝑡
0.5𝑒−𝑡 [ 𝐷𝑎

𝑐
𝑥
1.5 𝑐𝑜𝑠 𝑥  ] 

= 𝑐𝑜𝑠 𝑥  1 − 𝑒−𝑡 + 𝐽𝑡
0.5𝑒−𝑡   [  𝐷𝑎

𝑐
𝑥
1.5 𝑐𝑜𝑠(𝑥)  ] 

𝑢1 𝑥, 𝑡 = −𝐽𝑡
0.5𝑒−𝑡 𝐷𝑎

𝑐
𝑥
1.5 𝑐𝑜𝑠 𝑥  + 𝐽𝑡

1𝑒−𝑡 𝐷𝑎
𝑐

𝑥
3 𝑐𝑜𝑠(𝑥) ] 

From  𝑢1 and  𝑢0 if we delete the noise term in 𝑢0 ,  𝐽𝑡
0.5𝑒−𝑡 𝐷𝑎

𝑅
𝑥
1.5 𝑐𝑜𝑠(𝑥) ,  then the other terms satisfy the 

FPDE and all conditions, so that the exact solution is 

𝑢 𝑥, 𝑡 =   𝑢𝑛  𝑥, 𝑡 

∞

𝑛=0

=  1 − 𝑒−𝑡 𝑐𝑜𝑠(𝑥) 

 

Example 7: Solvethe S-TFPDE which has the form, 

𝐷𝑡
𝛼𝑢 𝑥, 𝑡 = 𝐷𝑥

𝛽
𝑢 𝑥, 𝑡 , where 0< x< 1; t ≥ 0,  0< α ≤ 1< β ≤ 2, subject to conditions 

B.C   u(0,t) = 𝑓0 =atα ; u(1,t) =𝑓1 = atα +1 

I.C    u(x,0) = g(x)= xβ where 𝑎 = Г(𝛽 + 1)/Г(𝛼 + 1) 

 

Solution: by using steps in case4 we can write the recursive relation equations as: 

𝑢0 =
1

2
[𝑥𝛽 + 𝑎𝑡𝛼 + 𝑥] 

𝑢1 =
1

2
[𝐽𝑡

𝛼𝐷𝑥
𝛽

+
1


Jx
β
Dt

α]( 
1

2
[xβ + x + atα] ) 

u1  =   
1

2
 

2

(h
Г(β+1)tα

Г(α+1)
+

aГ(α+1)

Г(β+1)
xβ) 

u2 =  
1

2
 

3

( atα + xβby)  

thenby the same way one can get the kth  approximation solution as 

uk =  
1

2
 

k+1

(xβ + atα), then the solution is 

u x, t =   
1

2
 

k+1

(xβ + atα)∞
k=0  =(xβ + atα), this is exact solution for S-TFPDE, and it is closed with the exact 

solution(x2 + 2t), for the integer order PDE   [Dt u x, t = Dx
2u x, t  ],  

Figure7-a shows the approximate and exact solutions at(β =2 and α=1) and the approximate solution at 

different values of (α=0.8, 0.5), with fixed (β =2 ),  

Figure7-b shows the approximate solution at different values of (β =1.8, 1.6,1.4), with fixed (α =2 ).all that at 
step t=0.01 and k=30. 

 
Figure7 
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VI. Conclusion 
The telegraph equation is a general model equation, which admits the behavior of the heat  equations as 

well as the wave equation, many authors have studied the heat equation with fractional order derivatives in 

space or time also the wave equation has been studied with fractional derivatives order in space or time. 

We considered the telegraph equation with fractional derivatives in both space and time. We 

considered  four cases at case one, we considered linear and homogeneous telegraph with fractional derivatives 

in both space and time. We preformed three examples for different values of fractional order as shown in figure 

1,2,3,4,5,(6-a) and (6-b).also we presented more numerical data in label1 for fixed value of t=0.05, and different 

values of x,α and β. 

From this study one can see easy the easy way and the good method(ADM &MADM), one can use the 

steps to find the numerical solutions (sometime the exact solution), for different kind of S-TFPDE’s 
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