Spectral Continuity: (p, r) - A P And (p, k) - Q

D. Senthil Kumar¹ and P. Maheswari Naik²*

¹Post Graduate and Research Department of Mathematics, Government Arts College (Autonomous), Coimbatore - 641 018, TamilNadu, India.
²Department of Mathematics, Sri Ramakrishna Engineering College, Vattamalaiapalyam, Coimbatore - 641 022, TamilNadu, India.

Abstract: An operator \(T \in B(H) \) is said to be absolute - (p, r) - paranormal operator if
\[
\left\| T^p \left(T^* \right)^r x \right\| \geq \left\| T^r \left(T^* \right)^p x \right\|^p \quad \text{for all } x \in H \text{ and for positive real numbers } p > 0 \text{ and } r > 0 , \text{ where } T = U |T|,
\]
where \(|T| = \sqrt{T^* T} \). In this paper, we prove that continuity of the set theoretic functions spectrum, Weyl spectrum, Browder spectrum and essential surjectivity spectrum on the classes consisting of (p, k) - quasihyponormal operators and absolute - (p, r) - paranormal operators.

Keywords: absolute - (p, r) - paranormal operator, Weyl's theorem, Single valued extension property, Continuity of spectrum, Fredholm, B – Fredholm

I. Introduction and Preliminaries

Let \(H \) be an infinite dimensional complex Hilbert space and \(B(H) \) denote the algebra of all bounded linear operators acting on \(H \). Every operator \(T \) can be decomposed into \(T = U |T| \) with a partial isometry \(U \), where \(|T| = \sqrt{T^* T} \). In this paper, \(T = U |T| \) denotes the polar decomposition satisfying the kernel condition \(N(U) = N(|T|) \). Yamazaki and Yanagida [23] introduced absolute - (p, r) - paranormal operator. It is a further generalization of the classes of both absolute - k - paranormal operators and p - paranormal operators as a parallel concept of class \(A(p, r) \). An operator \(T \in B(H) \) is said to be absolute - (p, r) - paranormal operator, denoted by \((p, r) - A P \), if
\[
\left\| T^p \left(T^* \right)^r x \right\| \geq \left\| T^r \left(T^* \right)^p x \right\|^p \quad \text{for every unit vector } x \text{ or equivalently}
\]
\[
\left\| T^p \left(T^* \right)^r x \right\| \geq \left\| T^r \left(T^* \right)^p x \right\|^p \quad \text{for all } x \in H \text{ and for positive real numbers } p > 0 \text{ and } r > 0 . \text{ It is also proved that}
\]
\(T = U |T| \) is absolute - (p, r) - paranormal operator for \(p > 0 \) and \(r > 0 \) if and only if \(r \left\| T^r \right\| U \left\| T^p \right\| U \left\| T^r \right\| - (p + r) \lambda^p \left\| T^r \right\|^p + p \lambda^p \left\| T^r \right\|^p \geq 0 \text{ for all real } \lambda \).

a (k, 1) - \(A P \) operator is absolute - k - paranormal;
a (p, p) - \(A P \) operator is p - paranormal;
a (1, 1) - \(A P \) operator is paranormal [23].

An operator \(T \in B(H) \) is said to be (p, k) - quasihyponormal operator, denoted by \((p, k) - Q \), for some \(0 < p \leq 1 \) and integer \(k \geq 1 \) if \(T^k (\left\| T \right\|^p - \left\| T^* \right\|^p) T^k \geq 0 \). Evidently,

a (1, k) - \(Q \) operator is k - quasihyponormal;
a (1, 1) - \(Q \) operator is quasihyponormal;
a (p, 1) - \(Q \) operator is k - quasihyponormal or quasi - p - hyponormal ([8], [10]),
a (p, 0) - \(Q \) operator is p - hyponormal if \(0 < p < 1 \) and hyponormal if \(p = 1 \).

If \(T \in B(H) \), we write \(N(T) \) and \(R(T) \) for null space and range of \(T \), respectively. Let \(\alpha(T) = \dim N(T) = \dim (T^* (0)) \), \(\beta(T) = \dim N(T^*) = \dim (H / T(H)) \), \(\sigma(T) \) denote the spectrum and \(\sigma_a(T) \) denote the approximate point spectrum. Then \(\sigma(T) \) is a compact subset of the set \(C \) of complex numbers. The function \(\sigma \) viewed as a function from \(B(H) \) into the set of all compact subsets of \(C \), with its hausdorff metric, is know to be an upper semi - continuous function [14, Problem 103], but it fails to be continuous [14, Problem 102].
Also we know that σ is continuous on the set of normal operators in $B(H)$ extended to hyponormal operators [14, Problem 105]. The continuity of σ on the set of quasihyponormal operators (in $B(H)$) has been proved by Erevenko and Djordjevic [10], the continuity of σ on the set of p - hyponormal has been proved by Duggal and Djordjevic [9], and the continuity of σ on the set of G_1 - operators has been proved by Luecke [17].

An operator $T \in B(H)$ is called Fredholm if it has closed range, finite dimensional null space and its range has finite co - dimension. The index of a Fredholm operator is given by $\text{ind}(T) = \alpha(T) - \beta(T)$. The ascent of T, $\text{asc}(T)$, is the least non - negative integer n such that $T^n(0) = T^{n+1}(0)$ and the descent of T, $\text{dsc}(T)$, is the least non - negative integer n such that $T^n(H) = T^{n+1}(H)$. We say that T is of finite ascent (resp., finite descent) if $\text{asc}(T - \lambda) < \infty$ (resp., $\text{dsc}(T - \lambda) < \infty$) for all complex numbers λ. An operator T is said to be left semi - Fredholm (resp., right semi - Fredholm), $T \in \Phi_\alpha(H)$ (resp., $T \in \Phi_\beta(H)$) if TH is closed and the deficiency index $\alpha(T) = \dim(\text{TH}^\perp)$ is finite (resp., the deficiency index $\beta(T) = \dim(\text{H} \cap \text{TH})$ is finite); T is semi - Fredholm if it is either left semi - Fredholm or right semi - Fredholm, and T is Fredholm if it is both left and right semi - Fredholm. The semi - Fredholm index of T, $\text{ind}(T)$, is the number $\text{ind}(T) = \alpha(T) - \beta(T)$. An operator T is called Weyl if it is Fredholm of index zero and Browder if it is Fredholm of finite ascent and descent. Let \mathbb{C} denote the set of complex numbers. The Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of T are the sets $\sigma_w(T) = \{ \lambda \in \mathbb{C} : T - \lambda$ is not Weyl$\}$ and $\sigma_b(T) = \{ \lambda \in \mathbb{C} : T - \lambda$ is not Browder$\}$.

Let $\pi_0(T)$ denote the set of Riesz points of T (i.e., the set of $\lambda \in \mathbb{C}$ such that $T - \lambda$ is Fredholm of finite ascent and descent [7]) and let $\pi_{00}(T)$ and $\pi_{a0}(T)$ denote the set of eigen values of T of finite geometric multiplicity and isolated points of the spectrum. The operator $T \in B(H)$ is said to satisfy Browder's theorem if $\sigma(T) \setminus \sigma_w(T) = \pi_0(T)$ and T is said to satisfy Weyl's theorem if $\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T)$. In [15], Weyl's theorem for T implies Browder's theorem for T, and Browder's theorem for T is equivalent to Browder's theorem for T^*.

Berkani [5] has called an operator $T \in B(X)$ as B - Fredholm if there exists a natural number n for which the induced operator $T_n : T^n(X) \to T^n(X)$ is Fredholm. We say that the B - Fredholm operator T has stable index if $\text{ind}(T - \lambda \mu) \geq 0$ for every λ, μ in the B - Fredholm region of T.

The essential spectrum $\sigma_e(T)$ of $T \in B(H)$ is the set $T \in B(H) = \{ \lambda \in \mathbb{C} : T - \lambda$ is not Fredholm$\}$. Let $\text{acc}(\sigma(T))$ denote the set of all accumulation points of $\sigma(T)$, then $\sigma_e(T) \subseteq \sigma_w(T) \subseteq \sigma_{00}(T) \subseteq \sigma_e(T) \cup \text{acc}(\sigma(T))$. Let $\pi_{a0}(T)$ be the set of $\lambda \in \mathbb{C}$ such that λ is an isolated point of $\sigma_a(T)$ and $0 < \alpha(T - \lambda) < \infty$, where $\sigma_a(T)$ denotes the approximate point spectrum of the operator T. Then $\pi_0(T) \subseteq \pi_{00}(T) \subseteq \pi_{a0}(T)$. We say that a - Weyl's theorem holds for T if $\sigma_{aw}(T) = \sigma_a(T) \setminus \pi_{a0}(T)$, where $\sigma_{aw}(T)$ denotes the essential approximate point spectrum of T (i.e., $\sigma_{aw}(T) = \bigcap \{ \sigma_a(T + K) : K \in \mathbb{K}(H) \}$ with $\mathbb{K}(H)$ denoting the ideal of compact operators on H). Let $\Phi_\alpha(H) = \{ T \in B(H) : \alpha(T) < \infty$ and $T(H)$ is closed$\}$ and $\Phi_\beta(H) = \{ T \in B(H) : \beta(T) < \infty$ \} denote the semigroup of upper semi Fredholm and lower semi Fredholm operators in $B(H)$ and let $\Phi_w(H) = \{ T \in \Phi_\alpha(H) : \text{ind}(T) \leq 0 \}$. Then $\sigma_{aw}(T)$ is the complement in \mathbb{C} of all those λ for which $(T - \lambda) \in \Phi_\alpha(H)$ [19]. The concept of a - Weyl's theorem was introduced by Rakocvic [20]. The concept states that a - Weyl's theorem for $T \Rightarrow$ Weyl's theorem for T, but the converse is generally false. Let $\sigma_{ab}(T)$ denote the Browder essential approximate point spectrum of T.

$$\sigma_{ab}(T) = \bigcap \{ \sigma_a(T + K) : TK = KT \text{ and } K \in \mathbb{K}(H) \} = \{ \lambda \in \mathbb{C} : T - \lambda \notin \Phi_w(H) \text{ or } \text{asc}(T - \lambda) = \infty \}$$
then \(\sigma_{aw}(T) \subseteq \sigma_{ab}(T) \). We say that \(T \) satisfies a - Browder’s theorem if \(\sigma_{ab}(T) = \sigma_{aw}(T) \) [19].

An operator \(T \in B(H) \) has the single valued extension property at \(\lambda_0 \in \mathbb{C} \), if for every open disc \(D \lambda_0 \) centered at \(\lambda_0 \) the only analytic function \(f : D \lambda_0 \to H \) which satisfies

\[
(T - \lambda) f(\lambda) = 0 \quad \text{for all } \lambda \in D \lambda_0,
\]

is the function \(f \equiv 0 \). Trivially, every operator \(T \) has SVEP at points of the resolvent \(\rho(T) = \mathbb{C} \setminus \sigma(T) \); also \(T \) has SVEP at \(\lambda \in \text{iso } \sigma(T) \). We say that \(T \) has SVEP if it has SVEP at every \(\lambda \in \mathbb{C} \). In this paper, we prove that if \(\{T_n\} \) is a sequence of operators in the class \((p, k) - Q \) or \((p, r) - A \mathcal{P} \) which converges in the operator norm topology to an operator \(T \) in the same class, then the functions spectrum, Browder spectrum and essential surjectivity spectrum are continuous at \(T \). Note that if an operator \(T \) has finite ascent, then it has SVEP and \(\alpha(T - \lambda) \leq \beta(T - \lambda) \) for all \(\lambda \) \[1, \text{Theorem 3.8 and 3.4}\]. For a subset \(S \) of the set of complex numbers, let \(\overline{S} = \{ \overline{\lambda} : \lambda \in S \} \) where \(\lambda \) denotes the complex number and \(\overline{\lambda} \) denotes the conjugate.

II. Main Results

Lemma 2.1 (i) If \(T \in (p, k) - Q \), then \(\text{asc } (T - \lambda) \leq k \) for all \(\lambda \).

(ii) If \(T \in (p, r) - A \mathcal{P} \), then \(T \) has SVEP.

Proof:

(i) Refer [13, Page 146] or [22]

(ii) Refer [21, Theorem 2.8].

Lemma 2.2 If \(T \in (p, k) - Q \cup (p, r) - A \mathcal{P} \) and \(\lambda \in \text{iso } \sigma(T) \), then \(\lambda \) is a pole of the resolvent of \(T \).

Proof: Refer [22, Theorem 6] and [21, Proposition 2.1].

Lemma 2.3 If \(T \in (p, k) - Q \cup (p, r) - A \mathcal{P} \), then \(T^* \) satisfies a - Weyl’s theorem.

Proof: If \(T \in (p, k) - Q \), the \(T \) has SVEP, which implies that \(\sigma(T^*) = \sigma_u(T^*) \) by [1, Corollary 2.45]. Then \(T \) satisfies Weyl’s theorem i.e., \(\sigma(T) \setminus \sigma_w(T) = \pi_0(T) = \pi_{00}(T) \) by [13, Corollary 3.7]. Since \(\pi_{00}(T) = \pi_{00}(T^*) = \pi_{00}(T^*) \), \(\sigma(T) = \sigma(T^*) = \sigma_u(T^*) \) and \(\sigma_w(T) = \sigma_u(T^*) = \sigma_{au}(T^*) \) by [3, Theorem 3.6(ii)], \(\sigma_u(T^*) \setminus \sigma_{au}(T^*) = \pi_{00}(T^*) \). Hence if \(T \in (p, k) - Q \), then \(T^* \) satisfies a - Weyl’s theorem.

If \(T \in (p, r) - A \mathcal{P} \), then by [21, Theorem 2.18], \(T^* \) satisfies a - Weyl’s theorem.

Corollary 2.4 If \(T \in (p, k) - Q \cup (p, r) - A \mathcal{P} \) and \(\lambda \in \sigma_u(T^*) \setminus \sigma_{au}(T^*) \Rightarrow \lambda \in \text{iso } \sigma_u(T^*) \).

Lemma 2.5 If \(T \in (p, k) - Q \cup (p, r) - A \mathcal{P} \), then \(\text{asc } (T - \lambda) < \infty \) for all \(\lambda \).

Proof: Since \(T - \lambda \) is lower semi - Fredholm, it has SVEP. We know that from [1, Theorem 3.16] that SVEP implies finite ascent. Hence the proof.

Lemma 2.6 [6, Proposition 3.1] If \(\sigma \) is continuous at a \(T^* \in B(H) \), then \(\sigma \) is continuous at \(T \).

Lemma 2.7 [12, Theorem 2.2] If an operator \(T \in B(H) \) has SVEP at points \(\lambda \in \sigma_u(T) \), then \(\sigma \) is continuous at \(T \leftrightarrow \sigma_{au} \) is continuous at \(T \).

Lemma 2.7 If \(\{T_n\} \) is a sequence in \((p, k) - Q \) or \((p, r) - A \mathcal{P} \) which converges in norm to \(T \), then \(T^* \) is a point of continuity of \(\sigma_{au} \).

Proof: We have to prove that the function \(\sigma_{au} \) is both upper semi - continuous and lower semi - continuous at \(T^* \). But by [11, Theorem 2.1], we have that the function \(\sigma_{au} \) is upper semi - continuous at \(T^* \). So we have to
prove that \(\sigma_{ea} \) is lower semi-continuous at \(T^* \) i.e., \(\sigma_{ea}(T^*) \subseteq \lim \inf \sigma_{ea}(T_n^*) \). Assume the contradiction that \(\sigma_{ea} \) is not lower semi-continuous at \(T^* \). Then there exists an \(\epsilon > 0 \), an integer \(n_0 \), a \(\lambda \in \sigma_{ea}(T^*) \) and an \(\epsilon \)-neighbourhood \((\lambda, \epsilon) _T \) such that \(\sigma_{ea}(T_n^*) \cap (\lambda, \epsilon) _T = \emptyset \) for all \(n \geq n_0 \). Since \(\lambda \notin \sigma_{ea}(T_n^*) \) for all \(n \geq n_0 \) implies \(T_n^* - \lambda \in \Phi_{ea}(H) \) for all \(n \geq n_0 \), the following implications holds:

\[
\text{ind}(T_n^* - \lambda) \leq 0, \quad \alpha (T_n^* - \lambda) < \infty, \quad \text{and} \quad (T_n^* - \lambda) H \text{ is closed} \\
\Rightarrow \text{ind}(T_n - \lambda) \geq 0, \quad \beta (T_n - \lambda) < \infty \\
\Rightarrow \text{ind}(T_n - \lambda) = 0, \quad \alpha (T_n - \lambda) < \beta (T_n - \lambda) < \infty
\]

(Since \(T_n \in (p, k) - Q \cup (p, r) - A \mathcal{P} \Rightarrow \text{ind}(T_n - \lambda) \leq 0 \) by Lemma 2.1 and Lemma 2.5.

for all \(n \geq n_0 \). The continuity of the index implies that \(\text{ind}(T - \lambda) = \lim_{n \to \infty} \text{ind}(T_n - \lambda) = 0 \), and hence that \((T - \lambda) \) is Fredholm with \((T - \lambda) = 0 \). But then \(T^* - \lambda \) is Fredholm with \(\text{ind}(T^* - \lambda) = 0 \Rightarrow T^* - \lambda \in \Phi_{ea}(H) \), which is a contradiction. Therefore \(\sigma_{ea} \) is lower semi-continuous at \(T^* \). Hence the proof.

Theorem 2.9 If \(\{T_n\} \) is a sequence in \((p, k) - Q \) or \((p, r) - A \mathcal{P} \) which converges in norm to \(T \), then \(\sigma \) is continuous at \(T \).

Proof: Since \(T \) has SVEP by Lemma 2.1, \(\sigma(T^*) = \sigma_a(T^*) \). Evidently, it is enough if we prove that \(\sigma_a(T_n^*) \subseteq \lim \inf \sigma_a(T_n^*) \) for every sequence \(\{T_n\} \) of operators in \((p, k) - Q \) or \((p, r) - A \mathcal{P} \) such that \(T_n \) converges in norm to \(T \). Let \(\lambda \in \sigma_a(T^*) \). Then either \(\lambda \in \sigma_{ea}(T^*) \) or \(\lambda \in \sigma_a(T^*) \setminus \sigma_{ea}(T^*) \).

If \(\lambda \in \sigma_{ea}(T^*) \), then proof follows, since

\[
\sigma_{ea}(T^*) \subseteq \lim \inf \sigma_{ea}(T_n^*) \subseteq \lim \inf \sigma_a(T_n^*)
\]

If \(\lambda \in \sigma_a(T^*) \setminus \sigma_{ea}(T^*) \), then \(\lambda \in \sigma_a(T^*) \) by Corollary 2.4. Consequently, \(\lambda \in \lim \inf \sigma_a(T_n^*) \) i.e., \(\lambda \in \lim \inf \sigma_a(T_n^*) \) for all \(n \) by [16, Theorem IV. 3.16], and there exists a sequence \(\{\lambda_n\} \), \(\lambda_n \in \sigma_a(T_n^*) \), such that \(\lambda_n \) converges to \(\lambda \). Evidently \(\lambda \in \lim \inf \sigma_a(T_n^*) \). Hence \(\lambda \in \lim \inf \sigma_a(T_n^*) \). Now by applying Lemma 2.6, we obtain the result.

Corollary 2.10 If \(\{T_n\} \) is a sequence in \((p, k) - Q \) or \((p, r) - A \mathcal{P} \) which converges in norm to \(T \), then \(\sigma \), \(\sigma_a \), and \(\sigma_b \) are continuous at \(T \).

Proof: Combining Theorem 2.9 with Lemma 2.7 and Lemma 2.8, we obtain the results.

Let \(\sigma_e(T) = \{ \lambda : T - \lambda \text{ is not surjective} \} \) denote the surjectivity spectrum of \(T \) and let \(\Phi_{ea}(H) = \{ \lambda : T - \lambda \in \Phi_e(H), \text{ind}(T - \lambda) \geq 0 \} \). Then the essential surjectivity spectrum of \(T \) is the set \(\sigma_{ea}(T) = \{ \lambda : T - \lambda \notin \Phi_{ea}(H) \} \).

Corollary 2.11 If \(\{T_n\} \) is a sequence in \((p, k) - Q \) or \((p, r) - A \mathcal{P} \) which converges in norm to \(T \), then \(\sigma_{ea}(T) \) is continuous at \(T \).

Proof: Since \(T \) has SVEP by Lemma 2.1, \(\sigma_{ea}(T) = \sigma_{ea}(T^*) \) by [1, Theorem 3.65 (ii)]. Then by applying Lemma 2.8, we obtain the result.

Let \(K \subseteq B(H) \) denote the ideal of compact operators, \(B(H) \) the Calkin algebra and let \(\pi : B(H) \to B(H) / K \) denote the quotient map. Then \(B(H) / K \) being a \(C^* \)-algebra, there exists a Hilbert space \(H_1 \) and an
isometric * - isomorphism $\nu : B(H) / K \to B(H)$ such that the essential spectrum $\sigma_e(T) = \sigma(\pi(T))$ of $T \in B(H)$ is the spectrum of $\nu \circ \pi(T)$ ($\in B(H)$). In general, $\sigma_e(T)$ is not a continuous function of T.

Corollary 2.12 If $\{\pi(T_n)\}$ is a sequence in $(p, k) - Q$ or $(p, r) - A P$ which converges in norm to $\pi(T)$, then $\sigma_e(T)$ is continuous at T.

Proof: If $T_n \in B(H)$ is essentially $(p, k) - Q$ or $(p, r) - A P$, i.e., if $\pi(T_n) \in (p, k) - Q$ or $(p, r) - A P$, and the sequence $\{T_n\}$ converges in norm to T, then $\nu \circ \pi(T) (\in B(H))$ is a point of continuity of σ by Theorem 2.9. Hence σ_e is continuous at T, since $\sigma_e(T) = \sigma(\nu \circ \pi(T))$.

Let $H(\sigma(T))$ denote the set of functions f that are non-constant and analytic on a neighbourhood of $\sigma(T)$.

Lemma 2.13 Let $T \in B(X)$ be an invertible $(p, r) - A P$ and let $f \in H(\sigma(T))$. Then $\sigma_{bw}(f(T)) \subset f(\sigma_{bw}(T))$, and if the B - Fredholm operator T has stable index, then $\sigma_{bw}(f(T)) = f(\sigma_{bw}(T))$.

Proof: Let $T \in B(X)$ be an invertible $(p, r) - A P$, let $f \in H(\sigma(T))$, and let $g(T)$ be an invertible function such that $f(\mu) - \lambda = (\mu - \alpha_1)......(\mu - \alpha_n)g(\mu)$. If $\lambda \notin f(\sigma_{bw}(T))$, then $f(T) - \lambda = (T - \alpha_1)......(T - \alpha_n)g(T)$ and $\alpha_i \notin \sigma_{bw}(T)$, $i = 1, 2, ..., n$. Consequently, $T - \alpha_i$ is a B - Fredholm operator of zero index for all $i = 1, 2, ..., n$, which, by [5, Theorem 3.2], implies that $f(T) - \lambda$ is a B - Fredholm operator of zero index. Hence, $\lambda \notin \sigma_{bw}(f(T))$.

Suppose now that T has stable index, and that $\lambda \notin \sigma_{bw}(f(T))$. Then, $f(T) - \lambda = (T - \alpha_1)......(T - \alpha_n)g(T)$ is a B - Fredholm operator of zero index. Hence, by [4, Corollary 3.3], the operator $g(T)$ and $T - \alpha_i$, $i = 1, 2, ..., n$, are B - Fredholm and

$$0 = \text{ind} (f(T) - \lambda) = \text{ind} (T - \alpha_1) + + \text{ind} (T - \alpha_n) + \text{ind} g(T).$$

Since $g(T)$ is an invertible operator, $\text{ind} g(T) = 0$; also $\text{ind} (T - \alpha_i)$ has the same sign for all $i = 1, 2, ..., n$. Thus $\text{ind} (T - \alpha_i) = 0$, which implies that $\alpha_i \notin \sigma_{bw}(T)$ for all $i = 1, 2, ..., n$, and hence $\lambda \notin f(\sigma_{bw}(T))$.

Lemma 2.14 Let $T \in B(X)$ be an invertible $(p, r) - A P$ has SVEP, then $\text{ind} (T - \lambda) \leq 0$ for every $\lambda \in C$ such that $T - \lambda$ is B - Fredholm.

Proof: Since T has SVEP by [21, Theorem 2.8], then $T|_{B(X)}$ has SVEP for every invariant subspaces $M \subset X$ of T. From [4, Theorem 2.7], we know that if $T - \lambda$ is a B - Fredholm operator, there exist $T - \lambda$ invariant closed subspaces M and N of X such that $X = M \oplus N$, $(T - \lambda)|_{M}$ is a Fredholm operator with SVEP and $(T - \lambda)|_{N}$ is a Nilpotent operator. Since $\text{ind} (T - \lambda)|_{M} \leq 0$ by [18, Proposition 2.2], it follows that $\text{ind} (T - \lambda) \leq 0$.

References

DOI: 10.9790/5728-11111318 www.iosrjournals.org 17 | Page
Spectral continuity: \((p, r) - A\) and \((p, k) - Q\)

