On αrω–Continuous and αrω–Irresolute Maps in Topological Spaces

R. S. Wali¹ and Prabhavati S. Mandalgeri²

¹ Department of Mathematics, Bhandari Rathi College, Guledagud–587 203, Karnataka State, India ² Department of Mathematics, K.L.E'S, S.K. Arts College & H.S.K. Science Institute, Hubli–31, Karnataka State, India

Abstract: The aim of this paper is to introduce a new type of functions called the α REGULAR ω continuous maps, $\alpha r \omega$ -irresolute maps, strongly $\alpha r \omega$ -continuous maps, perfectly $\alpha r \omega$ -continuous maps and study some of these properties.

Keywords: $ar\omega$ -open sets, $ar\omega$ -closed sets, $ar\omega$ -continuous maps, $ar\omega$ -irresolute maps, strongly $ar\omega$ -continuous maps, perfectly $ar\omega$ -continuous.

I. Introduction

The concept of regular continuous and Completely–continuous functions was first introduced by Arya. S. P. and Gupta.R [1]. Later Y. Gnanambal [2] studied the concept of generalized pre regular continuous functions. Also, the concept of $\omega\alpha$ -continuous functions was introduced by S S Benchalli et al [3]. Recently R S Wali et al[4] introduced and studied the properties of $\alpha\alpha$ -continuous functions and $\alpha\alpha$ -irresolute functions strongly $\alpha\alpha$ -continuous maps , perfectly $\alpha\alpha$ -continuous maps. Also, we study some of the characterization and basic properties of $\alpha\alpha$ -continuous functions.

II. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) represent a topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. X\A or A^c denotes the complement of A in X.

We recall the following definitions and results.

Definition 2.1: A subset A of a topological space (X, τ) is called.

- (1) semi-open set [5] if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$.
- (2) pre-open set [6] if $A \subseteq int(cl(A))$ and pre-closed set if $cl(int(A)) \subseteq A$.
- (3) α -open set [7] if $A \subseteq int(cl(int(A)))$ and α -closed set if $cl(int(cl(A))) \subseteq A$.
- (4) semi-pre open set [8] (=β-open9] if A⊆cl(int(cl(A)))) and a semi-pre closed set (=β-closed) if int(cl(int(A)))⊂A.
- (5) regular open set [10] if A = int(clA) and a regular closed set if A = cl(int(A)).
- (6) Regular semi open set [11] if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$.
- (7) Regular α -open set[12] (briefly, $r\alpha$ -open) if there is a regular open set U s.t U \subseteq A $\subseteq \alpha cl(U)$.

Definition 2.2 : A subset A of a topological space (X, τ) is called

- generalized pre regular closed set(briefly gpr-closed)[2] if pcl(A)⊆U whenever A⊆U and U is regular open in X.
- 2) $\omega\alpha$ closed set [3] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in X.
- 3) α regular ω closed (briefly $\alpha r \omega$ -closed) set [4] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $r \omega$ -open in X.
- 4) regular generalized α -closed set (briefly, rg α -closed)[12] if α cl (A) \subseteq U whenever A \subseteq U and U is regular α -open in X.
- 5) generalized closed set(briefly g-closed) [13] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 6) generalized semi-closed set(briefly gs-closed)[14] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 7) generalized semi pre regular closed (briefly gspr-closed) set [15] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 8) strongly generalized closed set [15](briefly,g*-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.

- 9) α -generalized closed set(briefly αg -closed)[16] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 10) ω -closed set [17] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in X.
- 11) weakely generalized closed set(briefly, wg-closed)[18] if $cl(int(A)) \subset U$ whenever $A \subset U$ and U is open in X.
- 12) regular weakly generalized closed set (briefly, rwg-closed)[18] if $cl(int(A)) \subset U$ whenever $A \subset U$ and U is regular open in X.
- 13) semi weakly generalized closed set (briefly, swg-closed)[18] if cl(int(A)) $\subset U$ whenever $A \subset U$ and U is semi open in X.
- 14) generalized pre closed (briefly gp-closed) set [19] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 15) regular ω -closed (briefly r ω -closed) set [20] if cl(A) \subset U whenever A \subset U and U is regular semi-open in Χ.
- 16) g*-pre closed (briefly g*p-closed) [21] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X
- 17) generalized regular closed (briefly gr–closed)set[22] if $rcl(A) \subset U$ whenever $A \subset U$ and U is open in X.
- 18) regular generalized weak (briefly rgw-closed) set[23] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular semi open in X.
- 19) weak generalized regular– α closed (briefly wgr α -closed) set[24] if cl(int(A) \subset U whenever A \subset U and U is regular α -open in X.
- 20) regular pre semi-closed (briefly rps-closed) set [25] if $spcl(A) \subset U$ whenever $A \subset U$ and U is rg- open in Χ.
- 21) generalized pre regular weakly closed (briefly gprw-closed) set [26] if $pcl(A) \subset U$ whenever $A \subset U$ and U is regular semi- open in X.
- 22) α -generalized regular closed (briefly α gr-closed) set [27] if α cl(A) \subseteq U whenever A \subseteq U and U is regular open in X.
- 23) R*-closed set [28] if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi- open in X.

The compliment of the above mentioned closed sets are their open sets respectively.

Definition 2.3: A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be

- regular-continuous(r-continuous) [1] if $f^{-1}(V)$ is r-closed in X for every closed subset V of Y. (i)
- (ii) Completely–continuous[1] if $f^{-1}(V)$ is regular closed in X for every closed subset V of Y.
- Strongly–continuous[10] if $f^{-1}(V)$ is Clopen (both open and closed) in X for every subset V of Y. (iii)
- α -continuous[7] if $f^{-1}(V)$ is α -closed in X for every closed subset V of Y. (iv)
- strongly α -continuous [29] if $f^{-1}(V)$ is α -closed in X for every semi-closed subset V of Y. (v)
- α g-continuous[16] if $f^{-1}(V)$ is α g-closed in X for every closed subset V of Y. (vi)
- wg-continuous[18] if $f^{-1}(V)$ is wg-closed in X for every closed subset V of Y. (vii)
- (viii) rwg-continuous18[] if $f^{-1}(V)$ is rwg-closed in X for every closed subset V of Y.
- gs-continuous[14] if $f^{-1}(V)$ is gs-closed in X for every closed subset V of Y. gp-continuous[19] if $f^{-1}(V)$ is gp-closed in X for every closed subset V of Y. (ix)
- (x)
- gpr-continuous[2] if $f^{-1}(V)$ is gpr-closed in X for every closed subset V of Y. (xi)
- α gr-continuous[27] if $f^{-1}(V)$ is α gr-closed in X for every closed subset V of Y. (xii)
- (xiii) $\omega\alpha$ -continuous[3] if $f^{-1}(V)$ is $\omega\alpha$ -closed in X for every closed subset V of Y.
- (xiv) gspr-continuous[15] if $f^{-1}(V)$ is gspr-closed in X for every closed subset V of Y.
- (xv) g-continuous[3] if $f^{-1}(V)$ is g-closed in X for every closed subset V of Y
- (xvi) ω -continuous[17] if $f^{-1}(V)$ is ω -closed in X for every closed subset V of Y
- (xvii) $rg\alpha$ -continuous[12] if $f^{-1}(V)$ is $rg\alpha$ -closed in X for every closed subset V of Y.
- (xviii) gr-continuous[22] if $f^{-1}(V)$ is gr-closed in X for every closed subset V of Y.
- (xix) $g^{*}p$ -continuous[21] if $f^{-1}(V)$ is $g^{*}p$ -closed in X for every closed subset V of Y.
- (xx) rps-continuous [25] if $f^{-1}(V)$ is rps-closed in X for every closed subset V of Y.
- (xxi) R^* -continuous [28] if $f^{-1}(V)$ is R^* -closed in X for every closed subset V of Y.
- (xxii) gprw-continuous[26] if $f^{-1}(V)$ is gprw-closed in X for every closed subset V of Y. (xxiii) wgra-continuous[24] if $f^{-1}(V)$ is wgra-closed in X for every closed subset V of Y.
- (xxiv) swg-continuous [18] if $f^{-1}(V)$ is swg-closed in X for every closed subset V of Y.
- (xxv) $r\omega$ -continuous[20] if $f^{-1}(V)$ is rw-closed in X for every closed subset V of Y.
- (xxvi) rgw-continuous23] if $f^{-1}(V)$ is rgw-closed in X for every closed subset V of Y.

Definition 2.4: A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be

- α -irresolute [7] if $f^{-1}(V)$ is α -closed in X for every α -closed subset V of Y. (i)
- irresolute [3] if $f^{-1}(V)$ is semi-closed in X for every semi-closed subset V of Y. (ii)

- (iii) contra ω -irresolute [17] if $f^{-1}(V)$ is ω -open in X for every ω -closed subset V of Y.
- (iv) contra irresolute [7] if $f^{-1}(V)$ is semi-open in X for every semi-closed subset V of Y.
- (v) contra r-irresolute [1] if $f^{-1}(V)$ is regular-open in X for every regular-closed subset V of Y
- (vi) contra continuous [30] if $f^{-1}(V)$ is open in X for every closed subset V of Y.
- (vii) rω*-open(resp rω*-closed) [20] map if f(U) is rω-open (resp rω-closed) in Y for every rω-open (resp rω-closed) subset U of X.

Lemma 2.5 see[4] :

- 1) Every closed (resp regular-closed, α -closed) set is $\alpha r \omega$ -closed set in X.
- 2) Every $\alpha r \omega$ -closed set is αg -closed set
- **3**) Every arω-closed set is agr-closed (resp ωα-closed, gs-closed, gspr-closed, wg-closed, rwg-closed, gp-closed) set in X

Lemma 2.6: see [4] If a subset A of a topological space X, and

- 1) If A is regular open and $\alpha r \omega$ -closed then A is α -closed set in X
- 2) If A is open and αg -closed then A is $\alpha r \omega$ -closed set in X
- 3) If A is open and gp-closed then A is $\alpha r \omega$ -closed set in X
- 4) If A is regular open and gpr-closed then A is αrω-closed set in X
- 5) If A is open and wg-closed then A is $\alpha r \omega$ -closed set in X
- 6) If A is regular open and rwg-closed then A is $\alpha r \omega$ -closed set in X
- 7) If A is regular open and α gr-closed then A is α r ω -closed set in X
- 8) If A is ω -open and $\omega\alpha$ -closed then A is $\alpha r\omega$ -closed set in X

Lemma 2.7: see [4] If a subset A of a topological space X, and

- 1) If A is semi-open and sg-closed then it is $\alpha r \omega$ -closed.
- 2) If A is semi-open and ω -closed then it is $\alpha r \omega$ -closed.
- 3) A is $\alpha r \omega$ -open iff $U \subseteq \alpha int(A)$, whenever U is $r \omega$ -closed and $U \subseteq A$.

Definition 2.8 : A topological space (X, τ) is called

(1) an α -space if every α -closed subset of X is closed in X.

III. 3. arω– Continuous Functions:

Definition 3.1: A function f from a topological space X into a topological space Y is called α regular ω continuous (α r ω -Continuous) if $f^{-1}(V)$ is α r ω -Closed set in X for every closed set V in Y.

Theorem 3.2: If a map f is continuous, then it is $\alpha r \omega$ -continuous but not converserly.

Proof: Let f: $X \rightarrow Y$ be continuous. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is closed set in X. Since every closed set is $\alpha r \omega$ -closed Lemma 2.5, $f^{-1}(F)$ is $\alpha r \omega$ -closed in X. Therefore f is $\alpha r \omega$ -continuous.

Theorem 3.3: If a map f: $X \rightarrow Y$ is α -continuous, then it is $\alpha r \omega$ -continuous but not converserly.

Proof: Let f: $X \rightarrow Y$ be α -continuous. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is α -closed set in X. Since every α -closed set is $\alpha r \omega$ - closed by Lemma 2.5, $f^{-1}(F)$ is $\alpha r \omega$ - closed in X. Therefore f is $\alpha r \omega$ - continuous.

The converse need not be true as seen from the following example.

Example 3.5: Let $X=Y=\{a,b,c,d\}$, $\tau =\{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$ and $\sigma =\{Y,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$ Let map f: $X \rightarrow Y$ defined by f(a)=c, f(b)=a, f(c)=b, f(d)=d, then f is $\alpha r \omega$ -continuous but not continuous and not α -continuous, as closed set $F=\{c,d\}$ in Y, then $f^{-1}(F)=\{a,d\}$ in X which is not α -closed, not closed set in X.

Theorem 3.6: If a map f: $X \rightarrow Y$ is continuous, Then the following holds.

- (i) If f is $\alpha r \omega$ -continuous, then f is αg -continuous.
- (ii) If f is $\alpha r \omega$ -continuous, then f is wg-continuous (resp gs-continuous, rwg-continuous, gp-continuous, gpr-continuous, $\omega \alpha$ -continuous, αgr -continuous).

Proof: (i) Let F be a closed set in Y. Since F is $\alpha r \omega$ -continuous, then $f^{-1}(F)$ is $\alpha r \omega$ -closed in X. Since every $\alpha r \omega$ -closed set is αg -closed by Lemma 2.5, then $f^{-1}(F)$ is αg -closed in X. Hence f is αg -continuous. Similarly we can prove (ii).

The converse need not be true as seen from the following example.

Example 3.7: Let $X=Y=\{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b,c\}\}\ \sigma = \{Y, \phi, \{a\}\}$, Let map f: $X \rightarrow Y$ defined by , f(a)=b , f(b)=a , f(c)=c then f is αg -continuous, wg-continuous, gs-continuous, gp-continuous, gpr-continuous, gpr-continuous , rwg-continuous , αg r-continuous but not $\alpha r \omega$ -continuous as closed set F= $\{b,c\}$ in Y, then $f^{-1}(F)=\{a,c\}$ in X which is not $\alpha r \omega$ -closed set in X.

Remark 3.8: The following examples shows that $\alpha r\omega$ -continuous maps are independent of pre-continuous, β -continuous, g-continuous, ω -continuous, r ω -continuous, swg-continuous, rgw-continuous, wgr α -continuous, rg α -continuous, gr α -continuous, gr α -continuous, gr α -continuous, semi-continuous, gr α -continuous, gr α -continuous, semi-continuous, gr α -continuous, gr α -continuous, semi-continuous, gr α -continuous, gr α -continuous, gr α -continuous, semi-continuous, gr α -continuous, gr α -conti

Example 3.9: Let $X=Y=\{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b,c\}\} \ \sigma = \{Y, \phi, \{a\}\}, Let map f: X \rightarrow Y defined by, f(a)=b, f(b)=a, f(c)=c then f is pre-continuous, <math>\beta$ -continuous, g-continuous, ω -continuous, r ω -continuous, swg-continuous, rgw-continuous, wgra-continuous, rga-continuous, gprw-continuous, g*p-continuous, gr-continuous, R*-continuous, rps-continuous but f is not ar ω -continuous, as closed set F= {b,c} in Y, then f⁻¹(F)={a,c} in X, which is not ar ω -closed set in X.

Example 3.10: X={a,b,c,d}, Y={a,b,c} $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}\ \sigma = \{Y, \phi, \{a\}\}, Let map f: X \rightarrow Y$ defined by , f(a)=b , f(b)=a , f(c)=a , f(d)=c then f is arm-continuous but f is not gprw-continuous, rps-continuous , rgm-continuous , rgm-continuous , swg-continuous , pre-continuous , R*-continuous , rm-continuous , ω -continuous , as closed set F= {b,c} in Y, then f⁻¹(F)={a,d} in X , which is not gprw-closed (resp rps-closed, wgra-closed, rgm-closed , rga-closed, swg-closed, pre-closed, R*-closed, rm-closed , ω -closed) set in X.

Example 3.11: $X=Y=\{a,b,c,d\}, \tau = \{X, \phi \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} \quad \sigma = \{Y, \phi, \{b,c\}, \{b,c,d\}, \{a,b,c\}\}, \text{ Let map } f: X \rightarrow Y \text{ defined by }, f(a)=c , f(b)=b , f(c)=a , f(d)=d \text{ then } f \text{ is } \alpha r \omega - \text{continuous but } f \text{ is not } R^*-\text{continuous }, r \omega - \text{continuous, } \omega - \text{continuous, } g^*p\text{-continuous }, g^*p\text{-continuous }, as closed set F=\{a\} \text{ in } Y, \text{ then } f^{-1}(F)=\{c\} \text{ in } X, \text{ which is not } R^*-\text{closed } (\text{resp } r \omega - \text{closed, } g^--\text{closed, } g^-\text{closed, } g^*p\text{-closed}) \text{ set in } X.$

Example 3.12: X={a,b,c,d}, Y={a,b,c} $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ $\sigma = \{Y, \phi, \{a\}\}$, Let map f: X \rightarrow Y defined by, f(a)=b, f(b)=a, f(c)=c, f(d)=b then f is $\alpha \omega$ -continuous but f is not semi-continuous, β -continuous, as closed set F= {b,c} in Y, then f⁻¹(F)={a,c,d} in X which is not semi-closed (resp β -closed) set in X.

Example 3.13: Let $X=Y=\{a,b,c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\} \quad \sigma = \{Y, \phi, \{a\}, \{b,c\}\}$. Let map f: $X \rightarrow Y$ defined by, f(a)=b, f(b)=a, f(c)=c then f is semi-continuous, β -continuous but f is not $\alpha r \omega$ -continuous, as closed set $F=\{a\}$ in Y, then $f^{-1}(F)=\{b\}$ in X, which is not $\alpha r \omega$ -closed set in X.

Remark 3.14: From the above discussion and know results we have the following implications. (Fig)

regular-continuous

Theorem 3.15: Let f: $X \rightarrow Y$ be a map. Then the following statements are equivalent :

(i) f is αrω–continuous.

(ii) the inverse image of each open set in Y is $\alpha r \omega$ -open in X

Proof: Assume that f: $X \rightarrow Y$ is ar ω -continuous. Let G be open in Y. The G^c is closed in Y. Since f is ar ω -continuous, $f^{-1}(G^c)$ is ar ω -closed in X. But $f^{-1}(G^c) = X - f^{-1}(G)$. Thus $f^{-1}(G)$ is ar ω -open in X.

Converserly, Assume that the inverse image of each open set in Y is $\alpha r\omega$ -open in X. Let F be any closed set in Y. By assumption $f^{-1}(F^c)$ is $\alpha r\omega$ -open in X. But $f^{-1}(F^c) = X - f^{-1}(F)$. Thus $X - f^{-1}(F)$ is $\alpha r\omega$ -open in X and so $f^{-1}(F)$ is $\alpha r\omega$ -closed in X. Therefore f is $\alpha r\omega$ -continuous. Hence (i) and (ii) are equivalent.

Theorem 3.16: If f: $(X,\tau) \rightarrow (Y,\sigma)$ is map . Then the following holds.

- 1) f is $\alpha r \omega$ -continuous and contra r-irresolute map then f is α -continuous
- 2) f is αg -continuous and contra continuous map then f is $\alpha r \omega$ -continuous.
- 3) f is gp-continuous and contra continuous map then f is $\alpha r \omega$ -continuous
- 4) f is gpr-continuous and contra r-irresolute map then f is $\alpha r \omega$ -continuous.
- 5) f is wg-continuous and contra continuous e map then f is $\alpha r \omega$ -continuous
- 6) f is rwg-continuous and contra r-irresolute map then f is $\alpha r \omega$ -continuous
- 7) f is α gr-continuous and contra r-irresolute map then f is α r ω -continuous
- 8) f is $\omega\alpha$ -continuous and contra ω -irresolute map then f is $\alpha r \omega$ -continuous

Proof:

- 1) Let V be regular closed set of Y, As every regular set is closed, V is closed set in Y. Since f is $\alpha r \omega$ -continuous and contra r-irresolute map, $f^{-1}(V)$ is $\alpha r \omega$ -closed and regular open in X, Now by Lemma 2.6, $f^{-1}(V)$ is α -closed in X. Thus f is α -continuous.
- 2) Let V be closed set of Y. Since f is αg -continuous and contra continuous map, $f^{-1}(V)$ is αg -closed and open in X, Now by Lemma 2.6, $f^{-1}(V)$ is $\alpha r \omega$ -closed in X. Thus f is $\alpha r \omega$ -continuous.

Similarly, we can prove 3), 4), 5), 6), 7), 8).

Theorem 3.17: If f: $(X,\tau) \rightarrow (Y,\sigma)$ is map . Then the following holds.

- 1) f is sg-continuous and contra irresolute map then f is $\alpha r \omega$ -continuous.
- 2) f is ω -continuous and contra irresolute map then f is $\alpha r \omega$ -continuous
- Proof:
- 1) Let V be closed set of Y. As every closed set is semi-closed, V is semi-closed set in Y. Since f is sg-continuous and contra irresolute map, $f^{-1}(V)$ is sg-closed and semi-open in X, Now by Lemma 2.7, $f^{-1}(V)$ is $\alpha r \omega$ -closed in X. Thus f is $\alpha r \omega$ -continuous.
- 2) The proof is in the similar manner.

Theorem 3.18: Let A be a subset of a topological space X. Then $x \in \alpha r \omega cl(A)$ if and only if for any $\alpha r \omega$ -open set U containing x, $A \cap U \neq \phi$.

Proof: Let $x \in \alpha r \omega cl(A)$ and suppose that, there is a $\alpha r \omega$ -open set U in X such that $x \in U$ and $A \cap U = \phi$ implies that $A \subset U^c$ which is $\alpha r \omega$ -closed in X implies $\alpha r \omega cl(A) \subseteq \alpha r \omega cl(U^c) = U^c$. since $x \in U$ implies that $x \notin U^c$ implies that $x \notin \alpha r \omega cl(A)$, this is a contradiction.

Converserly, Suppose that, for any $\alpha r \omega$ -open set U containing x, $A \cap U \neq \phi$. To prove that $x \in \alpha r \omega cl(A)$. Suppose that $x \notin \alpha r \omega cl(A)$, then there is a $\alpha r \omega$ -closed set F in X such that $x \notin F$ and $A \subseteq F$. Since $x \notin F$ implies that $x \in F^c$ which is $\alpha r \omega$ -open in X. Since $A \subseteq F$ implies that $A \cap F^c = \phi$, this is a contradiction. Thus $x \in \alpha r \omega cl(A)$.

Theorem 3.19: Let f: $X \rightarrow Y$ be a function from a topological space X into a topological space Y. If f: $X \rightarrow Y$ is $\alpha r \omega$ -continuous, then $f(\alpha r \omega cl(A)) \subseteq cl(f(A))$ for every subset A of X.

Proof: Since $f(A) \subseteq cl(f(A))$ implies that $A \subseteq f^{-1}(cl(f(A)))$. Since cl(f(A)) is a closed set in Y and f is $\alpha r \omega$ -continuous, then by definition $f^{-1}(cl(f(A)))$ is a $\alpha r \omega$ -closed set in X containing A. Hence $\alpha r \omega cl(A) \subseteq f^{-1}(cl(f(A)))$. Therefore $f(\alpha r \omega cl(A)) \subseteq cl(f(A))$.

The converse of the above theorem need not be true as seen from the following example **Example 3.20** : Let $X=Y=\{a,b,c,d\}, \tau = \{X, \phi, \{a\}, \{c,d\}, \{a,c,d\}\} \sigma = \{Y, \phi, \{b,c\}, \{b,c,d\}, \{a,b,c\}\}$, Let map

Example 3.20 : Let $X=Y=\{a,b,c,d\}, \tau = \{X, \phi, \{a\}, \{c,d\}, \{a,c,d\}\} \ \sigma = \{Y, \phi, \{b,c\}, \{b,c,d\}, \{a,b,c\}\}$, Let map f: $X \rightarrow Y$ defined by , f(a)=b , f(b)=d , f(c)=c , f(d)=d. For every subset of X, $f(\alpha r \omega cl(A)) \subseteq cl(f(A))$ holds . But f is not $\alpha r \omega$ -continuous since closed set $V=\{d\}$ in Y , $f^{-1}(V)=\{b,d\}$ which is not $\alpha r \omega$ -closed set in X.

Theorem 3.21 : Let f: $X \rightarrow Y$ be a function from a topological space X into a topological space Y. Then the following statements are equivalent:

(i) For each point x in X and each open set V in Y with $f(x) \in V$, there is a $\alpha r \omega$ -open set U in X such that $x \in U$ and $f(U) \subseteq V$.

- (ii) For each subset A of X, $f(\alpha r \omega cl(A)) \subseteq cl(f(A))$.
- (iii) For each subset B of Y, $\alpha \operatorname{roccl}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{cl}(B))$.
- (iv) For each subset B of Y, $f^{-1}(int(B)) \subseteq arwint(f^{-1}(B))$. Proof:

(i) \rightarrow (ii) Suppose that (i) holds and let $y \in f(\alpha r \omega cl(A))$ and let V be any open set of Y. Since $y \in f(\alpha r \omega cl(A))$ implies that there exists $x \in \alpha r \omega cl(A)$ such that f(x) = y. Since $f(x) \in V$, then by (i) there exists a $\alpha r \omega$ -open set U in X such that $x \in U$ and $f(U) \subseteq V$. Since $x \in f(\alpha r \omega cl(A))$, then by theorem 3.18 $U \cap A \neq \phi$. $\phi \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$, then $V \cap f(A) \neq \phi$. Therefore we have $y = f(x) \in cl(f(A))$. Hence $f(\alpha r \omega cl(A)) \subseteq cl(f(A))$.

(ii) \rightarrow (i) Let if (ii) holds and let $x \in X$ and V be any open set in Y containing f(x). Let $A = f^{-1}(V^c)$ this implies that $x \notin A$. Since $f(\alpha r \omega cl(A)) \subseteq cl(f(A)) \subseteq V^c$ this implies that $\alpha r \omega cl(A) \subseteq f^{-1}(V^c) = A$. Since $x \notin A$ implies that $x \notin \alpha r \omega cl(A)$ and by theorem 3.18 there exists a $\alpha r \omega$ -open set U containing x such that $U \cap A = \phi$, then $U \subseteq A^c$ and hence $f(U) \subseteq f(A^c) \subseteq V$.

(ii) \rightarrow (iii) Suppose that (ii) holds and Let B be any subset of Y. Replacing A by $f^{-1}(B)$ we get from (ii) $f(\alpha \operatorname{rocl}(f^{-1}(B))) \subseteq \operatorname{cl}(f(f^{-1}(B))) \subseteq \operatorname{cl}(B)$. Hence $\alpha \operatorname{rocl}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{cl}(B))$.

(iii) \rightarrow (ii) Suppose that (iii) holds, let B = f(A) where A is a subset of X. Then we get from (iii), $\alpha \operatorname{rocl}(f^{-1}(f(A)) \subseteq f^{-1}(\operatorname{cl}(f(A)))$ implies $\alpha \operatorname{rocl}(A) \subseteq f^{-1}(\operatorname{cl}(f(A)))$. Therefore $f(\alpha \operatorname{rocl}(A)) \subseteq \operatorname{cl}(f(A))$.

(iii) \rightarrow (iv) Suppose that (iii) holds. Let $B \subseteq Y$, then $Y-B \subseteq Y$. By (iii), $\operatorname{arocl}(f^{-1}(Y-B)) \subseteq f^{-1}(\operatorname{cl}(Y-B))$ this implies $X-\operatorname{aroint}(f^{-1}(B)) \subseteq X-f^{-1}(\operatorname{int}(B))$. Therefore $f^{-1}(\operatorname{int}(B)) \subseteq \operatorname{aroint}(f^{-1}(B))$.

(iv) → (iii) Suppose that (iv) holds Let B ⊆Y, then Y–B ⊆Y. By (iv), $f^{-1}(int(Y-B)) ⊆ \alpha rwint(f^{-1}(Y-B))$ this implies that X–f⁻¹(cl(B)) ⊆ X– $\alpha rwcl(f^{-1}(B))$. Therefore $\alpha rwcl(f^{-1}(B)) ⊆ f^{-1}(cl(B))$.

Definition 3.22: Let (X, τ) be topological space and $\tau_{\alpha r \omega} = \{V \subseteq X : \alpha r \omega - cl(V^c) = V^c\}, \tau_{\alpha r \omega}$ is toplogy on X.

Definition 3.23: 1) A space (X, τ) is called $T_{\alpha r \omega}$ -space if every $\alpha r \omega$ -closed is closed.

2) A space (X, τ) is called $\alpha r \omega T_{\alpha}$ – space if every $\alpha r \omega$ –closed set is α -closed set.

Theorem 3.24: Let f: $X \rightarrow Y$ be a function. Let (X,τ) and (Y,σ) be any two spaces such that $\tau_{\alpha r \omega}$ is a topology on X. Then the following statements are equivalent:

(i) For every subset A of X, $f(\alpha r \omega cl(A)) \subseteq cl(f(A))$ holds,

(ii) f: $(X, \tau_{\alpha r \omega}) \rightarrow (Y, \sigma)$ is continuous.

Proof: Suppose (i) holds. Let A be closed in Y. By hypothesis $f(\alpha \operatorname{rocl}(f^{-1}(A))) \subseteq \operatorname{cl}(f(f^{-1}(A))) \subseteq \operatorname{cl}(A) = A$. i.e. $\alpha \operatorname{rocl}(f^{-1}(A)) \subseteq f^{-1}(A)$. Also $f^{-1}(A) \subseteq \alpha \operatorname{rocl}(f^{-1}(A))$. Hence $\alpha \operatorname{rocl}(f^{-1}(A)) = f^{-1}(A)$. This implies $f^{-1}(A) \in \tau_{\alpha \operatorname{roc}}$. Thus $f^{-1}(A)$ is closed in $(X, \tau_{\alpha \operatorname{roc}})$ and so f is continuous. This proves (ii).

Suppose (ii) holds. For every subset A of X, cl(f(A)) is closed in Y. Since f: $(X, \tau_{\alpha r\omega}) \rightarrow (Y, \sigma)$ is continuous, $f^{-1}(cl(A))$ is closed in $(X, \tau_{\alpha r\omega})$ that implies by Definition 3.22 $\alpha r\omega cl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$. Now we have, $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(cl(f(A)))$ and by $\alpha r\omega$ -closure, $\alpha r\omega cl(A) \subseteq \alpha r\omega cl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$. Therefore $f(\alpha r\omega cl(A)) \subseteq cl(f(A))$. This proves (i).

Remark 3.25 : The Composition of two $\alpha r\omega$ -continuous maps need not be $\alpha r\omega$ -continuous map and this can be shown by the following example.

Example 3.26 : Let $X=Y=Z=\{a,b,c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$, $\sigma = \{Y, \phi, \{a\}\}$, $\eta = \{Z, \phi, \{a\}, \{a,c\}\}$ and a maps $f: X \rightarrow Y$, $g: Y \rightarrow Z$ and gof : $X \rightarrow Z$ are identity maps. Both f and g are $\alpha r \omega$ -continuous maps. But gof not $\alpha r \omega$ -continuous map, since closed set $V=\{b\}$ in Z, $f^{-1}(V)=\{b\}$ which is not $\alpha r \omega$ -closed set in X.

Theorem 3.27: Let f: $X \rightarrow Y$ is ar ω -continuous function and g: $Y \rightarrow Z$ is continuous function then gof: $X \rightarrow Z$ is ar ω -continuous.

Proof: Let g be continuous function and V be any open set in Z then $g^{-1}(V)$ is open in Y. Since f is $\alpha r \omega$ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\alpha r \omega$ -open in X. Hence $g \circ f$ is $\alpha r \omega$ -continuous.

Theorem 3.28: Let f: $X \rightarrow Y$ is $\alpha r \omega$ -continuous function and g: $Y \rightarrow Z$ is $\alpha r \omega$ -continuous function and Y is $T_{\alpha r \omega}$ -space, then gof: $X \rightarrow Z$ is $\alpha r \omega$ -continuous.

Proof: Let g be $\alpha r \omega$ -continuous function and V be any open set in Z then $g^{-1}(V)$ is $\alpha r \omega$ -open in Y and Y is $T_{\alpha r \omega}$ -space, then $g^{-1}(V)$ is open in Y. Since f is $\alpha r \omega$ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $\alpha r \omega$ -open in X. Hence $g \circ f$ is $\alpha r \omega$ -continuous.

Theorem 3.29: If a map f: $X \rightarrow Y$ is completely–continuous, then it is $\alpha r \omega$ – continuous.

Proof: Suppose that a map $f: (X,\tau) \rightarrow (Y,\sigma)$ is completely–continuous. Let F closed set in Y. Then $f^{-1}(F)$ is regular closed in X and hence $f^{-1}(F)$ is is $\alpha r \omega$ –closed in X. Thus f is $\alpha r \omega$ –continuous.

Theorem 3.30: If a map f: $X \rightarrow Y$ is α -irresolute, then it is $\alpha r \omega$ - continuous.

Proof : Suppose that a map $f: (X,\tau) \rightarrow (Y,\sigma)$ is α -irresolute. Let V be an open set in Y. Then V is α -open in Y. Since f is α -irresolute, $f^{-1}(V)$ is α -open and hence $\alpha r \omega$ -open in X. Thus f is $\alpha r \omega$ -continuous.

Definition 3.31: A function f from a topological space X into a topological space Y is called perfectly α regular ω continuous (briefly perfectly $\alpha r \omega$ -Continuous) if $f^{-1}(V)$ is clopen (closed and open) set in X for every $\alpha r \omega$ -open set V in Y.

Theorem 3.32: If a map f: $X \rightarrow Y$ is continuous, Then the following holds.

- (i) If f is perfectly $\alpha r \omega$ -continuous, then f is $\alpha r \omega$ -continuous.
- (ii) If f is perfectly $\alpha r \omega$ -continuous, then f is αg -continuous.
- (iii) If f is perfectly $\alpha r \omega$ -continuous, then f is wg-continuous(resp gs-continuous, rwg-continuous, gp-continuous, gpr-continuous, $\omega \alpha$ -continuous, αgr -continuous).

Proof:

- (i) Let F be a open set in Y, as every open is $\alpha r \omega$ -open in Y, since F is perfectly $\alpha r \omega$ -continuous, then $f^{-1}(F)$ is both closed and open in X, as every open is $\alpha r \omega$ -open, $f^{-1}(F)$ is $\alpha r \omega$ -open in X. Hence f is $\alpha r \omega$ -continuous.
- (ii) Let F be a open set in Y, as every open is $\alpha r \omega$ -open in Y, since F is perfectly $\alpha r \omega$ -continuous, then $f^{-1}(F)$ is both closed and open in X, as every open is $\alpha r \omega$ -open that implies is αg -open, then $f^{-1}(F)$ is αg -open in X. Hence f is αg -continuous. Similarly, we can prove (iii).

Definition 3.33: A function f from a topological space X into a topological space Y is called α regular ω^* - continuous (briefly $\alpha \pi \omega^*$ -continuous) if $f^{-1}(V)$ is $\alpha \pi \omega$ -closed set in X for every α -closed set V in Y.

Theorem 3.34: If A map f: $(X,\tau) \rightarrow (Y,\sigma)$ be function,

- (i) f is $\alpha r \omega$ -irresolute then it is $\alpha r \omega^*$ -continuous.
- (ii) f is $\alpha r \omega^*$ -continuous then it is $\alpha r \omega$ -continuous.

Proof:

- (i) Let $f: X \rightarrow Y$ be ar ω -irresolute. Let F be any α -closed set in Y. Then F is ar ω -closed in Y. Since f is ar ω -irresolute, the inverse image $f^{-1}(F)$ is ar ω -closed set in X. Therefore f is ar ω *-continuous.
- (ii) Let f: $X \rightarrow Y$ be $\alpha r \omega^*$ -continuous. Let F be any closed set in Y. Then F is α -closed in Y. Since f is $\alpha r \omega^*$ -continuous., the inverse image $f^{-1}(F)$ is $\alpha r \omega$ -closed set in X. Therefore f is $\alpha r \omega$ -continuous.

Theorem 3.35: If a bijection f: $(X,\tau) \rightarrow (Y,\sigma)$ is $r\omega^*$ -open, $\alpha r\omega^*$ -continuous, then it is $\alpha r\omega$ -irresolute. **Proof:** Let A be $\alpha r\omega$ -closed in Y. Let $f^{-1}(A) \subseteq U$ where U is $r\omega$ -open set in X, Since f is $r\omega^*$ -open map, f(U) is $r\omega$ -open set in Y. $A \subseteq f(U)$ implies $\alpha cl(A) \subseteq f(U)$. That is, $f^{-1}(\alpha cl(A)) \subseteq U$. Since f is $\alpha r\omega^*$ -continuous, $\alpha cl(f^{-1}(\alpha cl(A))) \subseteq U$. and so $\alpha cl(f^{-1}(A)) \subseteq U$ This shows $f^{-1}(A)$ is $\alpha r\omega$ -closed set in X. Hence f is $\alpha r\omega$ -irresolute.

Theorem 3.36 If $f: (X,\tau) \rightarrow (Y,\sigma)$ is a rw-continuous and rw*-closed and if A is a rw-open(or arw-closed) subset of (Y,σ) and (Y,σ) is a-space, then $f^{-1}(A)$ is a rw-open (or a rw-closed) in (X,τ) .

Proof: Let A be a $\alpha \tau \omega$ -open set in (Y, σ) and G be any $\tau \omega$ -closed set in (X, τ) such that $G \subseteq f^{-1}(A)$. Then $f(G)\subseteq A$. By hypothesis f(G) is $\tau \omega$ -closed and A is $\alpha \tau \omega$ -open in (Y, σ) . Therefore $f(G) \subseteq \alpha \operatorname{Int}(A)$ by Lemma 2.7 and so $G \subseteq f^{-1}(\alpha \operatorname{Int}(A))$. Since f is $\alpha \tau \omega$ -continuous, $\alpha \operatorname{Int}(A)$ is α -open in (Y, σ) and (Y, σ) is α -space, so $\alpha \operatorname{Int}(A)$ is open in (Y, σ) . Therefore $f^{-1}(\alpha \operatorname{Int}(A))$ is $\alpha \tau \omega$ -open in $((X, \tau)$. Thus $G \subseteq \alpha \operatorname{Int}(f^{-1}(\alpha \operatorname{Int}(A))) \subseteq \alpha \operatorname{Int}(f^{-1}(A))$; that is, $G \subseteq \alpha \operatorname{Int}(f^{-1}(A))$, $f^{-1}(A)$ is $\alpha \tau \omega$ -open in (X, τ) .

By taking the complements we can show that if A is r ω -closed in (Y, σ), f⁻¹(A) is $\alpha r \omega$ -closed in (X, τ).

Theorem 3.37:Let (X,τ) be a discrete topological space and (Y,σ) be any topological space. Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map. Then the following statements are equivalent:

(i) f is strongly $\alpha r \omega$ -continuous.

(ii) f is perfectly $\alpha r \omega$ -continuous. **Proof:**

(i)=>(ii) Let U be any $\alpha r \omega$ -open set in (Y, σ). By hypothesis $f^{1}(U)$ is open in (X, τ). Since(X, τ) is a discrete space, $f^{1}(U)$ is also closed in (X, τ). $f^{1}(U)$ is both open and closed in (X, τ). Hence f is perfectly $\alpha r \omega$ -continuous. (ii)=>(i) Let U be any $\alpha r \omega$ -open set in (Y, σ). Then $f^{1}(U)$ is both open and closed in (X, τ). Hence f is strongly $\alpha r \omega$ -continuous.

IV. αrω-IRRESOLUTE AND STRONGLY αrω-CONTINUOUS FUNCTIONS:

V.

Definition 4.1: A function f from a topological space X into a topological space Y is called α regular ω irresolute ($\alpha r \omega$ -irresolute) map if $f^{-1}(V)$ is $\alpha r \omega$ -Closed set in X for every $\alpha r \omega$ -closed set V in Y.

Definition 4.2: A function f from a topological space X into a topological space Y is called strongly α regular ω continuous (strongly $\alpha r\omega$ -continuous) map if $f^{-1}(V)$ is closed set in X for every $\alpha r\omega$ -closed set V in Y.

Theorem 4.3: If A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is $\alpha \tau \omega$ -irresolute, then it is $\alpha \tau \omega$ -continuous but not conversely. **Proof:** Let f: $X \rightarrow Y$ be $\alpha \tau \omega$ -irresolute. Let F be any closed set in Y. Then F is $\alpha \tau \omega$ -closed in Y. Since f is $\alpha \tau \omega$ irresolute, the inverse image $f^{-1}(F)$ is $\alpha \tau \omega$ -closed set in X. Therefore f is $\alpha \tau \omega$ -continuous.

The converse of the above theorem need not be true as seen from the following example. **Example 4.4** : X={a,b,c,d}, Y={a,b,c} $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ $\sigma = \{Y, \phi, \{a\}\}$, Let map f: X \rightarrow Y defined by, f(a)=b, f(b)=a, f(c)=a, f(d)=c then f is $\alpha \tau \omega$ -continuous but f is not $\alpha \tau \omega$ -irresolute, as $\alpha \tau \omega$ -closed set F= {b} in Y, then f⁻¹(F)={a} in X, which is not $\alpha \tau \omega$ -closed set in X.

Theorem 4.5: If A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is ar ω -irresolute, if and only if the inverse image $f^{-1}(V)$ is ar ω -open set in X for every ar ω -open set V in Y.

Proof: Assume that f: $X \rightarrow Y$ is an *u*-irresolute. Let G be an *u*-open in Y. The G^c is an *u*-closed in Y. Since f is an *u*-irresolute, $f^{-1}(G^c)$ is an *u*-closed in X. But $f^{-1}(G^c) = X - f^{-1}(G)$. Thus $f^{-1}(G)$ is an *u*-open in X.

Converserly, Assume that the inverse image of each open set in Y is $\alpha r \omega$ -open in X. Let F be any $\alpha r \omega$ -closed set in Y. By assumption $f^{-1}(F^c)$ is $\alpha r \omega$ -open in X. But $f^{-1}(F^c) = X - f^{-1}(F)$. Thus $X - f^{-1}(F)$ is $\alpha r \omega$ -open in X and so $f^{-1}(F)$ is $\alpha r \omega$ -closed in X. Therefore f is $\alpha r \omega$ - irresolute.

Theorem 4.6: If A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is $\alpha \tau \omega$ -irresolute, then for every subset A of X, $f(\alpha \tau \omega cl(A) \subset \alpha cl(f(A))$. Proof : If $A \subset X$ then consider $\alpha cl(f(A))$ which is $\alpha \tau \omega$ -closed in Y. since f is $\alpha \tau \omega$ -irresolute, $f^{-1}(\alpha cl(f(A)))$ is $\alpha \tau \omega$ -closed in X. Furthermore $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\alpha cl(f(A)))$. Therefore by $\alpha \tau \omega$ -closure, $\alpha \tau \omega cl(A) \subseteq f^{-1}(\alpha cl(f(A)))$, consequently, $f(\alpha \tau \omega cl(A) \subseteq f(f^{-1}(\alpha cl(f(A)))) \subseteq \alpha clf((A))$.

Theorem 4.7: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then (i) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is $\alpha \tau \omega$ -continuous if g is r-continuous and f is $\alpha \tau \omega$ -irresolute. (ii) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is $\alpha \tau \omega$ -irresolute if g is $\alpha \tau \omega$ -irresolute a nd f is $\alpha \tau \omega$ -irresolute. (iii) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is $\alpha \tau \omega$ -continuous if g is $\alpha \tau \omega$ -continuous and f is $\alpha \tau \omega$ -irresolute. *Proof*:

- (i) Let U be a open set in (Z, η) . Since g is r-continuous, $g^{-1}(U)$ is r-open set in (Y, σ) . Since every r-open is $\alpha r \omega$ -open then $g^{-1}(U)$ is $\alpha r \omega$ -open in Y, since f is $\alpha r \omega$ -irresolute $f^{-1}(g^{-1}(U))$ is an $\alpha r \omega$ -open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an $\alpha r \omega$ -open set in (X, τ) and hence gof is $\alpha r \omega$ -continuous.
- (ii) Let U be a $\alpha r \omega$ -open set in (Z, η) . Since g is $\alpha r \omega$ -irresolute, $g^{-1}(U)$ is $\alpha r \omega$ -open set in (Y, σ) . Since f is $\alpha r \omega$ -irresolute, $f^{-1}(g^{-1}(U))$ is an $\alpha r \omega$ -open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an $\alpha r \omega$ -open set in (X, τ) and hence gof is $\alpha r \omega$ -irresolute.
- (iii) Let U be a open set in (Z, η) . Since g is continuous, $g^{-1}(U)$ is open set in (Y, σ) . As every open set is $\alpha r \omega$ -open, $g^{-1}(U)$ is $\alpha r \omega$ -open set in (Y, σ) . Since f is $\alpha r \omega$ irresolute $f^{-1}(g^{-1}(U))$ is an $\alpha r \omega$ -open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an $\alpha r \omega$ -open set in (X, τ) and hence gof is $\alpha r \omega$ -continuous.

Theorem 4.8: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly $\alpha r \omega$ -continuous then it is continuous.

Proof: Assume that $f: (X, \tau) \rightarrow (Y, \sigma)$ is strongly $\alpha r \omega$ -continuous, Let F be closed set in Y. As every closed is $\alpha r \omega$ -closed, F is $\alpha r \omega$ -closed in Y. since f is strongly $\alpha r \omega$ -continuous then $f^{-1}(F)$ is closed set in X. Therefore f is continuous.

Theorem 4.9: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly $\alpha r \omega$ -continuous then it is strongly α -continuous but not conversely.

Proof: Assume that f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly $\alpha r \omega$ -continuous, Let F be α -closed set in Y. As every α -closed is $\alpha r \omega$ -closed, F is $\alpha r \omega$ -closed in Y. since f is strongly $\alpha r \omega$ -continuous then $f^{-1}(F)$ is closed set in X. Therefore f is strongly α -continuous.

The converse of the above theorem 4.9 need not be true as seen from the following example

Example 4.10: Let $X=Y=\{a,b,c,d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ and $\sigma = \{Y,\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ Let map f: $X \rightarrow Y$ defined by f(a)=a, f(b)=f(c)=f(d)=b, then f is strongly α -continuous but not continuous and not strongly α -continuous, as closed set $F=\{a,c,d\}$ in Y, then $f^{-1}(F)=\{a\}$ in X which is not closed set in X.

Theorem 4.11: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly $\alpha r \omega$ -continuous if and only if $f^{-1}(G)$ is open set in X for every $\alpha r \omega$ -open set G in Y.

Proof : Assume that f: $X \rightarrow Y$ is strongly $\alpha r \omega$ -continuous. Let G be $\alpha r \omega$ -open in Y. The G^c is $\alpha r \omega$ -closed in Y. Since f is strongly $\alpha r \omega$ -continuous, $f^{-1}(G^c)$ is closed in X. But $f^{-1}(G^c) = X - f^{-1}(G)$. Thus $f^{-1}(G)$ is open in X.

Converserly, Assume that the inverse image of each open set in Y is $\alpha r \omega$ -open in X. Let F be any $\alpha r \omega$ -closed set in Y. By assumption F^c is $\alpha r \omega$ -open in X. But $f^{-1}(F^c) = X - f^{-1}(F)$. Thus $X - f^{-1}(F)$ is open in X and so $f^{-1}(F)$ is closed in X. Therefore f is strongly $\alpha r \omega$ -continuous.

Theorem 4.12: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly continuous then it is strongly $\alpha r \omega$ -continuous. **Proof:** Assume that f: $X \rightarrow Y$ is strongly continuous. Let G be $\alpha r \omega$ -open in Y and also it is any subset of Y since f is strongly continuous, $f^{-1}(G)$ is open (and also closed) in X. $f^{-1}(G)$ is open in X Therefore f is strongly

Theorem 4.13: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly ar ω -continuous then it is ar ω -continuous.

Proof: Let G be open in Y, every open is $\alpha r \omega$ -open, G is $\alpha r \omega$ -open in Y, since f is strongly $\alpha r \omega$ -continuous, $f^{-1}(G)$ is open in X. and therefore $f^{-1}(G)$ is $\alpha r \omega$ -open in X. Hence f is $\alpha r \omega$ -continuous.

Theorem 4.14: In discrete space, a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly $\alpha r \omega$ -continuous then it is strongly continuous.

Proof: F any subset of Y, in discrete space, Every subset F in Y is both open and closed, then subset F is both $\alpha r\omega$ -open or $\alpha r\omega$ -closed, i) let F is $\alpha r\omega$ -closed in Y, since f is strongly $\alpha r\omega$ -continuous, then $f^{-1}(F)$ is closed in X. ii) let F is $\alpha r\omega$ -open in Y, since f is strongly $\alpha r\omega$ -continuous, then $f^{-1}(F)$ is open in X. Therefore $f^{-1}(F)$ is closed and open in X. Hence f is strongly continuous.

Theorem 4.15 : Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

- (i) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is strongly ar ω -continuous if g is strongly ar ω -continuous and f is strongly ar ω -continuous.
- (ii) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is strongly ar ω -continuous if g is strongly ar ω -continuous and f is continuous.
- (iii) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is arw-irresolute if g is strongly arw-continuous and f is arw-continuous.
- (iv) g o f: $(X, \tau) \rightarrow (Z, \eta)$ is continuous if g is arm-continuous and f is strongly arm-continuous

 $\alpha r \omega$ -continuous.

- (i) Let U be a $\alpha r \omega$ -open set in (Z, η) . Since g is strongly $\alpha r \omega$ -continuous, $g^{-1}(U)$ is open set in (Y, σ) . As every open set is $\alpha r \omega$ -open, $g^{-1}(U)$ is $\alpha r \omega$ -open set in (Y, σ) . Since f is strongly $\alpha r \omega$ -continuous $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly $\alpha r \omega$ -continuous.
- (ii) Let U be a $\alpha \omega$ -open set in (Z, η) . Since g is strongly $\alpha \omega$ -continuous, $g^{-1}(U)$ is open set in (Y, σ) . Since f is continuous $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly $\alpha \omega$ -continuous.
- (iii) Let U be a $\alpha r \omega$ -open set in (Z, η) . Since g is strongly $\alpha r \omega$ -continuous, $g^{-1}(U)$ is open set in (Y, σ) . Since f is $\alpha r \omega$ -continuous $f^{-1}(g^{-1}(U))$ is an $\alpha r \omega$ -open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an $\alpha r \omega$ -open set in (X, τ) and hence gof is $\alpha r \omega$ -irresolute
- (iv) Let U be open set in (Z, η) . Since g is $\alpha r \omega$ -continuous, $g^{-1}(U)$ is $\alpha r \omega$ -open set in (Y, σ) . Since f is strongly $\alpha r \omega$ -continuous $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is continuous.

Theorem 4.16 : Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

1. g o f: $(X, \tau) \rightarrow (Z, \eta)$ is strongly ar ω -continuous if g is perfectly ar ω -continuous and f is continuous.

Proof:

2. g o f : (X, τ) \rightarrow (Z, η) is perfectly ar ω -continuous if g is strongly ar ω -continuous and f is perfectly ar ω -continuous.

Proof:

- 1. Let U be a arw-open set in (Z, η) . Since g is perfectly arw-continuous, $g^{-1}(U)$ is clopen set in (Y, σ) . $g^{-1}(U)$ is open set in (Y, σ) . Since f is continuous $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly arw-continuous.
- 2. Let U be a $\alpha r \omega$ -open set in (Z, η). Since g is strongly $\alpha r \omega$ -continuous, $g^{-1}(U)$ is open set in (Y, σ). $g^{-1}(U)$ is open set in (Y, σ). Since f is perfectly $\alpha r \omega$ -continuous, $f^{-1}(g^{-1}(U))$ is an clopen set in (X, τ). Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an clopen set in (X, τ) and hence gof is perfectly $\alpha r \omega$ -continuous.

Theorem 4.17: If A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly $\alpha r \omega$ -continuous and A is open subset of X then the restriction f/A: A \rightarrow Y is strongly $\alpha r \omega$ -continuous.

Proof: Let V be any $\alpha \omega$ -open set of Y, since f is strongly $\alpha \omega$ -continuous, then $f^{-1}(V)$ is open in X. since A is open in X, $(f/A)^{-1}(V)=A \cap f^{-1}(V)$ is open in A. hence f/A is strongly $\alpha \omega$ -continuous.

Theorem: 4.18 Let (X,τ) be any topological space and (Y,σ) be a $T_{\alpha r \omega}$ -space and f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map. Then the following are equivalent:

(i) f is strongly are-continuous.

(ii) f is continuous.

Proof:

(i) =>(ii) Let U be any open set in (Y,σ) . Since every open set is $\alpha r \omega$ -open, U is $\alpha r \omega$ -open in (Y,σ) . Then $f^{-1}(U)$ is open in (X,τ) . Hence f is continuous.

(ii) =>(i) Let U be any $\alpha r\omega$ -open set in (Y, σ). Since (Y, σ) is a T_{$\alpha r\omega$}-space, U is open in (Y, σ). Since f is continuous. Then f⁻¹(U) is open in (X, τ). Hence f is strongly wgr α -continuous.

Theorem 4.19:Let (X,τ) be a discrete topological space and (Y,σ) be any topological space. Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be a map. Then the following statements are equivalent:

(i) f is strongly $\alpha r \omega$ -continuous.

(ii) f is perfectly $\alpha r \omega$ -continuous.

Proof:

(i)=>(ii) Let U be any $\alpha r \omega$ -open set in (Y, σ) . By hypothesis $f^{1}(U)$ is open in (X, τ) . Since (X, τ) is a discrete space, $f^{1}(U)$ is also closed in (X, τ) . $f^{1}(U)$ is both open and closed in (X, τ) . Hence f is perfectly $\alpha r \omega$ -continuous. (ii)=>(i) Let U be any $\alpha r \omega$ -open set in (Y, σ) . Then $f^{1}(U)$ is both open and closed in (X, τ) . Hence f is strongly $\alpha r \omega$ -continuous.

Theorem 4.20: Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a map. Both (X,τ) and (Y,σ) are $T_{\alpha r \omega}$ -space. Then the following are equivalent:

(i) f is $\alpha r \omega$ -irresolute.

(ii) f is strongly $\alpha r \omega$ -continuous

(iii) f is continuous.

(iv) f is $\alpha r \omega$ -continuous.

Proof : Straight forward.

Theorem 4.21: Let X and Y be $_{\alpha r \omega} T_{\alpha}$ -spaces, then for a function f: $(X, \tau) \rightarrow (Y, \sigma)$, the following are equivalent: (i) f is α -irresolute.

(ii) f is aro-irresolute.

Proof: (i)=> (ii): Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a α -irresolute. Let V be a $\alpha r\omega$ -closed set in Y. As Y $_{\alpha r\omega}T_{\alpha}$ -space, then V be a α -closed set in Y. Since f is α -irresolute, f⁻¹ (V) is α -closed in X. But every α -closed set is $\alpha r\omega$ -closed in X and hence f⁻¹ (V) is a $\alpha r\omega$ -closed in X. Therefore, f is $\alpha r\omega$ -irresolute.

(ii)=> (i): Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a ar ω -irresolute. Let V be a α -closed set in Y. But every α -closed set is ar ω -closed set and hence V is ar ω -closed set in Y and f is ar ω -irresolute implies f⁻¹(V) is ar ω -closed in X. But X is ar ω T $_{\alpha}$ -space and hence f⁻¹(V) is α -closed set in X. Thus, f is α -irresolute.

Acknowledgment:

The Authors would like to thank the referees for useful comments and suggestions

References:

[1]. S. P. Arya and R. Gupta, On strongly continuous functions, Kyungpook Math. J. 14:131:143, 1974.

- [2]. Y. Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3)(1997), 351-360.
- [3]. S. S. Benchalli, P. G. Patil and T. D. Rayanagaudar, ωα-Closed sets is Topological Spaces, The Global. J. Appl. Math. and Math. Sci., 2, 2009, 53-63.
- [4]. R.S Wali and Prabhavati S Mandalgeri, On α regular ω-closed sets inTopological spaces, Int. J. of Math Archive 5(10), 2014, 68-76.
- [5]. N.Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36-41.
- [6]. A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [7]. O. N. Jastad, On some classes of nearly open sets, Pacific J. Math., 15(1965),961-970
- [8]. M. E. Abd El-Monsef, S.N. El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [9]. D. Andrijevic, Semi-preopen sets, Mat. Vesnik., 38(1)(1986), 24-32.
- [10]. M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc.41(1937), 374-481.
- [11]. D.E. Cameron, Properties of s-closed spaces, prac Amer Math, soc 72(1978),581-586
 [12]. A.Vadivel & K.vairamamanickam, rgα-Closed sets& rgα-open sets in Topological Spaces, Int J of math ,Analysis Vol 3 ,
- [12]. A variver & K variamamanickam, $fg\alpha$ -closed sets fg\alpha-open sets in Topological Spaces, int J of math Analysis Vol 5, (2009)37,1803-1819
- [13]. N.Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(2) (1970), 89-96.
- [14]. S. P.Arya and T.M. Nour, Chatcterizationsof s-normal spaces, Indian J. Pure Appl, Math 21(1990), 717-719
- [15]. A. Pushpalatha, Studies on generalizations of mapping in topological spaces, PhD Thesis, Bharathiar university, Coimbatore, 2000 [16]. H. Maki, R.Devi and K.Balachandran, Associated topologies of generalized α closed sets and α -generalized closed sets, Mem.
- Fac. Sci. Kochi Univ. Ser.A. Math., 15(1994), 51-63.
 P. Sundaram and M. Sheik John, On w-closed sets in topology, Acta Ciencia Indica 4 (2000), 389–39
- [17]. T. Sindatan and W. Sherk John, On w-closed sets in topology, Acta Clencia indica 4 (2000), 587–59
 [18]. N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- [19]. H. Maki ,J.Umehara and T. Noiri, Every Topological space is pre T¹/₂ mem Fac sci, Kochi univ, Math ,17 1996,33-42
- [20]. S. S. Benchalli and R.S. Wali on rω- Closed sets is Topological Spaces, Bull, Malays, Math, sci, soc30 (2007), 99-110
- [21]. M. K. R. S. Veera Kumar, g*-preclosed sets, Acts Ciencia indica, 28(1), 2002, 51-60.
- [22]. S. Bhattacharya, on generalized regular closed sets, Int J. Contemp .Math science Vol.6, 201,145-152
- [23]. S. Mishra ,et , all , On regular generalized weakly (rgw)closed sets in topological spaces , Int . J. of Math Analysis Vol 6, 2012 no.(30) , 1939-1952
- [24]. A. Jayalakshmi & C.Janaki, on ωgrα-closed sets in Topological Spaces, IntJ of maths 3(6)2012,2386-2392
- [25]. T. Shlya Isac Mary & P.Thangavelv, on Regular pre-semi closed sets in topological spaces, KBM J. of Math Sc & comp Applications 2010(1), 9-17
- [26]. V. Joshi,S.Gupta,N.Bhardwaj,R,kumar, on Generalised pre Regular weakly(gprω)-closed set in sets in Topological Spaces, int math foruro Vol(7)2012(40)1981-1992
- [27]. M.K.R.S. Veerakumar , O,n α-generalized regular closed sets , Indian J. of Math , 44(2) 2002 ,165-181
- [28]. C. Janaki & Renu Thomas, on R*- Closed sets in Topological Spaces, Int J of Math Archive 3(8) 2012, 3067-3074
- [29]. Yasuf Becerem, On strongly α-continuous functions far east J Math.SCi 1:5 0 2000
- [30]. J Dontchev, Contra continuous functions and strongly S-closed spaces, Int.J.Math.Sci,19(1996), 15-31.