Existence of unique solution for Fractional Differential Equation by Picard approximation method

MahaAbd Al-Wahab
Department of Applied Science University of Technology Baghdad-Iraq

Abstract

Our work is finding continuous function y on (a, ∞) which is the unique solution for they ${ }^{(\alpha)}(x)=\lambda$ $f(y(x)), x \in(a, \infty), 0<\alpha \leq 1$ with $y^{(\alpha-1)}(a)=\mu$, where μ is constant and λ is a real number using the picard approximation method theorem.

Keywords: Fractional differential equation, picard approximation method.

I. Introduction

Fractional calculus as well as fractional Differential equations have received increasing attention and has been a significant development in ordinary and partial fractional differential equations in recent years; seethe papers by Abbas and Benchohra [1,2,3], Agaiwal et al. [4], monographs of Kilps, Lakshmikatham et al. [6]. This article studies the existence of the unique solution of fractional differential equationy ${ }^{(\alpha)}(x)=\lambda f(y(x))$ and $\mathrm{y}^{(\alpha-1)}(\mathrm{a})=\mu, \mu$ is some constant, $0<\alpha \leq 1, \lambda$ is real number using picard approximation method.

II. Preliminaries

In this section we introduce notations, definitions and preliminary facts which are used throughout this paper.
Definition (2-1)([7]): Let $x=\{F: F$ is a real valued function and continuous on $[a, \infty)\}$, for some $a \in(-\infty, \infty)$. Let the $\|\cdot\|$ on xbe defined by

$$
\|\mathrm{F}\|=\sup _{\mathrm{x} \in[\mathrm{a}, \infty)}\left\{\mathrm{e}^{-\gamma|\alpha|}|\mathrm{F}(\mathrm{x})|\right\}
$$

provided that this norm exist for some constant $\gamma>0$.
Lemma (2-1)([8]):Let $0<\alpha \leq 1$ and f, g be continuous functions on (a, ∞), where $a \in R$ such that $\sup \{|\mathrm{f}(\mathrm{g}(\mathrm{x}))|: \mathrm{x} \in(\mathrm{a}, \infty)\}=\mathrm{M}<\infty$. Define $\mathrm{f}_{\alpha}(\mathrm{x})=\frac{\mu(\mathrm{x}-\mathrm{a})^{\alpha-1}}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} \cdot f(g(t)) d t$, for all $x>a$ and μ is some constant. Then $f_{\alpha} \in c(a, \infty)$.

Lemma (2-2)([9]): Let us define $F_{\alpha}(x)=(x-a)^{\alpha-1} f_{\alpha}(x)$ on (a, ∞), where f_{α} define in lemma (2-1) and $0<\alpha \leq 1$.Then $\mathrm{F}_{\alpha} \in \mathrm{c}[\mathrm{a}, \infty)$.

Lemma (2-3) ([7]):Let $\alpha, \gamma \in \mathrm{R}, \gamma>-1$. If $\mathrm{x}>\mathrm{a}$ then
${\underset{a}{\mathrm{I}}}^{\alpha} \frac{(t-a)^{\gamma}}{\Gamma(\gamma+1)}=\left\{\begin{array}{cl}\frac{(\alpha-a)^{\alpha+\gamma}}{\Gamma(\alpha+\gamma+1)}, & \alpha+\gamma \neq \text { negative integer } \\ 0, & \alpha+\gamma=\text { negative integer }\end{array}\right.$

Lemma (2-4) ([9]):suppose G is a banach space and let $T \in L(G)$ such that $\left\|T^{n}\right\|^{\frac{1}{n}}<1$. Then I-T is regular and $(\mathrm{I}-\mathrm{T})^{-1}=\mathrm{I}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{T}^{\mathrm{n}}$, where the series $\sum_{\mathrm{n}} \mathrm{T}^{\mathrm{n}}$ converge in $\mathrm{L}(\mathrm{G})$.

Definition (2-2) ([9]): Let f be Lebesque- measurable function defined a.e on [a, b], if $\alpha>0$ then we define
${ }_{a}^{b}{ }_{a}^{\alpha} f=\frac{1}{\Gamma(\alpha)} \int_{a}^{b} f(t)(b-t)^{\alpha-1} d t$
provided the integral (Lebesque) exists.
Definition (2-3) ([10]): If $\alpha \in R$, f is define a.e on the interval [a, b], we define
$\frac{d^{\alpha} f}{d x^{\alpha}}=f^{\alpha}(x)={ }_{a}^{x}{ }^{-\alpha} f \quad$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$
provided that ${\underset{a}{\mathrm{I}}}_{\mathrm{I}^{-\alpha}} f$ exists.
Lemma (2-5) ([8]): If $0<\alpha \leq 1$ and $f(x)$ is continuous on $[a, b],|f(x)| \leq M$ for all $x \in[a, b]$ (where $M \in R^{+}, M>0$). Then

$$
{\underset{a}{\mathrm{I}}}_{\mathrm{I}^{\alpha}}^{\mathrm{I}_{a}^{x}}{ }^{-\alpha} \mathrm{f}(\mathrm{x})=\mathrm{f}(x) \quad \text { for all } \mathrm{x} \in(\mathrm{a}, \mathrm{~b}) .
$$

Theorem (2-1)([9]):Let $0<\alpha \leq 1$ and γ be positive constant. Let $g(x)=\left(g_{1}(x), g_{2}(x), \ldots, g_{n}(x)\right)^{T}, x \in[a, \infty)$, whereg ${ }_{i}$ are continuous on $[\mathrm{a}, \infty), \mathrm{i}=1,2, \ldots, \mathrm{n}$ and $|\mathrm{g}(\mathrm{x})|=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{g}_{\mathrm{i}}^{2}\right)^{\frac{1}{2}}$ and $|\mathrm{g}(\mathrm{x})| \leq \mathrm{x}+\mathrm{c}$, where c is positive constant. $f_{i}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)^{T}$ such that $f_{i} \in[a, \infty)$ andsup $\{|f(x)|: x \in[a, \infty)\}=M<\infty$. Choose λ such that $\lambda<\left(e^{\alpha}\left(\frac{c}{\alpha}\right)^{\alpha}\right)^{-1}$. Then there exists continuous vector function $y(x)=\left(y_{1}(x), y_{2}(x), \ldots, y_{n}(x)\right)^{T}, x \in(a, \infty)$ such that $y^{(\alpha)}(x)=\lambda f(y(x))$, $\mathrm{x} \in(\mathrm{a}, \infty)$ with $\mathrm{y}^{(\alpha-1)}(\mathrm{a})=\mu$, where $\mu=\left(\mu_{1}, \quad \mu_{2}, \quad \ldots, \quad \mu_{\mathrm{n}}\right)^{\mathrm{T}} \quad$ is some constant vector and satisfied $|\mathrm{y}(\mathrm{x})|<\exp \left(\alpha^{-1}|\mathrm{x}|\right)$.constant.

III. Main Results

In this section we prove the existence of a continuous function y on (a, ∞) which is the unique solution for $y^{(\alpha)}(\mathrm{x})=\lambda \mathrm{f}(\mathrm{y}(\mathrm{x}))$, and $\mathrm{y}^{(\alpha-1)}(\mathrm{a})=\mu$, where μ is some constant, $0<\alpha \leq 1, \lambda$ is real number using picard approximation method.

Theorem (3):Let $0<\alpha \leq 1, \quad g(x)$ is continuous function on $[a, \infty)$ and $|g(x)| \leq|x| \quad \ldots(3.1)$ where $x \in[a, \infty)$. Let $f(y(x))$ be a continuous function on $[a, \infty)$ such that $\sup \{|\mathrm{f}(\mathrm{y}(\mathrm{x}))|: \mathrm{x} \in[\mathrm{a}, \infty)\}=\mathrm{M}<\infty$. Then there exist a continuous function y on (a, ∞) which is the unique solution for
$y^{(\alpha)}(x)=\lambda f(y(x)) \quad x \in(a, \infty)$ with
$y^{(\alpha-1)}(a)=\mu$, where μ is some constantand λ is real number.
Proof:Let $[\mathrm{a}, \mathrm{a}+\mathrm{h}]$ be any compact subinterval of $[\mathrm{a}, \infty$) and let $(\mathrm{X},\|\cdot\|)$ be the space defined in definition (2-1). Consider
$\mathrm{y}(\mathrm{x})=\mathrm{y}_{0}(\mathrm{x})+\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(y(t)) d t, x \in(a, \infty)$.
where $\mathrm{y}_{0}=\frac{\mu(\mathrm{x}-\mathrm{a})^{\alpha-1}}{\Gamma(\alpha)}$, it follows from lemma (2-1) that $\mathrm{y} \in(\mathrm{a}, \infty)$.Then
$(\mathrm{x}-\mathrm{a})^{1-\alpha} \mathrm{y}(\mathrm{x})=b+\frac{(\mathrm{x}-\mathrm{a})^{1-\alpha}}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(y(t)) d t, \mathrm{x} \in(\mathrm{a}, \infty)$. Where $\mathrm{b}=\frac{\mu}{\Gamma(\alpha)}$
Let $\mathrm{F}(\mathrm{x})=(\mathrm{x}-\mathrm{a})^{1-\alpha} \mathrm{y}(\mathrm{x}), \mathrm{x} \in(\mathrm{a}, \infty) \ldots$ (3.3)
Where y is given in (3.2) and define
$F(x, y(t))=(x-a)^{1-\alpha} f(y(x)), a \leq t<x<\infty \quad \ldots$ (3.4)
Thus from Lemma (2-2) we have $\mathrm{F} \in \mathrm{c}[\mathrm{a}, \infty)$.
Now define a linear operator K on $[a, a+h]$ as:
$(\mathrm{KF})(\mathrm{x})=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} F(x, y(t)) d t, \mathrm{x} \in[\mathrm{a}, \mathrm{a}+\mathrm{h}]$
and consider the equation
$\mathrm{F}(\mathrm{x})=b+\frac{\lambda}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} F(x, y(t)) d, \mathrm{x} \in[\mathrm{a}, \mathrm{a}+\mathrm{h}]$
where $\mathrm{b}=\frac{\mu}{\Gamma(\alpha)}$ and μ is some constant.
Now we prove
$\lim _{x \rightarrow \infty}\left\|K^{n}\right\|^{\frac{1}{n}}=0$, from (3.3) we have
$|(\mathrm{KF})(\mathrm{x})|=\left|\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} F(x, y(t)) d t\right|$
$\leq \frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1}|F(x, y(t))| d t$
$=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} e^{\gamma|y(t)|} d t$
Then from (3.1) we have

$$
|(K F)(x)| \leq \frac{\|F\|}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} e^{\gamma|t|} d t
$$

$\leq \frac{\|F\| \mathrm{e}^{\gamma|\mathrm{x}|}}{\Gamma(\alpha)} \int^{\mathrm{x}}(\mathrm{x}-\mathrm{t})^{\alpha-1} \mathrm{dt}$
$\left.=\frac{\|F\| e^{\gamma|x|}}{\Gamma(\alpha)}\left[\frac{-(x-t)^{\alpha}}{\alpha}\right\}_{a}^{x}\right]$
$=\frac{\|F\| \mathrm{e}^{\gamma|\mathrm{x}|}}{\Gamma(\alpha)} \frac{(\mathrm{x}-\mathrm{a})^{\alpha}}{\alpha}$
$=\frac{\|F\| \mathrm{e}^{\gamma|\mathrm{x}|}(\mathrm{x}-\mathrm{a})^{\alpha}}{\Gamma(\alpha+1)} \ldots$
Now by induction we prove the following inequality

$$
\begin{align*}
& \left|\left(\mathrm{K}^{\mathrm{n}} \mathrm{~F}\right)(\mathrm{x})\right| \leq \frac{\|\mathrm{F}\| \mathrm{e}^{\gamma|\mathrm{x}|}(\mathrm{x}-\mathrm{a})^{\mathrm{n} \alpha}}{\Gamma(\mathrm{n} \alpha+1)} \\
& \quad \leq \frac{\|\mathrm{F}\| \mathrm{e}^{\gamma|\mathrm{x}|} \mathrm{h}^{\mathrm{n} \alpha}}{\Gamma(\mathrm{n} \alpha+1)}, \mathrm{x} \in[a, a+\mathrm{h}] \text { and } \mathrm{n}=1,2, \ldots \tag{3,8}
\end{align*}
$$

by using (3.7), it is obvious that (3.8) holds for $\mathrm{n}=1$.
Next suppose that (3.8) is true for positive integer n , then we have
$\left|\left(\mathrm{K}^{\mathrm{n}+1} \mathrm{~F}\right)(\mathrm{x})\right|=\left|\mathrm{K}\left(\mathrm{K}^{\mathrm{n}} \mathrm{F}\right)(\mathrm{x})\right|$
$=\left|\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(\mathrm{x}-\mathrm{t})^{\alpha-1} \mathrm{~K}^{\mathrm{n}} \mathrm{F}(\mathrm{x}, \mathrm{y}(\mathrm{t})) \mathrm{dt}\right|$

$$
\leq \frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1}\left|K^{n} F(x, y(t))\right| d t
$$

It follows from (3.8) that

$$
\begin{aligned}
\left|\left(\mathrm{K}^{\mathrm{n}+1} \mathrm{~F}\right)(\mathrm{x})\right| & \leq \frac{1}{\Gamma(\alpha)} \int_{\mathrm{a}}^{\mathrm{x}} \frac{(\mathrm{x}-\mathrm{t})^{\alpha-1}\|\mathrm{~F}\|(\mathrm{y}(\mathrm{t})-\mathrm{a})^{\mathrm{n} \alpha} \mathrm{e}^{\gamma|y(\mathrm{t})|}}{\Gamma(\mathrm{n} \alpha+1)} \mathrm{dt} \\
& \leq \frac{\|\mathrm{F}\|}{\Gamma(\alpha)} \int_{\mathrm{a}}^{\mathrm{x}^{2}} \frac{(\mathrm{x}-\mathrm{t})^{\alpha-1}(\mathrm{t}-\mathrm{a})^{\mathrm{n} \alpha} \mathrm{e}^{\gamma|t|}}{\Gamma(\mathrm{n} \alpha+1)} d t
\end{aligned}
$$

$\leq \frac{\|F\| \mathrm{e}^{\gamma|\mathrm{x}|}}{\Gamma(\alpha)} \int_{\mathrm{a}}^{\mathrm{x}} \frac{(\mathrm{x}-\mathrm{t})^{\alpha-1}(\mathrm{t}-\mathrm{a})^{\mathrm{n} \alpha}}{\Gamma(\mathrm{n} \alpha+1)} \mathrm{dt}$
$=\|\mathrm{F}\| \mathrm{e}^{\gamma|\mathrm{x}|} \stackrel{x}{\mathrm{I}}_{a}^{\alpha} \frac{(\mathrm{t}-\mathrm{a})^{\mathrm{n} \alpha}}{\Gamma(\mathrm{n} \alpha+1)}$
Then by lemma (2-3) we have

$$
\left|\left(\mathrm{K}^{\mathrm{n}+1} \mathrm{~F}\right)(\mathrm{x})\right| \leq\|\mathrm{F}\| \mathrm{e}^{\gamma|\mathrm{x}|} \frac{(\mathrm{x}-\mathrm{a})^{\mathrm{n} \alpha+\alpha}}{\Gamma(\mathrm{n} \alpha+\alpha+1)}, \quad \mathrm{x} \in[\mathrm{a}, \mathrm{a}+\mathrm{h}]
$$

$=\frac{\|F\| e^{\gamma|x|}(\mathrm{x}-\mathrm{a})^{\alpha(\mathrm{n}+1)}}{\Gamma(\alpha(\mathrm{n}+1)+1)}$
$\leq \frac{\|\mathrm{F}\| \mathrm{e}^{\gamma|\mathrm{x}|} \mathrm{h}^{\alpha(\mathrm{n}+1)}}{\Gamma(\alpha(\mathrm{n}+1)+1)}$
Thus (3.8) hold for all $n=1,2,3, \ldots$
Hence

$$
\mathrm{e}^{-\gamma|\mathrm{x}|}\left|\left(\mathrm{K}^{\mathrm{n}} \mathrm{~F}\right)(\mathrm{x})\right| \leq \frac{\|\mathrm{F}\| \mathrm{h}^{\mathrm{n} \alpha}}{\Gamma(\mathrm{n} \alpha+1)}, \mathrm{x} \in[\mathrm{a}, \mathrm{a}+\mathrm{h}]
$$

And so by definition (2-1) we get
$\left\|\mathrm{K}^{\mathrm{n}} \mathrm{F}\right\| \leq \frac{\|\mathrm{F}\| \mathrm{h}^{\mathrm{n} \alpha}}{\Gamma(\mathrm{n} \alpha+1)}$
and it follows from definition (2-2) that
$\left\|\mathrm{K}^{\mathrm{n}}\right\| \leq \frac{\mathrm{h}^{\mathrm{n} \alpha}}{\Gamma(\mathrm{n} \alpha+1)}$
Now
$\lim _{n \rightarrow \infty}\left\|K^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left(\frac{h^{n \alpha}}{\Gamma(n \alpha+1)}\right)^{\frac{1}{n}}$
$=h^{\alpha} \lim _{n \rightarrow \infty}\left(\frac{1}{n \alpha \Gamma(n \alpha)}\right)^{\frac{1}{n}}$
$=h^{\alpha} \lim _{n \rightarrow \infty}\left(\frac{1}{(n \alpha)^{\frac{1}{n}}[\Gamma(n \alpha)]^{\frac{1}{n}}}\right)$
Since $n=1,2,3, \ldots$ then
$\lim _{n \rightarrow \infty}(n \alpha)^{\frac{1}{n}}=\lim _{n \rightarrow \infty}(n)^{\frac{1}{n}}(\alpha)^{\frac{1}{n}} \geq 1$
And also we have

$$
\Gamma(\mathrm{n} \alpha)=\sqrt{2 \pi}(\mathrm{n} \alpha)^{\mathrm{n} \alpha-\frac{1}{2}} \mathrm{e}^{(-\mathrm{n} \alpha+\theta) / 12 \mathrm{n} \alpha}, 0<\theta<1, n \in \mathrm{Z}^{+}
$$

seeArtine (1964) and so
$[\Gamma(n \alpha)]^{\frac{1}{n}}=(2 \pi)^{\frac{1}{n}}(n \alpha)^{\alpha} \frac{1}{(n \alpha)^{\frac{1}{2 n}}} e^{-\alpha} e^{\theta / 12 n^{2} \alpha}$
And hence
$\lim _{n \rightarrow \infty}[\Gamma(n \alpha)]^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left[(2 \pi)^{\frac{1}{n}}(n \alpha)^{\alpha} \frac{1}{(n \alpha)^{\frac{1}{2 n}}} e^{-\alpha} e^{\theta / 12 n^{2} \alpha}\right]$
$=1 . \infty .1 \cdot \mathrm{e}^{-\infty} \cdot 1=\infty$
Consequently we have
$\lim _{\mathrm{n} \rightarrow \infty}\left\|\mathrm{K}^{\mathrm{n}}\right\|^{\frac{1}{n}}=0$ and this implies that
$\lim _{n \rightarrow \infty}\left\|(\lambda K)^{n}\right\|^{\frac{1}{n}}=|\lambda| \lim _{n \rightarrow \infty}\left\|K^{n}\right\|^{\frac{1}{n}}=0$
Then by lemma (2-4), $(I-\lambda K)^{-1}=I+\sum_{\mathrm{n}} \lambda^{\mathrm{n}} \mathrm{K}^{\mathrm{n}}$
and then series is convergent.
From (3.5) and (3.6) we have
$\mathrm{F}(\mathrm{x})=(\mathrm{I}-\lambda \mathrm{K})^{-1}(\mathrm{~b})$, therefore F is exists and is the unique solution of

$$
\mathrm{F}(\mathrm{x})=\mathrm{b}+\frac{\lambda}{\Gamma(\alpha)} \int_{\mathrm{a}}^{\mathrm{x}}(\mathrm{x}-\mathrm{t})^{\alpha-1} \mathrm{~F}(\mathrm{x}, \mathrm{y}(\mathrm{t})) \mathrm{dt}
$$

Then from (3.3) we get

$$
\mathrm{F}(\mathrm{x})=\frac{\mu}{\Gamma(\alpha)}+\frac{\lambda(\mathrm{x}-\mathrm{a})^{1-\alpha}}{\Gamma(\alpha)} \int_{\mathrm{a}}^{\mathrm{x}}(\mathrm{x}-\mathrm{t})^{\alpha-1} \mathrm{f}(\mathrm{y}(\mathrm{t})) \mathrm{dt}
$$

for all $\mathrm{x} \in(\mathrm{a}, \mathrm{a}+\mathrm{h}]$ and by using (3.3) it follows that

$$
(x-a)^{1-\alpha} y(x)=\frac{\mu}{\Gamma(\alpha)}+\frac{\lambda(x-a)^{1-\alpha}}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(y(t)) d t
$$

for all $\in(a, a+h]$

$$
\mathrm{y}(\mathrm{x})=\frac{\mu(\mathrm{x}-\mathrm{a})^{\alpha-1}}{\Gamma(\alpha)}+\frac{\lambda}{\Gamma(\alpha)} \int_{\mathrm{a}}^{\mathrm{x}}(\mathrm{x}-\mathrm{t})^{\alpha-1} \mathrm{f}(\mathrm{y}(\mathrm{t})) \mathrm{dt}
$$

Therefore by definition (2-2) we get

$$
\begin{equation*}
\mathrm{y}(\mathrm{x})=\frac{\mu(\mathrm{x}-\mathrm{a})^{\alpha-1}}{\Gamma(\alpha)}+\lambda \mathrm{I}_{a}^{\alpha} f \quad, \quad x \in(a, a+h] \tag{3.9}
\end{equation*}
$$

andso

$$
\stackrel{\mathrm{I}}{a}_{x}^{-\alpha} y=\mathrm{I}_{a}^{x} \frac{\mu(\mathrm{t}-\mathrm{a})^{\alpha-1}}{\Gamma(\alpha)}+\lambda{\underset{a}{x}}^{-\alpha}{ }_{a}^{t}{ }^{\alpha} f
$$

But from lemma (2-3) we have ${\underset{a}{\mathrm{I}}}^{-\alpha} \frac{(\mathrm{t}-\mathrm{a})^{\alpha-1}}{\Gamma(\alpha)}=0$ and by lemma(2-5) we get

$$
\mathrm{I}_{a}^{x}{ }_{a}^{-\alpha} \mathrm{I}^{\alpha} \mathrm{f}=\mathrm{f}(\mathrm{y}(\mathrm{x}))_{\text {for all } \mathrm{x} \in(\mathrm{a}, \mathrm{a}+\mathrm{h}]}
$$

Thus ${ }_{a}^{x}{ }^{-\alpha} \mathrm{y}=\lambda \mathrm{f}(\mathrm{y}(\mathrm{x})), \quad \mathrm{x} \in(\mathrm{a}, \mathrm{a}+\mathrm{h}]$
Then by using definition (2-5) we get

$$
\mathrm{y}^{(\alpha)}(\mathrm{x})=\stackrel{\mathrm{I}}{a}^{-\alpha} y=\lambda \mathrm{f}(\mathrm{y}(\mathrm{x})) \mathrm{x} \in(\mathrm{a}, \mathrm{a}+\mathrm{h}]
$$

Furthermore from (3.9) we have

$$
{\underset{a}{\mathrm{I}}}^{1-\alpha} \mathrm{y}={\underset{a}{\mathrm{I}}}^{1-\alpha} \frac{\mu(\mathrm{t}-\mathbf{a})^{\alpha-1}}{\Gamma(\alpha)}+\lambda \stackrel{x}{\mathrm{I}}_{a}^{1-\alpha}{ }_{a}^{t}{ }_{a}^{\alpha} f
$$

It follows from lemma (2-3) that

$$
\begin{aligned}
\stackrel{\mathrm{I}}{a}^{1-\alpha} \mathrm{y} & =\mu+\lambda{\underset{a}{\mathrm{I}}}^{x}{ }_{a}^{1-\alpha}{ }_{a}^{t} \mathrm{I}^{\alpha} f=\mu+\lambda{\underset{a}{\mathrm{I}}}^{x} f \\
& =\mu+\lambda \int_{a}^{x} f(y(t)) d t
\end{aligned}
$$

and so ${ }_{a}^{\frac{x}{I}}{ }^{1-\alpha} \mathrm{y}$ exists for all $\mathrm{x} \in[\mathrm{a}, \mathrm{a}+\mathrm{h}]$
since by definition (2-3)

$$
\begin{aligned}
& y^{(\alpha-1)}(x)=I_{a}^{x}{ }^{1-\alpha} y \text { therefore } \\
& y^{(\alpha-1)}(\mathrm{a})=\mu
\end{aligned}
$$

Now from theorem (2-1) equation (3.11) we have
$|\mathrm{F}(\mathrm{x})| \leq \mathrm{b}+|\lambda||\mathrm{kF}(\mathrm{x})|$
then from theorem (2-1) equation (3.8) we have
$|F(x)| \leq b+|\lambda|\|F\| \frac{e^{\gamma c}}{\gamma^{c}} e^{\gamma|x|}$
$<\mathrm{b}+\|\mathrm{F}\| \mathrm{e}^{\gamma|\mathrm{x}|}$ since $\gamma \mathrm{c}=\alpha$
$=\mathrm{e}^{\gamma|\mathrm{x}|}\left(\mathrm{be}^{-\gamma|\mathrm{x}|}+\|\mathrm{F}\|\right)$
$<\mathrm{e}^{\gamma|\mathrm{x}|}(\mathrm{b}+\|\mathrm{F}\|)$
thus by using theorem (2-1) equation (3.3) we obtain

```
\(\left|(x-a)^{1-\alpha} y(x)\right|<e^{\gamma|x|}[b+\|F\|]\)
\(h^{1-\alpha}|y(x)|<e^{\gamma|x|}[b+\|F\|]\)
\(|y(x)|<\mathrm{e}^{\gamma|x|} \mathrm{h}^{\alpha-1}[\mathrm{~b}+\|\mathrm{F}\|]\)
and so the solution function satisfied
\(|y(x)|<\exp \left(\alpha c^{-1}|x|\right)\).constant
```


References:

[1]. S. Abbas and M. Benchohra; Partial Hyperbolic Differential Equations with FinitedelyInvolving the CaputoFractional Derivative, commun.Math.Anal. 7 (2009).
[2]. S. Abbas and M. Benchohra; DarbouxProblem for Perturbed Partial Differential Equations of Fractional Order with Finite Delay, Nonlinear Anal.Hybrid Syst. 3 (2009).
[3]. S. Abbas and M. Benchohra; Upper and Lower Solutions Method for Impulsive Hyperbolic Differential Equations with Fractional Order,Non Linear Anal. Hybrid Syst. 4 (2010).
[4]. R. P Agrawal, M. Benchohra and S. Hamani; A Survey Existence Result for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions, Acta. Appl. Math. 109 (3) (2010).
[5]. A. A. Kilbas,Hari. M. Srivastava and Trujillo;Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, (2006).
[6]. V. Laskmikantham, S. Leela and J. Vasundhara; Theory of Fractional Dynamic Systems, Combridge Academic Publishers, Cambridge (2009), 14/ page.
[7]. Al-Tabakchaly. M. A., On the Existence and Uniqueness for Fractional Differential Equations, Msc. Thesis, University of Musol.
[8]. Dr. Ahmed Zain al-Abdin, MahaAbd Al-Wahab, Theorem on Certain Fractional Functions and Derivatives, Eng and Tech. Journal.Vol. 30, No. 2, (2012).
[9]. MahaAb Al-Wahab, On the Existence and Uniqueness for Solution of System Fractional Differential Equations, IOSR Journal of Math.(IOSR-JM), (2012).
[10]. MahaAb Al-Wahab, On Banach Fixed Point Theorem Solving a Special Kind of Fractional Differential Equation, IOSR Journal of Math. (IOSR-JM), (2014).
[11]. Artine.G; The Gamma Function, HOLT_ Rinchart and wiston (1964).

