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Abstract: Our work is finding continuous function y on (a, ) which is the unique solution for they()(x)=λ 

f(y(x)),x(a, ), 0<≤1 with y(-1)(a) = , where is constant and λ is a real number using the picard 
approximation method theorem. 
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I. Introduction 
Fractional calculus as well as fractional Differential equations have received increasing attention and 

has been a significant development in ordinary and partial fractional differential equations in recent years; 

seethe papers by Abbas and Benchohra [1,2,3], Agaiwal et al. [4], monographs of Kilps, Lakshmikatham et al. 

[6]. This article studies the existence of the unique solution of fractional differential equationy()(x)=λ f(y(x)) 

and y(-1)(a)=,  is some constant, 0 < ≤ 1, λ is real number using picard approximation method. 
 

II. Preliminaries 
In this section we introduce notations, definitions and preliminary facts which are used throughout this paper. 

 

Definition (2-1)([7]): Let x={F:F is a real valued function and continuous on [a,)}, for some a(-, ) . Let 

the |||| on xbe defined by 

 F = supx∈[a,) e−γ α  F(x)   

provided that this norm exist for some constant >0. 
 

Lemma (2-1)([8]):Let 0<≤1 and f,g be continuous functions on (a, ), where aR such that 

sup    f( g(x) )   : x  (a, ∞)   = M <. Define ,))(()(
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for all x>a and is some constant. Then fc(a,). 

 

Lemma (2-2)([9]): Let us define F(x) = (x-a)-1f(x) on (a,), where fdefine in lemma (2-1) and 0<≤1.Then 

Fc[a,). 

 

Lemma (2-3) ([7]):Let ,  R, > -1. If x>a then 
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Lemma (2-4) ([9]):suppose G is a banach space and let TL(G) such that  Tn 
1

n < 1. Then I-T is regular and 

(I − T)−1 =  I +  Tn∞
n=1 , where the series  Tn

n converge in L(G). 

 

Definition (2-2) ([9]): Let f be Lebesque- measurable function defined a.e on [a, b], if >0 then we define 
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provided the integral (Lebesque) exists. 

 

Definition (2-3) ([10]): If R, f is define a.e on the interval [a, b], we define 
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provided that f
x

a

I  exists. 

 

Lemma (2-5) ([8]): If 0 < ≤ 1 and f(x) is continuous on [a,b], |f(x)| ≤ M for all x[a,b] (where MR+, M>0). 

Then 

 b).(a, xallfor )(f(x)fII  x
x

a

x

a



 
 

Theorem (2-1)([9]):Let 0<≤1 and  be positive constant. Let g(x)=(g1(x), g2(x), …, gn(x))T, x[a,), wheregi 

are continuous on [a,), i= 1, 2, …, n and  g(x) =   g
i
2n

i=1  
1
2 and |g(x)|≤x+c, where c is positive constant. 

fi=(f1, f2, …, fn)
T such that fi[a,) andsup{|f(x)|: x[a, )}=M<. Choose λ such that  λ <  eα  

c

α
 
α

 
−1

. Then 

there exists continuous vector function y(x)=(y1(x), y2(x), …, yn(x))T, x(a,) such that y()(x)=λf(y(x)), 

x(a,) with y(-1)(a)=, where =(1, 2, …, n)
T is some constant vector and satisfied  

|y(x)|<exp (c-1|x|).constant. 
 

III. Main Results 

In this section we prove the existence of a continuous function y on (a, ) which is the unique solution 

for y()(x)=λf(y(x)), and y(-1)(a)=, where  is some constant,0 < ≤ 1, λ is real number using picard 
approximation method. 

 

Theorem (3):Let 0<≤1, g(x) is continuous function on [a, ) and  

|g(x)|≤|x|        ...(3.1) where x[a,). Let f(y(x)) be a continuous function on [a, ) such that 

sup  f(y(x)) :x[a,∞) =M<. Then there exist a continuous function y on (a, ) which is the unique solution 
for  

y()(x)=λ f(y(x))       x(a,) with 

y(-1)(a)=, where  is some constantand λ is real number. 
 

Proof:Let[a, a+h]be any compact subinterval of [a,) and let (X, ||||) be the space defined in definition (2-1). 
Consider 
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, it follows from lemma (2-1) that y(a,).Then  

dttyftxb
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, x(a, ). Where 
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Let F(x)=(x-a)1-y(x) , x(a,) ...(3.3) 
Where y is given in (3.2) and define 

F(x, y(t))=(x-a)1-f(y(x)), a≤t<x<     ...(3.4) 

Thus from Lemma (2-2) we have Fc[a, ). 
Now define a linear operator K on [a, a+h] as: 

  dttyxFtx

x

a

))(,()(
)(

1
(x)KF 1





 


 , x[a, a+h]     ...(3.5), 

and consider the equation 
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 , x[a, a+h]                   ...(3.6) 

where
)(
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  and  is some constant. 

Now we prove 

limx→∞ Kn 
1

n = 0, from (3.3) we have 

  KF (x) = dttyxFtx

x

a
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=
1

Γ(α)
 (x − t)α−1

x

a

eγ y(t) dt 

Then from (3.1) we have 

  KF (x) ≤
 F 

Γ(α)
 (x − t)α−1

x

a

eγ t dt 

≤
 F  eγ x 

Γ(α)
 (x − t)α−1

x

a

dt 

=
 F  eγ x 

Γ(α)
  
−(x − t)α

α
 

a

x

  

=
 F  eγ x 

Γ(α)

(x − a)α

α
 

=
 F eγ x (x − a)α

Γ(α + 1)
… (3.7) 

Now by induction we prove the following inequality 

  KnF (x) ≤
 F eγ x (x − a)nα

Γ(nα + 1)
 

≤
 F eγ x hnα

Γ(nα + 1)
 , x ∈  a, a + h  and n = 1, 2, …        … (3,8) 

by using (3.7), it is obvious that (3.8) holds for n=1. 

Next suppose that (3.8) is true for positive integer n, then we have 
  Kn+1F (x) =  K(KnF) x   

=  
1

Γ α 
  x − t α−1

x

a

KnF x, y t  dt  

≤
1

Γ α 
  x − t α−1

x

a

 KnF x, y t   dt 

It follows from (3.8) that  

  Kn+1F (x) ≤
1

Γ(α)
 

(x − t)α−1 F (y(t) − a)nαeγ y(t) 

Γ(nα + 1)

x

a

dt 

≤
 F 
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(x − t)α−1(t − a)nαeγ t 

Γ(nα + 1)

x

a

dt 

≤
 F  eγ x 

Γ(α)
 

(x − t)α−1(t − a)nα

Γ(nα + 1)

x

a

dt 
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=  F  eγ x 


x

a
I (t − a)nα

Γ(nα + 1)
 

Then by lemma (2-3) we have 

  Kn+1F  x  ≤  F  eγ x 
 x − a nα+α

Γ nα + α + 1 
, x ∈  a, a + h  

=
 F  eγ x  x − a α(n+1)

Γ(α n + 1 + 1)
 

≤
 F  eγ x hα(n+1)

Γ(α n + 1 + 1)
 

Thus (3.8) hold for all n=1, 2, 3, ... 

Hence   

 e−γ x   KnF  x  ≤
 F  hnα

Γ nα + 1 
, x ∈  a, a + h  

And so by definition (2-1) we get 

 KnF ≤
 F  hnα

Γ nα + 1 
 

and it follows from definition (2-2) that 

 Kn ≤
 hnα

Γ nα + 1 
 

Now  

lim
n→∞

 Kn 
1
n = lim

n→∞
 

 hnα

Γ nα + 1 
 

1
n

 

=  hα lim
n→∞

 
1

nα  Γ nα 
 

1
n

 

=  hα lim
n→∞

 
1

(nα)
1
n [Γ nα ]

1
n

  

Since n= 1, 2, 3, ... then 

lim
n→∞

(nα)
1
n = lim

n→∞
 n 

1

n  (α)
1
n ≥ 1 

And also we have 

 nα =  2π nα nα−
1
2e(−nα+θ) 12nα , 0 < θ < 1, 𝑛ϵ Z+ 

seeArtine (1964) and so 

  nα  
1
n =  2π 

1
n nα α

1

 nα 
1

2n

e−αeθ 12n2α  

And hence 

lim
n→∞

  nα  
1
n = lim

n→∞
  2π 

1

n nα α
1

 nα 
1

2n

e−αeθ 12n2α   

= 1 . ∞. 1 . e−∞ . 1 = ∞ 
Consequently we have 

limn→∞ Kn 
1
n = 0 and this implies that 

lim
n→∞

 (λK)n 
1
n =  λ lim

n→∞
 Kn 

1
n = 0 

Then by lemma (2-4), (I − λK)−1 =  I +  λnKn
n  

and then series is convergent. 

From (3.5) and (3.6) we have  

F x =  I − λK −1(b) , therefore F is exists and is the unique solution of  

F x = b +
λ

Γ α 
  x − t α−1

x

a

F x, y t  dt. 

Then from (3.3) we get 

F x =
μ

Γ α 
+

λ x − a 1−α

Γ α 
  x − t α−1

x

a

f  y t  dt 

for allx(a, a+h] and by using (3.3) it follows that 
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 x − a 1−αy x =
μ

Γ α 
+

λ x − a 1−α

Γ α 
  x − t α−1

x

a

f  y t  dt 

for allx(a, a+h] 

y x =
μ x − a α−1

Γ α 
+

λ

Γ α 
  x − t α−1
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a

f  y t  dt 

Therefore by definition (2-2) we get 
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Thus f(y(x))yI  
x

a
,   x(a, a+h]  

Then by using definition (2-5) we get 
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It follows from lemma (2-3) that  
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and so y1 
x

a
 exists for all x[a, a+h] 

since by definition (2-3) 

y)( 1)1(   
x

a
xy therefore 

  )a()1(y
.
 

Now from theorem (2-1) equation (3.11) we have  
 F(x) ≤ b +  λ  kF(x)  
then from theorem (2-1) equation (3.8) we have 

 F(x) ≤ b +  λ  F 
eγc

γc
eγ x  

< b +  F eγ x sincec= 

= eγ x (be−γ x +  F  ) 

< eγ x (b +  F  ) 

thus by using theorem (2-1) equation (3.3) we obtain 
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  x − a 1−αy(x) < eγ x  b +  F   
h1−α  y(x) < eγ x  b +  F   
 y(x) < eγ x hα−1 b +  F   
and so the solution function satisfied 

|y(x)|<exp (c-1|x|).constant 
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