
IOSR Journal of Mathematics (IOSR-JM)

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 10, Issue 6 Ver. III (Nov - Dec. 2014), PP 06-11

www.iosrjournals.org

www.iosrjournals.org 6 | Page

Pure 2D Context-free Puzzle P system with Conditional

Communication

S.Hemalatha
1

P.S.AzeezunNisha
2

1
(Department of Mathematics, S.D.N.B Vaishnav College for Women, Chennai, India)

2
(Department of Mathematics, J.B.A.S. College for Women, Chennai, India)

Abstract: The feature of conditional communication in membrane computing has been introduced in symbol

objects and arrays in [1], [4] and [16]. Pure context-free grammars have been introduced in [17]. In [18] this

idea has been applied on array objects with an additional control on regular grammars. In this paper we use

the conditional communication of membrane computing to pure 2D context free grammars and study the power

of the system by comparing with the existing system.

Keywords: Conditional communication, context free grammar, P systems, Pure grammar, Puzzle grammar

I. Introduction
The area of membrane computing was initiated by Păun [3]. Now, this computability model is called as

P system, which is a distributed, highly parallel theoretical computing model, based on the membrane structure

and the behavior of the living cells. P systems, with string-objects and string-processing rules as known in

formal language theory, have been considered [8] and investigated extensively. Array languages have also been

studied in [9, 10]. The problem of handling array languages using P systems has been considered by Ceterchi et

al [6]. Array grammars have been introduced and investigated with the tools of P system [7, 13, 15]. Among

variants of P system, conditional communication is a feature introduced in [1]. On the other hand rewriting P

systems with string-objects have been extended to array-rewriting P systems with array-objects and the power of

such systems has been studied in [2, 16]. Concepts of pure grammars has been introduced in [17]. Pure 2D

picture grammars have been studied in [18]. In this paper, we have incorporated conditional communication in

Puzzle P system with array objects [14] and further properties have been studied.

 In section 2 we recall some preliminary definitions with examples. Section 3 deals with the main

results of this paper which combines the Pure 2D context free grammars with P systems with conditional

communication.

II. Preliminaries

We recall some basics of formal language theory as in [11]. In this section we recall some basic

definitions as in [11] Let be a finite alphabet. A word or string w over is a sequence of symbols from . The

set of all words over , including the empty word with no symbols, is denoted by
*
. An array over consists

of finitely many symbols from placed in the points of Z
2
 (the two-dimensional plane) and the points of the

plane not marked with symbols of , are assumed to have the blank symbol # . We will pictorially represent

the arrays indicating their non blank pixels, whenever possible. The set of all arrays over will be denoted by

*2

. An array over {a} describing the picture pattern T is shown in Figure 1.

a

a

a

a
aaaaaaaaa

Fig 1 An array describing picture token T.

An array, in particular can be rectangular. A rectangular

m × n array M over is of the form

mnm1

1n11

aa

aa

M

Pure 2D Context-free Puzzle P system with Conditional Communication

www.iosrjournals.org 7 | Page

where each aij , 1 i m, 1 j n. The set of all rectangular arrays over is denoted by
**

, which

includes the empty array .

Now we recall the definitions of pure grammars and pure context-free grammar as in [17, 18].

A pure grammar is a triple G = (, P, S) where is a finite alphabet, S is a finite set of words over

and P is a finite set of ordered pairs (x, y) of words over . The elements of P are referred to as production and

denoted by x y. If in each production x y of P the left side x is a symbol then we say that G is a pure

context-free grammar. Languages generated by Pure Context Free (PCF) grammars are referred as PCF

Languages.

A pure context free grammar is G = (, P, set of axioms words) where is a finite alphabet, a set of

axiom words and P is a finite set of context free rules of the form a , a ,
*
. Derivations are done as

in a context free grammar except that, unlike a context free grammar, there is only one kind of symbol, namely

the terminal symbol. The language generated consists of all words generated from each axiom word. Also, we

recall the notions of string rewriting P systems with conditional communication [1] and array rewriting P

systems with conditional communication [4].

An extended (string) rewriting P system (of degree m 1) with conditional communication [1] is a

construct = (V, T, , M1, M2, …, Mm, R1, P1, F1, R2, P2, F2, ..., Rm, Pm, Fm) where: V is the alphabet of the

system, T V is the terminal alphabet, is a membrane structure with m membranes (injectively labelled by 1,

2, ..., m), Mi are finite languages over V, representing the strings initially present in the regions i, i = 1, 2, ..., m

of the system, Ri are finite sets of context-free rules over V present in regions i, i = 1, 2, ..., m of the system, Pi

are permitting conditions and Fi are forbidding conditions associated with regions i, i = 1, 2, ..., m. The

conditions can be of the following forms:

1. empty : No restriction is imposed on strings, they either freely exit the current membrane or enter any of

the directly inner membranes ; An empty permitting condition is denoted by (true,), {in, out}, and

an empty forbidding condition by (false, not), {in, out}.

2. symbols checking : each Pi is a set of pairs (a,), {in, out} for a V and each Fi is a set of pairs (b,

not), {in, out} for b V: a string w can go to a lower membrane only if there is a pair (a, in) Pi

with a alph(w), and for each (b, not in) Fi we have b alph(w); similarly for the string to go out of

membrane i, it is necessary to have a alph(w) for at least one pair (a, out) Pi and b alph(w) for all

(b, notout) Fi

3. substrings checking : each Pi is a set of pairs (u,), {in, out} for u V
+
 and each Fi is a set of pairs

(v, not), {in, out} for v V
+

: a string w can go to a lower membrane only if there is a pair (u, in)

 Pi with u Sub(w), and for each (v, notin) Fi we have v Sub(w); similarly for the string to go out

of membrane i, it is necessary to have u Sub(w) for at least one pair (u, out) Pi and v Sub(w) for

all (v, not out) Fi .

Thus we have conditions of the types empty, symb, subk, respectively, where k is the length of the

longest string in all Pi, Fi; when no upper bound is imposed we replace the subscript by *. A system is said to be

non-extended if V = T.

The transitions in a system as above are defined in the following way. In each region, each string which

can be rewritten by a rule from that region is rewritten. The rule to be applied and the symbol rewritten by it are

non-deterministically chosen. Each string obtained in this way is checked against the conditions P i, Fi from that

region. If it fulfils the requested conditions, then it will be immediately sent out of the membrane or to an inner

membrane, if any exists; if it fulfils both in and out conditions, then it is sent either out of the membrane or to a

lower membrane, non-deterministically choosing the direction- and non-deterministically choosing the inner

membrane in the case when several directly inner membrane exist. If a string does not fulfil any condition, or it

fulfills only in conditions and there is no inner membrane, then the string remains in the same region. If a string

cannot be rewritten (this can be the case with strings from other membranes), then it is directly checked against

the communication conditions, and as above, it leaves the membrane (or remains inside forever) depending on

the result of this checking.

The language generated by the above system is denoted by L(). The family of all languages L()

generated by the system of degree at most m 1 with permitting conditions of type and forbidding

conditions of type , is denoted by [E]LSPm(rw, ,), , {empty, symb} {subk | k 2}. If the degree of

the systems is not bounded, then the subscript m is replaced by *.

Example 1. [1] Consider the system

 = ({a, b},{a, b}, [1 [2]2]1,{a}, , R1, P1, F1, R2, P2, F2)

Pure 2D Context-free Puzzle P system with Conditional Communication

www.iosrjournals.org 8 | Page

R1 = {a bb}, P1 = {(true, in), (true, out)} F1 = {(a, notin), (a, notout)}

R2 = {b a}, P2 = {(true, out)}, F2 = {(b, notout)}

generates the language 0}n|{bL(Π(
n2

An array is a mapping A : Z
2
 V # with a finite support, supp(A), where supp(A)= {v Z

2
| A(v) #}. In

order to specify an array it is sufficient to specify the set (v, A(v)), for v supp(A).

For example the L-shaped angle with equal arms is given by the sets, {((0, 0), a), ((1, 0), a), ((2, 0), a),

((3, 0), a), ((0, 1), a), ((0, 2), a),)) 0, 3), a)} all the other elements have # symbol. The empty array is denoted by

 and the set of all arrays over V is given by V
*2

 = V
+2

 {}. Any subset of V
*2

is an array language.

An array production over V is a triple = (W, A, B), where W is a finite subset of Z
2
 and A, B are

arrays with the supports included in W. For two arrays C, D over V and a production as above, we write C

 D if D can be obtained by replacing a sub array of C identical to A with B; all pixels of W which are blank

in A should be blank also in C.

An Array P System [2] is a construct = (V, T, , F1, ..., Fm, R1, ..., Rm, i0),where: V is the alphabet of

the system, T V is the terminal alphabet, is a membrane structure with m membranes (labelled injectively

by 1, 2, ..., m), Fi are finite set of arrays over V, representing the arrays initially present in the regions i, i = 1, 2,

..., m, of the system, R1, R2, ..., Rm are finite sets of array-rewriting rules over V of the form A B (tar); and i0

is the output elementary membrane of . The system is said to be non-extended if V = T.

A computation in an array P system is defined in the same way as in a string rewriting P system with

the successful computations being the halting ones. A computation is successful only if it stops, a configuration

is reached where no rule can be applied to the existing arrays, The result of a halting computation consists of the

arrays composed only of symbols from T placed in the membrane with label i0 in the halting configuration.

Example 2.Consider the non-extended context-free system [2]

 = ({a}, {a}, #, [1 [2 [3]3]2]1, a
a

, , , R1, R2, 3)

,(in)
a#

a

a#

#
R1

 ,(in)
#

aaa
#

##a
(out),

#
aa

#
#a

R2

 R3 =

The above system generates all L-shaped angles with equal arms, each arm being of length at least three.

An extended array-rewriting P system (of degree m 1) with conditional communication is a construct

 = (V, T, , M1, ..., Mm, R1, P1, F1, ..., Rm, Pm, Fm), where V is the alphabet of the system, T V is the

terminal alphabet, is a membrane structure with m membranes (injectively labelled by 1, 2, ..., m), M1, ..., Mm

are finite set of arrays over V, representing the arrays initially present in the regions 1, 2, ..., m of the system, R1,

R2, ..., Rm are finite sets of array-rewriting rules over V present in regions 1, 2, ..., m of the system, Pi are

permitting conditions and Fi are forbidding conditions associated with region i, 1 i m.

The conditions can be in the forms empty, symbol checking, subarray checking, which are defined

analogous to the corresponding forms in the string case. The difference is that the objects are arrays. Thus we

have the conditions of the types empty, symb, subarr in all Pi, Fi.

The transitions in an array-rewriting P system with conditional communication are analogous to the

string case. But the result of a halting computation is as defined for array-rewriting P systems.

The set of all arrays computed by an array-rewriting P system with conditional communication is denoted

by [E]AL() with E being omitted when the system is non-extended. The family of array languages generated

by systems as above is denoted by [E]ALPm(arw, ,), , {empty, symb, subarr}. We illustrate with an

example.

Example 3.Consider the non-extended system

 = ({a}, {a}, #, [1]1, ,
aa

a
 R1, P1, F1, 1)

,
a
a

a
#

,aa#aR1

P1 = {(a, in)}, F1 = {a, notin},

Pure 2D Context-free Puzzle P system with Conditional Communication

www.iosrjournals.org 9 | Page

generates all L-shaped pictures over a.

III. Pure 2d Context Free P System With Conditional Communication

A Pure 2D Context free P system with conditional communication is a construct = (#, , M1,

M2, ..., Mm, (R1, P1, F1), (R2, P2, F2), ..., (Rm, Pm, Fm), O) where: is the alphabet of the system with only

terminals, # is the special symbol for representing blanks, is a membrane structure with m membranes

(injectively labelled by 1, 2, ..., m), Mi are finite languages over V, representing the strings initially present in

the regions i, i = 1, 2, ..., m of the system, Ri are finite sets of pure context-free rules over
**

 present in regions

i, i = 1, 2, …, m of the system, Pi are permitting conditions and Fi are forbidding conditions associated with

regions i, i = 1, 2, ..., m as discussed in the preliminaries and O the output membrane. We denote the new

system as P2DCFPm(,) where , {empty, symbol, subarray} the conditional communicating conditions.

The languages generated by this system is given by L().

Example 4.Consider the construct

 = (#, [1 [2]2]1, M1, M2, (R1, P1, F1), (R2, P2, F2), 2)

with # = {a, b, c, d}, ,
dd
bcb
aa

M1

 M2 =

P1 = {true, in},

 notoutnotin,,
#
cc

,
#c

,
#c

,
cc
#

F1

P2 = {true, in},

 notoutnotin,,

cb
a

,
d

cb
,

d#
b

,
#d

b
,

b
a#

,
b

#a
F2

Applying the above rules the output generates picture pattern of token H.

Theorem 1.The P2DCFP3(subarr, subarr) generates token T patterns

Proof. Consider the construct

 = (#, [1 [2]2]1, M1, M2, (R1, P1, F1), (R2, P2, F2), 2)

with # = {a, b, c, d}, ,
e
d

cba
M1

 M2 =

 in,

#d
bb

,
d#
bb

P1 ,

 notoutnotin,,

#
cb

,
#

ba
,

#d
cb

,
d#
ba

F1

P2 = {true, in},

 notoutnotin,,

cb
a

,
d

cb
,

d#
b

,
#d

b
,

b
a#

,
b

#a
F2

Applying the above rules the output generates picture pattern of token T.

IV. Comparisons And Closure Properties

Theorem 2.The class P2DCFPm{, } intersects the class P2DCFL with regular control.

Proof. The result follows from example 4. □

Theorem 3.The class P2DCFPPm{, } is incomparable with the families of RML and CFML.

Proof: L1 = (a)m×n can be generated by a P2DPP2(subarr, aubarr) with

Pure 2D Context-free Puzzle P system with Conditional Communication

www.iosrjournals.org 10 | Page

The corresponding permitting and forbidding rules can be framed as earlier to avoid irregular patterns.

This language can also be generated by regular Siromoney Matrix grammar. But H tokens and T tokens cannot

be generated CFML [10]. Consider L2 = {a
n

b
n

/ n 1} is a CFML but cannot be generated by the system

P2DCFPPm(,). Also L3 = aaabbb
n
(ab)

*
 is a RML but not a pure CFL.

Theorem 4.The class P2DCFPPm{, } intersects with LOC and REC.

Proof: Consider the picture languages L4 = I m×m, where I is the identity matrix is in LOC and hence in REC.

This L4 can be generated by a construct

 = (#, [1 [2]2]1, M1, M2, (R1, P1, F1), (R2, P2, F2), 2)

with = {0, 1}, ,
10
01

M1 M2 =

P1 = {true, in},

 notoutnotin,,

00
1#

,
#1
00

F1

P2 = {true, in},

 notoutnotin,,

0#
10

,
#0
11

,
00
01

,
#0
01

,
#0
10

F2

Theorem 5. The class P2DCFPm{, } is closed under column concatenation and row concatenation

Proof: Consider L5 = {(a)
n
c(b)

n
 / n1} and L6 = {(x)

n
c(y)

n
 / n1} both can be generated by P2DCFPPm(,). It

can be proved that L5 ○ L6 can be generated by the system P2DCFPP2(empty, substring).

V. Conclusion

It has been found that the power of the new system has increased with the puzzle and conditional

communication feature. The new system also satisfies certain closure properties. Further investigations like

comparison with Tabled 0L systems [12] can also be studied in future work.

Acknowledgement
The first author is thankful to the University Grants Commission-SERO: Project no.F. MRP-4254/12

Link No.4254 under which this work was done by her.

References
[1] P. Bottoni, A. Labella, C. Martin-vide, Gh. Păun, “Rewriting P Systems with Conditional Communication.” Lecture Notes in

Computer Science, Springer, Berlin, vol. 2300, 2002, 325353.

[2] R. Ceterchi, M. Mutyam, Gh. Păun, K.G. Subramanian, “Array - Rewriting P Systems.” Natural Computing, vol. 2, 2003. 229249.

[3] Gh. Păun, Membrane Computing (An Introduction. Springer, 2002).

[4] S. Hemalatha, K.S. Derasanambika, K.G. Subramanian, C. Sri Hari Nagore, “Array-Rewriting P Systems with Conditional

Communication,” Lecture Note Series, Ramanujan Mathematical Society, vol. 3,2006, 155160.

[5] K.G. Subramanian, R. Siromoney, V.R. Dare, A, Saoudi, “Basic Puzzle Languages,” Int. Journal of Pattern Recognition and

Artificial Intelligence, vol. 9,1995. 763775.

[6] R. Ceterchi, M. Mutyam, Gh. Paun, K.G. Subramanian, “Array-rewriting P systems,” Natural Computing, vol. 2, 2003, 229249.

[7] M. Nivat, A. Saoudi, K.G. Subramanian, R. Siromoney, V.R. Dare, “Puzzle Grammars and Context-free Array Grammars,” Int.

Journal of Pattern Recognition and Artificial Intelligence, vol. 5, 1991, 6636761.
[8] Gh. Păun, Membrane Computing : An Introduction,(Springer-Verlag Berlin, Heidelbrg, 2000).

[9] Rosenfeld, “Picture Languages,” (Academic Press, 1979).

[10] Rosenfeld and R. Siromoney, “Picture languages - a survey,” Languages of design, vol. 1, 1993, 229245.
[11] Salomaa, Formal languages,(Academic Press, London, 1973).

Pure 2D Context-free Puzzle P system with Conditional Communication

www.iosrjournals.org 11 | Page

[12] R. Siromoney and G. Siromoney, “Extended Controlled Tabled L-arrays,” Information and Control, vol. 35, no. 2,1977,119138.

[13] K.G. Subramanian, M. Geethalakshmi, P. Helen Chandra, “Array rewriting P systems generating rectangular arrays,” Paper
presented at the National conference on Intelligent Optimization Modeling, Gandhigram Rural Institute-Deemed University,

Gandhigram, India, March 2006.

[14] K.G. Subramanian, R. Saravanan, K. Rangarajan, “Array P systems and Basic puzzle grammars,” Paper presented at the National
conference on Intelligent Optimization Modeling, Gandhigram Rural Institute-Deemed University, Gandhigram, India, March 2006.

[15] Y. Yamamoto, K. Morita, K. Sugata, Context-sensitivity of two-dimensional array grammars,in P.S.P. Wang(Ed), Array grammars,

Patterns and recognizers, (World Scientific, 1989), 1741.
[16] K.G. Subramanian, S. Hemalatha, C. Sri Hari Nagore, M. Margernstern, “On the power of P systems with parallel rewriting and

conditional communication,” Romanian Journal of Information Science and Technology, vol. 10, no. 2,2007, 137144.

[17] H.A. Maurer, A, Salomaa, D. Wood, “Pure Grammars,” Information and Control, vol. 44, 1980, 4772.
[18] K.G. Subramanian, Atulya K. Nagar, M. Geethalakshmi, Pure 2D Picture Grammars (P2DPG) and P2DPG with Regular Control.

