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Abstract: In this paper we introduced a new concept of graph of any finite group and we obtained graphs of 

some finite groups. Moreover some results on this concept are proved. 
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I. Introduction: 

The origin of graph theory started with the problem of Koinsberg bridge, in 1735. This problem lead to 

the concept of Eulerian graph. Euler studied the problem of Koinsberg bridge and constructed a structure to 

solve the problem called Eulerian graph. In 1840, A.F Mobius gave the idea of complete graph and bipartite 
graph and Kuratowski proved that they are planar by means of recreational problems. The concept of tree was 

implemented by Gustav Kirchhoff in 1845, and he employed graph theoretical ideas in the calculation of 

currents in electrical networks or circuits. In 1852, Thomas Gutherie found the famous four color problem. Then 

in 1856, Thomas. P. Kirkman and William R.Hamilton studied cycles on polyhydra and invented the concept 

called Hamiltonian graph by studying trips that visited certain sites exactly once. In 1913, H.Dudeney 

mentioned a puzzle problem. Eventhough the four color problem was invented it was solved only after a century 

by Kenneth Appel and Wolfgang Haken. This time is considered as the birth of Graph Theory [1].  

Caley studied particular analytical forms from differential calculus to study the trees. This had many 

implications in theoretical chemistry. This lead to the invention of enumerative graph theory. Any how the term 

“Graph” was introduced by Sylvester in 1878 where he drew an analogy between “Quantic invariants” and 

covariants of algebra and molecular diagrams. In 1941, Ramsey worked on colorations which lead to the 
identification of another branch of graph theory called extremel graph theory. In 1969, the four color problem 

was solved using computers by Heinrich. The study of asymptotic graph connectivity gave rise to random graph 

theory. 

Graph theory is rapidly moving into the mainstream of mathematics mainly because of its applications 

in diverse fields which include biochemistry, electrical, engineering (communications networks and coding 

theory), computer science (algorithms and computations) and operations research (scheduling). The powerful 

combinatorial methods found in graph theory have also been used to prove significant and well-known results in 

a variety of areas in mathematics itself. An application of matching in graph theory shows that there is a 

common set of left and right coset representatives of a subgroup in a finite group [1]. 

Up to this point, we have been looking at a group as a collection of elements that satisfy some 

conditions. Because graph has wide range of application in various fields, this motivates us to convert group into 

graph and make it applicable into various field. In this paper we try to bring very different way of representing 
the group, using the graph associated with the group rather than the algebraic structure of group. This paper is 

meant as an introduction and overview of some nice ideas from group theory by using graph theory. We convert 

group into graph and try to study various properties of group by using graph theory [1]. 

 

II. Some Basic Definitions: 
Following definitions are comes from references [2], [3], [4], [5], [6], [7], [8]. 

Definition 2.1 (Group): A nonempty set G with a binary operation . is called as a group if the following axioms 

hold: 

     (i) a(bc) = (ab)c for all a,b,c  G 

    (ii) There exists e in G such that ea = ae = a ;   G  

     (iii) For every a  G there exists a'  G such that a' a =a a'= e. 

Definition 2.2 (Abelian group): A group G in which all elements satisfies commutative law is called as a abelian 

group.  

 

Definition 2.3 (Cyclic group): A group G is said to be cyclic if G = [a] = {x=an | n  Z }, for some a  G.The 

most important    examples of cyclic groups are the additive group Z of integers and the additive groups Z/(n) of 

integers modulo n. In fact, these are the only cyclic groups up to isomorphism. 
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Definition 2.4 (Subgroup): Let (G, .) be a group and H be a subset of G. Then H is called a subgroup of G, if H 

is a group relative to the binary operation in G and it is denoted by H G. 

Definition 2.5 (Center of a group): The center of a group G, written as Z(G), is the set of those elements in G 

that commute with every clement in G. That is Z(G) = (a  G | ax = xa   G }. 

Definition 2.6 (Centralizer of an element): Let g  G be any elements of group G then centralizer of an element 

is written as C(g), is the set of those element in G that commute with element g . i.e.C(g)={a  G | ag = ga 

G }. 

Definition 2.7 (Centralizer of a subgroup): Let H be any subgroup of G then centralizer of a subgroup is written 

as C(H), is the set of those elements in G that commute with all elements of subgroup H. 

i.e. C(H) = {a  G | ah = ha H }. 

Definition 2.8 (Order of a element): Let G be a group, and a  G. If there exists a least positive integer m such 

that am = e, then such positive integer m is called as order of a and it is written as o(a). If no such positive integer 

exists, then a is said to be of infinite order. 

Definition 2.9 (Order of a group): Number of elements in a group G is called as order of a group and it is 

denoted by o(G) or |G|. If order of a group is finite then group is said to be finite group and if order of a group is 

infinite then group is said to be infinite group. 

 
Definition 2.10 (Graph): Graph be an ordered pair G = (V, E), where V be a set of vertices of graph and E be a 

set of edges of graph. The vertices gi, ,gj  associated with edge ek  are called as end vertices of ek. 

Definition 2.11 (Degree of a vertex): Number of edges incident on vertex gk with loop counted twice is called as 

degree of a vertex gk, and it is denoted by d(gk). 

Definition 2.12 (Degree of a graph): Sum of degree of all vertices of a graph is called as degree of a graph and it 

is denoted by d(G). 

Definition 2.13 (Adjacent vertices): If gi and gj are end vertices of some edge e then such vertices are called as 

adjacent vertices.  

 

Definition 2.14 (Loop): An edge having the same end vertices is called as loop. 

Definition 2.15 (Parallel edges): A pair of edges with same end vertices is called as parallel edges.   

Definition 2.16 (Simple graph): A graph that has neither self loop nor parallel edges is called as  simple graph. 
Definition 2.17 (Regular graph): A graph in which degree of every vertex is same then is called as  regular 

graph. 

Definition 2.18 (Complete graph): A graph in which every vertex of graph G is adjacent to all other vertices of 

graph is called as complete graph. 

Note: Every complete graph is regular graph but converse is not true. 

 

III. Graph of a finite group: 
Let G is a finite group of order n. Then graph of G is denoted by R(G) and is defined as R(G) = (R(V), 

R(E)), where  
1. R(V) =  set of vertex of graph of G = G. and 

2. R(E) = set of edges of graph of G 

             = {rij | rij is an edge between gi and gj if and only if gi and gj are commutes in group } 

Example 3.1: If  G = Z4 = { 0,1,2,3 } be  an abelian group of order 4. Then by   let R(G) = { R(V), R(E) } be  

graph of a group G,  where R(V) = G = Z4 = { 0,1,2,3 } and  

      R(E) = { rij = (gi, gj) | gi and gj are commute in a group } 

i.e. R(E) = { rij = (gi, gj) | gi gj = gj gi   i, j } 

Hence R(E) = { (0,0), (1,1), (2,2), (3,3), (0,1), (0,2), (0,3), (1,2), (1,3),(2,3)} 

Thus the graph of G is as follows. 
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Fig. 1 

 

Example 3.2: If G = D3 = {e, a, a2, r1, r2, r3 } be  a non abelian group of order 6. 

Let R(G) = { R(V), R(E) } be graph of a group G,  where  R(G) = G = D3 = {e, a, a2, r1, r2, r3 } and  

R(E) = { rij = (gi, gj) | gi and gj are commute in a group G } 

R(E) = { rij = (gi, gj) | gi gj = gj gi   i, j } 

Hence R(E) = { (e, e), (e, a), (e, a2), (e, r1), (e, r2), (e, r3), (a, a), (a, a2),(r1,r1),  (r2,r2), (r3,r3) } 

Thus the graph representation of G = D3  is as follows: 

 

  

 
Fig. 2 

 

IV. Some Results on graph of a finite group: 
Theorem 4.1 If G be any group of order n then o( C(gi)) = d(gi) -1. 

Proof: Let G be any group of order n, then the graph of  a group is an ordered pair R(G)= (R(V), R(E)). Then by 
definition of C(gi), we have 
 C(gi) = { gk  |  gi gk  = gk gi  for a fix i } 

          = { gk  |  there is an edge between vertices gi and gk in graph a fix i  } 

          = { gk   |  (gi , gk ) in R(E)  } 

          = { gk   |  gk is one end of edge (gi , gk ) for fix i } 

          = { gk  |  gk is adjacent  to gi for fix i } 

Hence o(C(gi) = Number of those vertices which are adjacent to  gi . 
  i.e. o(C(gi)= Number of those edges whose one (or both) end is gi . 

But  d(gi) = Number of those edges which are incident on gi with loop counted twice. 

i.e. d(gi) = Number of those edges whose one end is gi with loop counted twice. 

i.e. d(gi) = Number of those vertices which are adjacent to gi . 
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Hence o(C(gi) = order of centralizer of  an gi = d(gi) -1. 

i.e. d(gi) = o( C(gi)) +1. 

Now we can define centralizer of an element in the form of graph of a group G. Let gi  G be any 

vertex of a graph of group G, then centralizer of vertex is denoted by C(gi) and defined as, 

 C(gi) = { gk   |  gi gk  = gk gi  for i } 

          = { gk  |  there is an edge between vertices gi and gk in graph i } 

          = { gk   |  (gi , gk )   E(G)  } 

          = { gk  |  gk is one end of edge (gi , gk ) for a fix i  } 

          = { gk  |  gk is adjacent to gi  for fix i  } 

           = Collection of those vertices of graph of group G which are adjacent to gi 

Theorem 4.2. If G be any group of order n with identity elements e then d(e) = o(G) +1. 

Proof : Let G be any group of order n with identity elements e. Then graph of  group is an ordered pair R(G)= 

(R(V), R(E)),  

Then by definition of C(gi), we have 
 C(e)= { gk  |  e gk  = gk e  } 
          = G. 

Hence o(C(e)) = o(G). 

By Theorem 4.1, d(e) = o(C(e)) +1 = o(G)+1. 

Thus   o(C(e)) = d(e) -1. 

i.e. o(G) = d(e) -1. 

Theorem 4.3 If G be any group of order n then d(G) = . 

Proof : Let G be any group of order n, then the graph of  group G is an ordered pair R(G)= (R(V), R(E)),  

d(G) = Degree  of  graph G 

        = Sum of degree of all vertices of graph of G 

 gk)   

          = . 

Hence = d(G) – n. 

Theorem 4.4: If G be any abelian group of order n then d(gi) =  o(G)+ 1    ;  gi   

Proof : Let G be any abelian group of order n, then we have  

                  gi gk  = gk gi gk, gi  

hence  C(gi) ={ gk  |  gi gk  = gk gi  for fix i } 

                    = G 

Hence o(C(gi)) = o(G) gi    

By Theorem 4.1, we have d(gi) = o(C(gi)) +1= o(G) + 1 gi    

Thus o(G)  =  d(gi) - 1 ;  gi   

Theorem 4.5: If G be any abelian group of order n then d(G) = o(G)(o(G)+ 1)             

Proof : Let G be any abelian group of order n,  we have  

                  gi gk  = gk gi gk, gi  

Let the graph of  group G is an ordered pair R(G)= (R(V), R(E)),  

By definition of degree of a graph we have 

d(G) = Sum of d(gi) for all gi in G 

              
= d(g1) +  d(g2) + . . . . . . . . . +  d(gn) 

By Theorem 4.1 we have d(gi) = o(G) + 1    gi    

hence,  d(G) = (o(G) + 1) +  (o(G) + 1) + . . . . . . . . . + (o(G) + 1) ( n times ) 

            = o(G) [(o(G) + 1) ] 

Since  every cyclic group is abelian group, we have fallowing corollary. 

Corollary 4.6 : If G be a Cyclic group of order n then   

1. d(gi) = o( C(gi)) +1.= o(G) + 1 gi              

2. d(G) = o(G)(o(G)+ 1) 

 

V. Conclusion: 
An attempt has been made to show that graphs can be used to represent almost any problem involving 

discrete arrangements of objects, where concern is not with the internal properties of these objects but with the 
relationships among them. We try to made relationship between graph theory and group theory. Moreover we 

try to represent group as graph and study various properties of group by using corresponding graph of group. 
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