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Abstract: We consider here the gravitational collapse of a inhomogeneous dust cloud described by Tolman-

bondi models. We find that the end state of the collapse is either a black hole or a naked singularity, depending 

on the parameters of initial density distribution. Collapse ends into a black hole if the dimensionless quantity 

𝜓 is greater than −22.18033  and ends into a naked singularity if  𝜓 ≤  −22.18033. We find the occurrence 

of naked singularity in higher dimensional case. We proposed the concept of ‘trapped range’ of initial data in 

the different higher dimensional space-times. We show that ‘trapped range’ of initial data increases with the 

increase in dimensions of the space-times. 
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I. Introduction 
Cosmic Censorship Conjecture is still an outstanding open problem and possesses a prime position in 

the study of general relativity. Whereas no proof for this hypothesis is known, many counter examples have 

been studied. It is clearly important to investigate specific dynamical collapse scenarios within the frame work 

of gravitational theory for the final state of collapse. Such a study will be of great help in establishing whether or 

not this hypothesis is correct. An important class of collapse scenarios available in this connection is the 

dynamical evolution of a spherically symmetric cloud of pressure less dust. 

Dust collapse has been studied by many researchers, perhaps the first being the work of  Oppenheimer 

and Snyder [1], which demonstrated that the collapse of  a homogeneous spherical dust object ends in a black 

hole. This leads to a view, reflected by the Cosmic Censorship Hypothesis that spherical collapse will always 

ends in a black hole. However, such a view does not seem to be supported by a detailed analysis of spherical 
collapse. Departures from Oppenheimer- Snyder model come in the form of introducing inhomogeneities in the 

initial distribution of matter [2, 3], and also in the form of changing the equation of state. It has been shown by 

various authors [4-10] that the introduction of inhomogeneities in the matter distribution can give rise to the 

occurrence of a naked singularity at the centre in the spherical gravitational collapse. However, the final fate of 

collapse of an inhomogeneous distribution of matter with a general equation of state is largely unknown. An 

important sub case which could be examined in this context is spherically symmetric but inhomogeneous 

distribution of dust which collapses under the force of gravity. The general solutions to Einstein equations for 

this case have been given by the Tolman-Bondi space-times [2, 3] and it has been demonstrated that naked 

singularities can occur as the end state of such a collapse [4, 6, 7, 10-12]. In particular, it was pointed out in [6, 

10] that the collapse ends in a naked singularity or a black hole depending on whether or not a certain algebraic 

equation involving the metric functions and their derivatives has positive real roots. In order to be able to 

ascertain the astrophysical implications of such a result, it is necessary to translate the condition for the 
existence of positive real roots into the actual constraints on the initial density distribution in the cloud. An 

interesting problem that arises is the effect that higher dimensions can have on the formation of naked 

singularity. 

It is relevant to note here that the role of initial density distribution in dust collapse was earlier 

considered by Christodoulou [4] and Newman [5]; however their discussion was restricted by the assumption of 

evenness of density and metric functions. A classical statement in Hawking and Ellis [13] asserts that the 

boundary of a trapped region is an apparent horizon. It is known that an apparent horizon forms in the region of 

a sufficiently strong gravitational field. An apparent horizon seems to play an important role in deciding the 

nature of the singularity. Much literature on apparent horizon has been appeared so far [14, 15, 16-18]. It is 

believed that the formation of the central singularity earlier than the apparent horizon is a necessary condition 

for a singularity to be naked.  A singularity cannot be naked if it occurs after the formation of apparent horizon. 
Jhingan et. al.[19] has shown that the absence of apparent horizon formation prior to the central singularity does 

not necessarily imply nakedness. 

Recently Saraykar and Joshi showed that naked singularities in dynamical gravitational collapse of 

inhomogeneous dust to be stable but non-generic [20]. Sil and Chatterjee [21] studied dust collapse in five 

dimensional space-time. By considering a self-similar Tolman type model in higher dimensional space-time 
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they showed the occurrence of a naked shell focusing singularity which may develop into a strong curvature 

singularity. 

In this chapter we consider the nature and structure of singularities arising in a non-self similar dust 
collapse in 5D. We show that the central singularity of collapse may indeed be a naked one depending on the 

conditions of initial density distribution. In section 2 we describe five dimensional Tolman-bondi dust model 

and showed the existence of a naked singularity. In section 3 we generalized this result to (N+2)-dimensional 

space-times. Tolman-bondi model is the simplest solution to the Einstein equation and admits both a naked 

singularity as well as a black hole depending on the nature of the initial data. In section 4 we discuss the 

dynamics of an apparent horizon in higher dimensional space-times. We end this paper with concluding remarks 

as a last section. 

 

II. Dust Collapse In Five Dimensional Tolman Type Model 
To facilitate the discussion we give a brief summary of the higher dimensional Tolman-Bondi solution. 

Let us consider the metric for 5D space-time with spherical symmetry [21]. 

ds2 = −dt2 +
R ′ 2

1 + M
 dr2 + R2(dθ1

2 + sin2θ1dθ2
2 + sin2θ1sin2θ2dθ3

2)    (1) 

Where M(r) is an arbitrary function of commoving coordinate r, satisfying M > 1. R(t, r) is the 

physical radius at a time t of the shell labeled by r, in the sense that 4πR2(r, t) is the proper area of the shell at 
time t. A prime denotes the partial derivative with respect to r. 

The energy momentum tensor is given by 

Tij = ςδt 
i δt

j
            (2) 

Where  

ς t, r =
3F′

2R3R ′   ,                                        (3) 

The function R r, t  is the solution of 

R 2 =
F(r)

R2 +  M(r) ,                                             (4)   

Where an over dot denotes partial derivative with respect to t. The functions F(r) and M(r) are arbitrary, and 

result from the integration of the field equations. 

For simplicity we consider here only the marginally bound case M(r) = 0. 

Here we are discussing gravitational collapse, for that we require  R  t, r < 0. 
Hence we get 

 R =
−  F

R
  .                      (5) 

After integrating and using scaling freedom R r; 0 = r we get  

R2 = r2 − 2 F.                                               (6) 

According to (6) the area radius of the shell r shrinks to zero at the time tc (r)  given by 

tc r =
r2

2  F
  .                                                  (7) 

The Kretschmann scalar is given by 

K =
A F′ 2

R6R ′ 2 −
B FF′

R7R ′ +
C F2

R8 ,                                              (8) 

From above equation at t = tc (r), the Kretschmann scalar and energy density both diverge, indicating the 

presence of scalar polynomial curvature singularity [13]. The time and radial coordinates are respectively in the 

ranges  −∞ < t < tc (r)  and 0 ≤ r < ∞. 

It has been shown that [5] shell crossing singularities (characterized by R′  = 0 and R > 0) are 

gravitationally weak and hence such singularities need not be considered seriously. We therefore consider only 

the shell focusing singularity. We thus assume  R′ > 0 in the following discussion. We shall restrict ourselves to 

the study of future directed radial null geodesics. In order to check whether the singularity is naked, we examine 

the null geodesic equations for the tangent vectors Ka = dxa dk  , where k is an affine parameter along the 

geodesics. For radial null geodesics, these are 

Kt =
dt

dk
=

P

R
  ,                          (9) 

Kr =
dr

dk
=

Kt

R ′ =
P

RR ′                         (10) 

Where the function P(t, r) satisfies the differential equation 
dP

dk
+ P2  

R ′

R ′ R
−

R 

R2 −
1

R2
 = 0                                                (11) 

Let u = rα   α > 1 , then 
dR

du
=

1

αrα−1
 R 

dt

dr
+ R′   
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From equation (1) we see that, for outgoing radial null geodesics, dt dr = R′  , hence  with the help of equation 

(5) above equation becomes  
dR

du
=

R ′

αrα−1
 1 −

 F

R
 =

R ′

αrα−1
 1 −

Λ

X
 = U(X, u),                                  (12) 

Where 

Λ =
 F

u
  ,              X =

R

u
                          (13) 

It is clear that R = 0, u = 0 is a singular point of equation (12). If there are outgoing radial null geodesics 

terminating at this point then at the singularity, we have dR du > 0  for X > Λ i.e. R >  F. Thus boundary of 

the trapped surface i.e. apparent horizon is given by R =  F. Using this relation we find from equation (6) that  

tah  r =
r2

2 F
−

 F

2
= tc r −

 F

2
  

Where tah  r  denotes the time at which apparent horizon forms. 

Since F(r) is strictly positive for r > 0, with F(r) = 0 at r = 0, we have tah  r < tc (r) for r > 0 and 

tah  0 = tc (0). Thus all other points on the singularity curve, except the point r = 0 are covered by the apparent 
horizon. We therefore consider the singularity of collapse at r = 0 i.e. the central singularity. We now find 

conditions on the initial data so that the central singularity of collapse is naked. 

If the outgoing null geodesics are to terminate in the past at the singularity at r = 0, which occurs at 

time t = tc at which tc  ,0 = 0 , then along these geodesics we have R → 0 as r → 0. After simplifying 

differential equation (12), we see that the right hand side of this equation is of the form 0/0 in the limit of 

approach to the singularity (R = 0, u = 0). The point R = 0, u = 0 in the (R, u) plane is thus a singularity of the 

differential equation (12). 

By using equation (6) one can write 

R′ =
RF′

4F
+  1 −

rF′

4F
 

r

F 
                                                             (14) 

     =
ηXrα−1

4
+  

4−η

4
 

1

rα−1X
                                             (15) 

Where η = rF′ F  . 

The initial state of the spherically symmetric dust cloud is described in terms of the density and 

velocity profiles specified at an initial epoch of time from which collapse commences. We denote by  ρ r =
ς(r, 0) , the density distribution of the cloud at the starting epoch of collapse. 

From equation (6.3) we get 

F r =  ρ(r)r3dr                                                      (16) 

We assume that the density ρ r  can be expanded (16) in a power series about the central density ρ0 

ρ r = ρ0 + ρ1r +
ρ2 r2

2!
+

ρ3 r3

3!
+ ⋯ +

ρn rn

n!
+.............,              (17) 

Where ρ0 > 0 and  ρn stands for the nth derivative of ρ at r = 0. 

Then F becomes  

F r = F0r4 + F1r5 + F2r6 +..............,                  (18) 

Where 

Fn =
2

3

ρn

n!(n+4)
  , n = 0, 1, 2,........                    (19) 

Also η appearing in equation (15) is given by 

η =
rF′

F
=

  n+4 Fn rn +4∞
0

 Fn rn +4∞
0

                                                (20) 

Since we are interested in the behavior of  η near the centre, we can simplify this further to get 

η r = 4 + η1r + η2r2 + η3r3 +.............,                   (21) 
Where 

η1 =
F1

F0
  ,     η2 =

2F2

F0
−

F1
2

F0
2   , η3 =

3F3

F0
−

3F1F2  

F0
2 +

F1
3

F0
3  ,                                                 (22) 

If all the derivatives ρn  of the density vanish for n ≤  q − 1 , and the qth derivative is the first non-vanishing 

derivative, then Tη
q
,  the qth term in the expression for  η is 

 Tη
q

=  
qFq

F0
 rq ,                (23) 

Here q takes the values 1, 2 etc. and Tη
0 = 4 .  

In this case we can write η r  as 

η r = 4 +
qFq

F0
rq + O(rq+1),              (24) 

Substituting the value of  4 − η from equation (24) keeping only the terms up to the order rq  and substituting in 

equation (15) to get  

R′ =
ηX

4
rα−1 −

qFq rq

4F0rα−1X
    ,                         (25) 
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With the help of equation (25), equation (12) becomes 
dR

du
=

1

α
 1 −

Λ

X
  

ηX

4
−

ϕ

X
 = U(X, u) ,                    (26) 

Where 

ϕ =
qFq rq

4F0r2 α−1     ,                                 (27) 

Let us consider the limit X0 of the tangent X along the null geodesic terminating at the singularity at R = 0, u = 

0. Using L’Hospital’s rule we get 

X0 = lim
R→0
u→0

 
R

u
  =  lim

R→0
u→0

 
dR

du
  =   lim

R→0
u→0

 U X, u =  U X0 , 0   ,             (28) 

The necessary condition that the null geodesic emanates from the central singularity is the existence of the 

positive real root X0 of the equation, 

V X0 = 0 ,                (29) 
Where 

V X = U X, 0 − X                        (30) 

          =
1

α
 1 −

Λ0

X
  

η0X

4
−

ϕ0

X
 − X,                      (31) 

q = 2 α − 1 ⟹ α = 1 +
q

2
 ,     ϕ0 =

qFq

4F0
                     (32) 

Λ =  F rα   

Λ0 = 0 ,               q < 2  

     =   F0  ,         q = 2                                                   (33) 

     = ∞ ,              q > 2 

X0
2 =

−F1

2F0
=

−2ρ1

5ρ0
  ,                                                    (34) 

1

2
 1 −

 F0

X0
  X0 −

F2

2F0 X0
 = X0  

2X0
3

F0
3 2 +

2X0
2

F0
+

F2 X0

F0
5 2 −

F2

F0
2 = 0  

Define z = X0  F0   ,  ψ = F2 F0
2  , the last equation then becomes 

2z3 + 2z2 + zψ − ψ = 0 ,              (35) 
If this equation admits real positive roots then the singularity is naked. Numerical calculations show that the 

above equation has positive real roots if 

 ψ ≤  1 −  5  9 − 4 5  ,                              (36) 

Thus whenever  ψ ≤ −22.18033 , the central singularity is naked and it is covered if ψ is greater than 

this number. In the analogous to four dimensional case, one gets a quadratic equation and the shell focusing 

singularity is naked if  ψ ≤ −25.9904  [22, 23]. 

 

Table 1: Values of z1 and z2 for different values of  ψ 
ψ z1 z2 

-22 -4.2222 1.6111-i0.0974 

-23 1.85827 1.43982 

-23.5 1.93408 1.40130 

-24 2 1.37228 

-24.5 2.05990 1.34886 

-25 2.11566 1.32923 

-25.5 2.16829 1.31235 

-26 2.21847 1.29756 

-26.5 2.26665 1.28444 

-27 2.31314 1.27266 

-27.5 2.35819 1.26201 

-28 2.40197 1.25229 

-28.5 2.44464 1.24339 

-29 2.48631 1.23518 

-29.5 2.52708 1.22758 

-30 2.56702 1.22052 

-30.5 2.60622 1.21393 

-31 2.64472 1.20777 

-31.5 2.68257 1.20199 

-32 2.71982 1.19655 

-32.5 2.75651 1.19143 

-33 2.79266 1.18658 

-33.5 2.82832 1.18200 

-34 2.86351 1.17765 
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-34.5 2.89825 1.17352 

-35 2.93257 1.16959 

 

 

 
Figure 1: Graph of the values of z1 and z2 against the values of  ψ 

 

When the first two derivatives of the density are zero at the centre i.e. ρ1 = 0; ρ2 = 0, then q ≥ 3;  α ≥
5 2 . In this case Λ0 = 1 and positive value of  X0 cannot satisfy equation (31) and the collapse ends into a black 

hole. Stability of occurrence of a naked singularity under small perturbations of initial density distributions (in 

an appropriate metric space) can be discussed along the lines of [24]. 

 

III. Naked Singularities In The Higher Dimensional Tolman-Bondi Space-Time 

Let us consider the metric for (N+2) - dimensional space-time with spherical symmetry [25]. 

ds2 = −dt2 +
R ′ 2

1 + M (r)
 dr2 + R2dΩ2,                 (37) 

Where 

dΩ2 = dθ1
2 + sin2θ1dθ2

2 + sin2θ1sin2θ2dθ3
2 +.......... 

             +sin2θ1sin2θ2sin2θ3 …… sin2θN−1dθN
2
,                     (38) 

Is the metric on N-sphere and N = D - 2 (where D is the total number of dimensions), together with energy 

momentum tensor for dust has the form 

Tab = ς t, r  δa
t δb

t   ,               (39) 

Where ua = δa
t  is the (N+2)-dimensional velocity, R is the area radius at time t of the shell having the 

commoving coordinate r. 

Einstein equations for the collapsing cloud are 

ς t, r =
NF′

2RN R ′                                         (40) 

And 

R 2 =
F r 

RN−1 + M(r)                        (41) 

(We have set up   
8πG

C
= 1 ) 
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Here the over dot and prime denote partial derivatives with respect to t and r, respectively. The quantity 

F(r) arises as a free function from the integration of the Einstein equations and can be interpreted physically as 

the total mass of the collapsing cloud with in a coordinate radius r. M(r) is another free function of r and is 

called the energy function. Since in the present discussion we stick with gravitational collapse, we take R (t, r) <
0. 

For physical reasons, one assumes that energy density ς t, r  is non-negative everywhere. The epoch 

R=0 denotes a physical singularity where the spherical shell of a matter collapses to zero radius and where the 

density ς t, r  blows up to infinity. Time t = ts r  corresponds to the value R = 0 where the area of the shell of 

matter at a constant value of coordinate r vanishes. The singularity curve t = ts r  corresponds to the time when 

the matter shells meet the physical singularity. 

This specifies the ranges of the co-ordinates for the metric (37): 

0 ≤ r < ∞, −∞ < t < ts r  
Simplicity, we consider the marginally bound case M(r) = 0. 

Equation (41) yields 

R 2 =
F(r)

RN−1  

In the collapsing case, 

R =
− F

R N −1 2                           (42) 

Integrating equation (42) we get 

R N+1 2 =  r N+1 2 −
 N+1 

2
 Ft  ,                           (43) 

Where we have used the freedom in the scaling of the commoving coordinate r to set up R(0, r) = r  at the 

starting epoch of the collapse so that the physical area radius R increases monotonically in r, and with  R′  = 1 

there are no shell crossing on the initial surface. 

Our interest is restricted only to the central shell focusing singularity at R = 0,  

r = 0 which is a gravitationally strong singularity, unlike to the shell crossing ones which are weak and through 

which the space-time may sometimes be extended [26]. 

It follows from Eq.(40) that the function F(r) becomes fixed once the initial density distribution ς 0, r = ρ r  

is given, i.e., 

F r =
2

N
 ρ r rN dr ,                                 (44) 

We assume that initial density profile ρ r  has the series of expansion [22, 23]. 

ρ r = ρ0 + ρ1r +
ρ2 r2

2!
+

ρ3 r3

3!
+ ⋯ +

ρn rn

n!
             (45) 

Near the centre r = 0, which can be substituted in Equation (44) to yield 

F r = F0rN+1 + F1rN+2 + F2rN+3 +.........,                      (46) 
Where  

Fn =  
2

N

ρn

n! N+1+n 
  ,                                                          (47) 

And ρn  is the nth derivative of density and n takes integral values 0, 1, 2, 3, ............We note that the first non-

vanishing derivative in the series expansion (45) should be negative, as we will consider only those density 

functions which decreases as one move away from the centre. 

As ts(r) gives the time at which area  radius R becomes zero it follows from Equation (43) that  

ts r =  
2

N+1
 

r N +1 2 

 F
  ,                  (48) 

The Kretschmann scalar K = Rabcd Rabcd  for the metric (37) is given by 

K =
AF′ 2

R2N R ′ 2 +
BF F′

R2N +1R ′ +
CF2

R2N +2  ,                 (49) 

Where A, B, C are some constants. It is seen from Equation (40) and (49) that the energy density and 

Kretschmann scalar both diverge at the shell labeled r indicating the presence of a scalar polynomial curvature 

singularity at r. 

The outgoing radial null geodesic of Equation (37) are given by 
dt

dr
= R′ ,                 (50) 

Let u = rα   α > 1 . Then 
dR

du
=

1

αrα−1
 R 

dt

dr
+ R′ ,                      (51) 

By virtue of Equations (42) and (50), the above Equation leads to 
dR

du
=

R ′

αrα−1
 1 −

 F

R N −1 2    

     =
R ′

αrα−1
 1 −  

Λ

XN−1
 = U X, u ,              (52) 
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Where 

Λ =
F

uN−1   , X =
R

u
  ,                       (53) 

It is clear that R =0, u =0 is a singular point of Equation (52). If there are outgoing radial null geodesics 

terminating in the past at the singularity with a definite tangent, then at the singularity we have positive dR du . 

Hence apparent horizon for (N =2) dimensional space-time is given by  R = F1  N−1  . In order to check whether 

the singularity is naked, we examine the null geodesic equations for the tangent vector  Ka = dxa dk  , where k 

is an affine parameter along the geodesics. 

The radial null geodesics of the space-time (37) are given by 

Kt =
dt

dk
=

P

R
  ,                (54) 

Kr =
dr

dk
=

Kt

R ′ =
P

RR ′   ,               (55) 

Where the function P(t, r) satisfies the differential equation 
dP

dk
+ P2  

R ′

R ′ R
−

R 

R2 −
1

R2
 = 0.              (56) 

Differentiation of Equation (45) yields 

R′ =
Xηrα−1

N +1
+  

N+1−η

N+1
 

1

X N −1 2 r α−1  N−1 2 ,                     (57) 

Where  η = rF ′ F  

Since we are interested in the behavior of the η near the center, we can simplify η further to get  

η r =  N + 1 + η1r + η2r2 + η3r3 +.............,                      (58) 
Where 

η1 =
F1

F0
 , η2 =

2F2

F0
−

F1
2

F0
2 ,   η3 =

3F3

F0
−

3F1F2

F0
+

F1
3

F0
3  etc.                    (59) 

If all the derivatives ρn  of the density vanish for n ≤  q − 1 , and the qth derivative is the first non-vanishing 

derivative, then, the Tη
q
, the qth term in the expansion for η, is  

Tη
q

=
qFq rq

F0
,                        (60) 

Here q takes the values 1, 2, 3 etc. in this case, we can write η r  as 

η r =  N + 1 +
qFq rq

F0
rq + O(rq+1)  ,             (61) 

We use expression    N + 1 − η  from Equation (61) keeping only terms up to the order q and substitute in 
Equation (57) to yield 

R′ = r α−1  
ηX

N+1
−

qFq

 N+1 F0X N−1 2 r α−1  N +1 2 rq   ,                  (62) 

We substitute the above expression for  R′  in Equation (52) to get  

dR

du
=

1

α
 1 −  

Λ

X N−1   
ηX

N+1
−

ϕ

X N−1 2  = U(X, u),                    (63) 

Where 

ϕ =
qFq

 N+1 F0r α−1  N +1 2 rq  ,                     (64) 

Let us consider the limit X0 of the tangent X along the null geodesic terminating at the singularity at R =0, u =0. 

X0 = lim
R→0
u→0

 
R

u
  =  lim

R→0
u→0

 
dR

du
  =   lim

R→0
u→0

 U X, u ,                     (65) 

If a real and positive value of  X0 satisfies the above equation then the singularity could be naked. If the 

singularity is naked, some α exists such that at least one finite positive value of  X0 exists which solves the 
algebraic equation 

V X0 = 0                 (66) 

Where 

V X = U X, 0 − X  

         =
1

α
 1 −  

Λ0

X N−1   
η0X

N+1
−

ϕ

X N−1 2  − X   ,                   (67) 

Where 

Λ0 = lim
r→0

Λ ,           η0 =  lim
r→0

η   

Note that this root equation method picks up only the geodesics behaving as  

 X = R rα = Constant. 

There might be possibility of the existence of geodesics which have different behaviors than are assumed. To 

find such geodesics, we must solve the null geodesic equation [27-31]. 

The constant α can be determined by the requirement that ϕ0, the limiting value of ϕ as r → 0, should not be 

equal to zero or infinity. This yields  
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q =  α − 1  N + 1 2  , 

i.e.,  α =
2q

N+1
+ 1 ,                                 (68) 

This implies 

ϕ =
qFq

 N+1 F0
  ,                      (69) 

Using Equation (48), the limiting value of the function Λ is found to be 

Λ0 = 0 ,          q <  N + 1  N − 1    

     =  F0  ,       q =  N + 1  N − 1                        (70) 

     = ∞ ,         q >  N + 1  N − 1    

We note that q is the order of the first non-vanishing derivative of density. Since Λ0 takes different values for 

different choices of q, the nature of the roots depends on the first non-vanishing derivative of density at the 

centre. 

So we analyze the various cases in  N + 2 -dimensional space-times one by one. 
(A) First consider N =3 (i.e., 5D). We shall consider various cases of density profile in this space-time. 

Case (i): ρ1 ≠ 0  in this case,  q = 1 , α = 3 2  , 

Since,  α =
2q

N+1
+ 1 , 

               =  
2(1)

3+1
+ 1 

              =  
3

2
 

And from Equation (69) 

ϕ0 =
qFq

 N+1 F0
=

F1

4F0
   

   Λ0 = 0, ϕ0 =
F1

4F0
 , η0 = 4  

Hence Equation (67) reduces to 

V X0 = U X0 , 0 − X0  

    0     =  
1

α
 1 −  

Λ0

X0
 N−1   

η0X0

(N+1)
−

ϕ

X0
 N −1 2  − X0               

            =   
1

3
2 
 1 −  0  

4X0

3+1
−

F1
4F0

X0
 3−1 2  − X0                     

            =    
2

3
 X0 −

F1

4F0 x0
 − X0  

This gives  

X0
2 =

−F1

2F0
=

−2ρ1

5ρ0
  ,               (71) 

Because of the assumption that the density decreases away from the centre, ρ1 < 0 and so X0 will be positive 
and thus the singularity is naked. 

Case (ii):  ρ1 = 0,  ρ2 ≠ 0 in this case, q = 2, α = 2 ,    Λ0 = F0 ,   ϕ0 =
F2

2F0
 . 

Since, α =
2q

N+1
+ 1 , 

               =  
2(2)

3+1
+ 1 

               =  
4

2
+ 1 

               =  2 

And from Equation (69) 

ϕ0 =
qFq

 N+1 F0
=

2F2

4F0
=

F2

2F0
  

Equation (67) then leads to 
2X0

3

F0
3 2 +

2X0
2

F0
+

F2 X0

F0
5 2 −

F2

F0
2 = 0 ,                    (72) 

Define z = X0  F0   ,  ψ = F2 F0
2  ,then  equation (72)  becomes 

2z3 + 2z2 + zψ − ψ = 0 ,              (73) 
Numerical calculations show that the above equation has positive real roots if 

ψ ≤  1 −  5  9 − 4 5  , i.e., ψ ≤ −22.18033             (74) 

Thus whenever  ψ ≤ −22.18033 , the central singularity is naked, and it is covered if  ψ is greater than this 

number. 

Case (iii):  ρ1 = 0,  ρ2 = 0,  ρ3 ≠ 0 (i.e.q ≥ 3). In this case α ≥ 5 2 ,  Λ0 = ∞, and Equation (67) does not have 

positive real roots and hence collapse ends into a black hole. 
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Case (iv): ρ1 =  ρ2 =  ρ3 = 0,  ρ4 ≠ 0. In this case  q = 4,  α = 3,    Λ0 = ∞. So positive values of X0 cannot 

satisfy Equation (67) for the roots, hence the singularities are covered. 

(B) Next consider N = 4 (i.e., space-time where the dimensions are equal to 6). 

Case (i):  ρ1 ≠ 0 in this case, q = 1,  ,    Λ0 = 0,  . 

α =
2q

N+1
+ 1  

   =
2(1)

4+1
+ 1 

   =   
7

5
 

  ϕ0 =
F1

(N+1)F0
  

        =
F1

 4+1 F0
           

        =  
F1

5F0
 

Hence Equation (67) gives 

X0 =  
−F1

3F0
 

2 5 

 ,                     (75)    

Since F1 is negative, X0 will be positive and hence the singularity is naked. 

Case (ii):  ρ1 = 0, ρ2 ≠ 0. In this case q = 2,    Λ0 = ∞, and hence Equation (67) does not have real positive 

roots. 

Case (iii):  ρ1 =  ρ2 = 0, ρ3 ≠ 0. In this case q = 3, and it can be seen from Equation (70) that   Λ0 = ∞. 

Hence Equation (67) cannot be satisfied for any positive value of X0. Therefore the collapse ends with a black 

hole.  

Case (iv):  ρ1 =  ρ2 =   ρ3 = 0, ρ4 ≠ 0. In this case q = 4 and hence Λ0 = ∞. Hence by same reasoning 

explained in case (iii), the singularity is covered. 

(C) Next consider N ≥ 5 (i.e., space-time where the dimensions are greater than or equal to 7). 

Case (i):  ρ1 ≠ 0 in this case, q = 1,  

α =
2q

N+1
+ 1  

   =
2(1)

5+1
+ 1 

   =   
4

3
 

Hence, α =
(N+3)

(N+1)
   

ϕ0 =
F1

(N+1)F0
  

       =
F1

 5+1 F0
           

       =  
F1

6F0
 

And    Λ0 = 0 . 
Hence Equation (67) gives 

X0 =  
−F1

4F0
 

1 3 

                

X0 =  
−F1

4F0
 

2 (N+1) 

 ,               (76) 

Since F1 is negative, X0 will be positive and hence the singularity is naked. 

Case (ii):  ρ1 = 0, ρ2 ≠ 0. In this case q = 2,    Λ0 = ∞, and hence Equation (67) does not have real positive 

roots. 

Case (iii):  ρ1 =  ρ2 = 0, ρ3 ≠ 0. In this case q = 3, and it can be seen from Equation (70) that Λ0 = ∞. Hence 

Equation (67) cannot be satisfied for any positive value of  X0. Therefore the collapse ends with a black hole.  

Case (iv):  ρ1 =  ρ2 =   ρ3 = 0, ρ4 ≠ 0. In this case q = 4 and hence   Λ0 = ∞. Hence by same reasoning 

explained in case (iii), the singularity is covered. 

Thus, from conditions (B) and (C) , in all space-time where the dimensions are greater than or equal to 6, 

singularity is naked only for the models where ρ1 < 0. 
 

IV. Apparent Horizon And Trapped Surfaces 
The commoving time is given by 

ts r =  
2

N+1
 

r(N +1) 2 

 F
  ,                     (77) 
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Physically, ts r  the commoving time at which the shell of matter labelled by r becomes singular. As 

the density increases unboundedly, trapped surfaces have to form with in the collapsing cloud. The outermost 
boundary of these trapped surfaces is known as apparent horizon. 

In (N+2)-dimensional space-time, it follows from Equation 

R =
− F(r)

R N −1 2   , 

The apparent horizon is given by 

R tah  r , r = F1  N−1   ,                     (78) 

Where, tah  r  is the time at which apparent horizon forms. 

Inserting value of  R from equation (78) into Equation 

R N+1 2 = r N+1 2 −
 N+1 

2
 Ft  , 

We get, 

tah  r =  
2

N+1
 

r N +1 2 

 F
−

2

N+1
F1  N−1   ,                      (79) 

Equation (79) determines the behavior of the apparent horizon in the vicinity of the central singularity in (N+2)-

dimensional space-time. 

First, we consider the class of TBL models which are generally non-self-similar, but which can be 

reduced to self similar under certain conditions. In the case of four dimensional space-time this type of solution 

has been studied in [10,32, 33]. The mass function in general (N+2)-dimensional space-time for this class of 

model is given by 

F r = λ r r N−1 ,         λ 0 = λ0 > 0  (Finite).                    (80) 

It should be noted that the space-time becomes self-similar when one keeps λ r = const. With the 

choice of the above mass function, it can be seen that the density of the space-time is inversely proportional to 

t2 and hence is finite on the initial epoch t = ti < 0 [34]. 

Inserting above mass function F r  into Equation (79), we obtain  

tah  r =  
2

N+1
  

1

 λ
− λ1  N−1   r ,               (81) 

Since  λ 0 ≠ 0, it can be observed that ts 0 . Hence, it follows that the point  

r = 0, t = 0 corresponds to the central singularity on the hyper surface t = 0, where the energy density becomes 

infinite. Since in these classes of models the central singularity occurs at t = 0, we can write 

tah  r = tah  r − ts 0 =  
2

N+1
  

1

 λ
− λ1  N−1   r ,                    (82) 

From the above equation, it is clear  ts 0 < tah  r   if 
1

 λ
− λ1  N−1  > 0 ,               (83) 

Which in turn reduces to 

λ N+1 2 N−1  < 1 ,              (84) 

Hence the central singularity forms earlier than the apparent horizon if 

λ0
 N+1 2 N−1  

< 1 ,               (85) 

i.e. if λ0 < 1                                  (86) 

Thus, in any (N+2)-dimensional space-time, if λ0 < 1, then the central shell focusing singularity could 

be naked (locally naked). It has been shown in [4] that the shell focusing singularity occurring at r > 0, 𝑅 = 0 

is totally space like; therefore, we discuss the central singularity only. The four-dimensional case of this type of 

model has been discussed in [26] and it has been shown that, the gravitational collapse would end in a naked 

singularity if  

λ0 ≤ 0.1809 ,                  (87) 

While for λ0 > 0.1809, the collapse leads to a black hole. Thus, from Equations (86) and (87), one may argue 

that there is a range of  λ0 i.e.     

0.1809 < λ0 < 1,                (88) 

In which the central singularity forms earlier than the apparent horizon but it is not naked. We shall call 

this range a ‘trapped range’ because it is a range of initial data in which the central singularity remains trapped 

though it forms earlier than the apparent horizon. This is possible because even though there is no apparent 

horizon and event horizon might well exists and an event horizon may clothe the singularities even if the 

apparent horizon does not appear on the spatial slice considered, in case of five dimensional space-time, it has 

been shown in [34] that the gravitational collapse ends in an naked singularity if λ0 ≤ 0.0901, while it leads to a 

black hole if  λ0 > 0.0901. Thus, in the 5D case, the ‘trapped range’ of initial data is given by 0.0901 < λ0 <
1. 

Using the critical values of λ0 for the different higher dimensional space-times ‘trapped ranges’ of 

initial data for different higher dimensional space-time had been calculated [34]. It is shown that as the 
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dimensions of the space-time increases, trapped ranges of initial data also increases at the same time naked 

singularity ranges of initial data decreases. 

Further, [35] if there is delay in the formation of the apparent horizon would increase the possibility of 

the naked singularity in the collapse. Hence if interval  tah  r − t s  0  decreases, it leads to decrease in the 

naked singularity spectrum. It is also been shown that the time interval tah  r − t s  0  for λ = 0.01 and 0.001 

in the different higher dimensional space-times decreases with the increase in dimensions of the space-times.  

 

V. Concluding Remarks 
We have generalized the earlier work to a higher dimensional Tolman-Bondi space-times and found 

that naked singularities do arise for a different critical value.  

It is interesting to note that in 5D case the leading two derivatives decide the nature of the singularity 

while in 4D case leading three derivatives of density at the centre play the role of deciding the nature of the 

singularity.  For the space-times where the dimensions is 6D only the first derivative of density plays this role 

and similarly, for the dimension greater than or equal to 7, only first derivative decide the nature of singularity. 

It means for 6D or greater than 6D, only first derivative decide the nature of singularity. As the dimensions of 

the space-time increases, we require to calculate less number of derivatives of the density at the centre which 

decide the nature of the singularity. 

Considering analytic initial data, in case of collapse of a dust cloud, demands analyticity of the density 

function then we have the initial density  ρ r  containing only even powers of r, ρ r = ρ0 + ρ2r2 +
ρ4r4 +................. Since ρ1 first derivative of density at the centre is absent in above equations there could not 

be a naked singularity in space-times where the dimensions are greater than or equal to 6. Thus for  D ≥ 6  the 
CCH holds if the analytic density function is chosen as an initial data. 

In [19] it was shown that formation of the central singularity earlier than the apparent horizon is not 

necessary and sufficient condition for nakedness. We have generalized this result to higher dimensional space-

times. It is found that if same type of initial data is applied to all higher dimensional space-times, then the time 

interval  tah r − t s  0  decreases with the decrease in the naked singularity spectrum in the collapse. 
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