On Jordan Generalized Higher Reverse Derivations on \(\Gamma \)-rings

Salah Mehdi Salih and Marwa Riyadh Salih

Al-Mustansiryia University College of Education Department of Mathematics

Abstract: In this paper, we study the concepts of generalized higher reverse derivation and Jordan generalized higher reverse derivation and Jordan generalized triple higher reverse derivation on \(\Gamma \)-ring \(M \).

The aim of this paper is to prove that every Jordan generalized higher reverse derivation of \(\Gamma \)-ring \(M \) is generalized higher reverse derivation of \(M \).

Mathematics Subject Classification: 16U80, 16W25

Key word: \(\Gamma \)-ring, prime \(\Gamma \)-ring, semiprime \(\Gamma \)-ring, derivation, higher derivation, generalized higher derivation of \(\Gamma \)-ring, reverse derivation of \(R \)

I. Introduction

The concepts of a \(\Gamma \)-ring was first introduced by Nobusae[9] in 1964 this \(\Gamma \)-ring is generalized by W.E.Barnesin [2] a broad sense that served now a day to call a \(\Gamma \)-ring.

Let \(M \) and \(\Gamma \) be two additive abelian groups. Suppose that there is a mapping from \(M \times \Gamma \times M \rightarrow M \) (the image of \((a,\alpha,\beta)\) being denoted by \(a\alpha \beta \, \alpha,\beta \in M \) and \(\alpha,\beta \in \Gamma \)) satisfying for all \(a,b,c \in M \) and \(\alpha,\beta \in \Gamma \)

\[
i(a+b)\alpha c = a\alpha c + b\alpha c
\]

\[
a(\alpha + \beta) c = a\alpha c + a\beta c
\]

\[
a\alpha(b + c) = a\alpha b + a\alpha c
\]

Then \(M \) is called a \(\Gamma \)-ring.[2]

Throughout this paper \(M \) denotes a \(\Gamma \)-ring with center \(Z(M) \) [1], recall that a -\(\Gamma \)-ring \(M \) is called prime if \(a\Gamma \Gamma M =0 \) implies \(a=0 \) or \(b=0 \) [8], and it is called semiprime if \(a\Gamma \Gamma M =0 \) implies \(a=0 \) [6], a prim \(\Gamma \)-ring is obviously semiprime and a \(\Gamma \)-ring \(M \) is called 2-torsion free if \(2a=0 \) implies \(a=0 \) for every \(a \in M \) [5], an additive mapping \(d \) from \(M \) into itself is called a derivations if \(d(ab) = d(a)b + ad(b), \) for all \(a,b \in M, \alpha \in \Gamma \) [7] and \(d \) is said to be Jordan derivation of a \(\Gamma \)-ring \(M \) if \(d(a\alpha a) = d(a)a\alpha a + a\alpha d(a), \) for all \(a \in M, \alpha \in \Gamma \) [7]. A mapping \(f \) from \(M \) into itself is called generalized derivation of \(M \) if there exists derivation \(d \) of \(M \) such that \(f(ab) = f(a)ab + a\alpha d(b), \) for all \(a,b \in M, \alpha \in \Gamma \). And \(f \) is said to be Jordan generalized derivation of \(\Gamma \)-ring \(M \) if there exists derivation \(d \) of \(M \) such that \(f(a\alpha a) = f(a)a\alpha a + a\alpha d(a) \) for all \(a \in M \) and \(\alpha \in \Gamma \).

Bresar and Vukman[3] have introduced the notion of a reverse derivation as an additive mapping \(d \) from a ring \(R \) into itself satisfying \(d(xy) = d(y)x + yd(x) \) for all \(x,y \in R \).

M. Sammn[10] presented the study between the derivation and reverse derivation in semiprime ring \(R \). Also it is shown that non-commutative prime rings don't admit a non-trivial skew commuting derivation.

We defined in [11] the concepts of higher reverse derivation of \(\Gamma \)-ring \(M \) as follow:

Let \(D=(d_n)_{n \in N} \) be additive mappings on a ring \(R \) then \(D \) is called higher reverse derivation of \(\Gamma \)-ring \(M \) if

\[
d_n(x\alpha y) = \sum_{i+j=n} d_i(y)\alpha d_j(x)
\]

For all \(x,y \in M, \alpha \in \Gamma \) and \(n \in N \)

and Jordan higher reverse derivation of \(\Gamma \)-ring \(M \) if

\[
d_n(x\alpha x) = \sum_{i+j=n} d_i(x)\alpha d_j(x)
\]

and Jordan triple higher reverse derivation of \(\Gamma \)-ring \(M \) if

\[
d_n(x\alpha y\beta x) = d_n(x)\beta x\alpha y + \sum_{i+j+r=n} d_i(x)\beta d_j(y)\alpha d_r(x)
\]

For all \(x,y \in M, \alpha, \beta \in \Gamma \) and \(n \in N \)

also we proved that every Jordan higher reverse derivation of a \(\Gamma \)-ring \(M \) is higher reverse derivation of \(M \) [11], the main object of this paper is present the concepts of generalized higher reverse derivation, Jordan
generalized higher reverse derivation of \(\Gamma \)-ring \(M \) and we prove that every Jordan generalized higher reverse derivation of \(\Gamma \)-ring \(M \) is generalized higher reverse derivation of \(M \).

II. Generalized Higher Reverse Derivation of \(\Gamma \)-Rings

In this section we introduce and study of concepts of generalized higher reverse derivation, Jordan generalized higher reverse derivation and Jordan generalized triple higher reverse derivation of \(\Gamma \)-ring.

Definition 2.1:
Let \(M \) be a \(\Gamma \)-ring and \(F = (f_i)_{i \in \mathbb{N}} \) be a family of additive mappings of \(M \) such that \(f_0 = \text{id}_M \) then \(F \) is called \textbf{generalized higher reverse derivation of} \(M \) if there exists a higher reverse derivation \(D = (d_i)_{i \in \mathbb{N}} \) of \(M \) such that for all \(n \in \mathbb{N} \) we have:
\[
f_n(x \alpha y) = \sum_{i+j=n} f_i(y) \alpha d_j(x) \ldots \ldots (i)
\]
\(F \) is called \textbf{a Jordan generalized higher reverse derivation of} \(M \) if there exists a Jordan higher reverse derivation \(D = (d_i)_{i \in \mathbb{N}} \) of \(M \) such that for all \(n \in \mathbb{N} \) we have:
\[
f_n(x \alpha x) = \sum_{i+j=n} f_i(x) \alpha d_j(x) \ldots \ldots (ii)
\]
For every \(x,y \in M \) and \(\alpha \in \Gamma \)
\(F \) is said to be \textbf{a Jordan generalized triple higher reverse derivation of} \(M \) if there exists Jordan triple higher reverse derivation \(D = (d_i)_{i \in \mathbb{N}} \) of \(M \) for all \(n \in \mathbb{N} \) we have:
\[
f_n(x \alpha y \beta x) = f_n(x) \beta x \alpha y + \sum_{i+j+r=n} f_i(x) \beta d_j(y) \alpha d_r(x) \ldots \ldots (iii)
\]
For every \(x,y \in M \) and \(\alpha, \beta \in \Gamma \)

Example 2.2:
Let \(F = (f_i)_{i \in \mathbb{N}} \) be a generalized higher reverse derivation on a ring \(R \) then there exists a higher reverse derivation \(d = (f_i)_{i \in \mathbb{N}} \) of \(R \) such that
\[
f_n(xy) = \sum_{i+j=n} f_i(y) d_j(x)
\]
We take \(M = M_{1 \times 2}(\mathbb{R}) \) and \(\Gamma = \{i \in \mathbb{Z}: n \in \mathbb{Z}\} \), then \(M \) is \(\Gamma \)-ring.
We define \(D = (D_i)_{i \in \mathbb{N}} \) be a family of additive mappings of \(M \) such that \(D_n (a \ b) = (d_n(a) \ d_n(b)) \) then \(D \) is higher reverse derivation of \(M \).
Let \(F = (f_i)_{i \in \mathbb{N}} \) be a family of additive mappings of \(M \) defined by \(F_n (a \ b) = (f_n(a) \ f_n(b)) \)
Then \(F \) is a generalized higher reverse derivation of \(M \).
It is clear that every generalized higher reverse derivation of a \(\Gamma \)-ring \(M \) is Jordan generalized Higher reverse derivation of \(M \), But the converse is not true in general.

Lemma 2.3
Let \(M \) be a \(\Gamma \)-ring and let \(F = (f_i)_{i \in \mathbb{N}} \) be a Jordan generalized higher reverse derivation of \(M \) then for all \(x,y,z \in M \), \(\alpha, \beta \in \Gamma \) and \(n \in \mathbb{N} \), the following statements hold:

i) \(f_n(x \alpha y + y \alpha x) = \sum_{i+j=n} f_i(y) \alpha d_j(x) + f_i(x) \alpha d_j(y) \)
In particular if \(y \in Z(M) \)

ii) \(f_n(x \alpha y \beta x + x \beta y \alpha x) = f_n(x) \beta x \alpha y + \sum_{i+j+r=n} f_i(x) \beta d_j(y) \alpha d_r(x) + f_n(x) \alpha x \beta y + \sum_{i+j+r=n} f_i(x) \alpha d_j(y) \beta d_r(x) \)

iii) \(f_n(x \alpha y \alpha x) = f_n(x) \alpha x \alpha y + \sum_{i+j+r=n} f_i(x) \alpha d_j(y) \alpha d_r(x) \)
iv) $f_n(xayz + zayx) = f_n(z)axay + \sum_{i<n} f_i(z)ad_i(y)ad_r(x) + f_n(x)azay + \sum_{i<n} f_i(x)ad_i(y)ad_r(z)$

v) $f_n(xay\beta z) = f_n(z)bxay + \sum_{i+j+r=n} f_i(z)bd_i(y)ad_r(x)$

vi) $f_n(xay\beta z + zay\beta x) = f_n(z)bxay + \sum_{i<n} f_i(z)bd_i(y)ad_r(x) + f_n(x)bzay + \sum_{i<n} f_i(x)bd_i(y)ad_r(z)$

Proof:

i) Replace $(x + y)$ for x and y in definition 2.1 (i) we get:

$$f_n((x + y)\alpha(x + y)) = \sum_{i+j=n} f_i(x+y)\alpha d_i(x+y)$$

$$= \sum_{i+j=n} f_i(x)\alpha d_i(x) + f_i(y)\alpha d_i(y) + f_i(x+y)\alpha d_i(y) \quad \text{(1)}$$

On the other hand:

$$f_n((x + y)\alpha(x + y)) = f_n(x\alpha x + x\alpha y + y\alpha x + y\alpha y)$$

$$= f_n(x\alpha x + y\alpha y) + f_n(x\alpha y + y\alpha x)$$

$$= \sum_{i+j=n} f_i(x)\alpha d_i(x) + f_i(y)\alpha d_i(y) + f_i(x+y)\alpha d_i(y) \quad \text{(2)}$$

Compare (1) and (2) we get:

$$f_n(x\alpha y + y\alpha x) = \sum_{i+j=n} f_i(y)\alpha d_i(x) + f_i(x)\alpha d_i(y)$$

ii) Replacing $x\beta y + y\beta x$ for y in 2.3 (i) we get:

$$f_n(x\alpha(x\beta y + y\beta x) + (x\beta y + y\beta x)\alpha x)$$

$$= f_n(x\alpha(x\beta y) + x\alpha(y\beta x) + (x\beta y)\alpha x + (y\beta x)\alpha x)$$

$$= f_n((x\alpha x)\beta y + (x\beta y)\alpha x + (y\beta x)\alpha x)$$

$$= \sum_{i+j=n} f_i(y)\beta d_i(x\alpha x) + f_i(x)\beta d_i(x\alpha y) + f_i(x)\alpha d_i(x\beta y) + f_i(x)\alpha d_i(y\beta x)$$

$$= \sum_{i+j+r=n} f_i(y)\beta d_i(x)\alpha d_r(x) + f_i(x)\beta d_i(y)\alpha d_r(x) + f_i(x)\alpha d_i(y)\beta d_r(x) + f_i(x)\alpha d_i(y)\beta d_r(y)$$

$$= f_n(y)bx\alpha x + \sum_{i+j+r=n} f_i(y)\beta d_i(x)\alpha d_r(x) + f_n(x)bx\alpha y + \sum_{i+j+r=n} f_i(x)\beta d_i(y)\alpha d_r(x)$$

www.iosrjournals.org 27 | Page
\[+ f_n(x) \alpha x \beta y + \sum_{i+j+r=n} f_i(x) \alpha d_j(y) \beta d_r(x) + f_n(x) \alpha \beta y x + \sum_{i+j+r=n} f_i(x) \alpha d_j(\beta) d_r(y) \ldots (1) \]

On the other hand:

\[f_n(x \alpha y \beta y + y \beta x) = f_n(x \alpha x \beta y + x \alpha y \beta x + x \beta y \alpha x + y \beta x \alpha x) \]

\[= f_n(y) \beta x \alpha x + \sum_{i+j+r=n} f_i(y) \beta d_j(x) \alpha d_r(\beta) + f_n(x) \alpha y \beta x + \sum_{i+j+r=n} f_i(x) \alpha d_j(\beta) d_r(y) \]

\[+ f_n(x \alpha y \beta x + x \beta y \alpha x) \ldots (2) \]

Compare (1) and (2) we get the require result.

iii) Replacing \(\alpha \) for \(\beta \) in 2.3 (ii) we have:

\[f_n(\alpha \alpha \alpha \alpha x + \alpha x \alpha x) = 2(f_n(\alpha \alpha x)) \]

\[= 2f_n(x) \alpha x \alpha y + \sum_{i+j+r=n} f_i(x) \alpha d_j(\alpha) d_r(\alpha) \]

Since \(M \) is 2-torsion free then we get:

\[f_n(x \alpha y \alpha x) = f_n(x) \alpha x \alpha y + \sum_{i+j+r=n} f_i(x) \alpha d_j(\alpha) d_r(\alpha) \]

iv) Replacing \(x+z \) for \(x \) in 2.3 (iii) we have:

\[f_n((x + y) \alpha \alpha (x + y)) = f_n(x + z) \alpha (x + z) \alpha y + \sum_{i+j+r=n} f_i(x + z) \alpha d_j(\alpha) d_r(\alpha + z) \]

\[= f_n(x) \alpha x \alpha y + \sum_{i+j+r=n} f_i(x) \alpha d_j(\alpha) d_r(\alpha) \]

\[+ f_n(z) \alpha x \alpha y + \sum_{i+j+r=n} f_i(z) \alpha d_j(\alpha) d_r(\alpha) \]

\[+ f_n(x) \alpha z \alpha y + \sum_{i+j+r=n} f_i(x) \alpha d_j(\alpha) d_r(z) \]

\[+ f_n(z) \alpha z \alpha y + \sum_{i+j+r=n} f_i(z) \alpha d_j(\alpha) d_r(z) \ldots (1) \]

On the other hand:

\[f_n((x + y) \alpha \alpha (x + z)) = f_n(\lambda x \lambda y + \lambda \lambda \lambda z + \lambda \lambda \lambda z) \]

\[= f_n(x) \alpha x \lambda \alpha + \sum_{i+j+r=n} f_i(x) \alpha d_j(\lambda) d_r(\alpha) \]

\[+ f_n(z) \alpha \lambda \alpha + \sum_{i+j+r=n} f_i(z) \alpha d_j(\lambda) d_r(\lambda) \]

\[+ f_n(x) \alpha \lambda \alpha + \sum_{i+j+r=n} f_i(x) \alpha d_j(\lambda) d_r(z) \]

\[+ f_n(z) \alpha \lambda \alpha + \sum_{i+j+r=n} f_i(z) \alpha d_j(\lambda) d_r(z) + f_n(x) \alpha \lambda \alpha + \lambda \lambda \lambda \alpha \]

\[\ldots (2) \]

Compare (1) and (2) we get the require result.
(v) Replace \((x + z)\) for \(x\) in definition 2.1(iii) we have:

\[
f_n((x + z)\alpha y)(x + z) = f_n(x + z)\beta(x + z)\alpha y + \sum_{i+j+r=n}^i i^n f_i(x + z)\beta d_i(y)\alpha d_r(x + z)
\]

\[
= f_n(x)\beta x\alpha y + \sum_{i+j+r=n}^i i^n f_i(x)\beta d_i(y)\alpha d_r(x) + f_n(z)\beta x\alpha y + \sum_{i+j+r=n}^i i^n f_i(z)\beta d_i(y)\alpha d_r(x)
\]

\[
+ f_n(z)\beta x\alpha y + \sum_{i+j+r=n}^i i^n f_i(z)\beta d_i(y)\alpha d_r(x) + f_n(z)\beta z\alpha y + \sum_{i+j+r=n}^i i^n f_i(z)\beta d_i(y)\alpha d_r(z) \ldots (1)
\]

On the other hand:

\[
f_n((x + z)\alpha y)\beta(x + z) = f_n(x\alpha y\beta x + x\alpha y\beta z + z\alpha y\beta x + z\alpha y\beta z)
\]

\[
= f_n(x\alpha y\beta x + z\alpha y\beta x + x\alpha y\beta z) + f_n(x\alpha y\beta z)
\]

\[
= f_n(x)\beta x\alpha y + \sum_{i+j+r=n}^i i^n f_i(x)\beta d_i(y)\alpha d_r(x)
\]

\[
+ f_n(z)\beta x\alpha y + \sum_{i+j+r=n}^i i^n f_i(z)\beta d_i(y)\alpha d_r(z) + f_n(z)\beta z\alpha y + \sum_{i+j+r=n}^i i^n f_i(z)\beta d_i(y)\alpha d_r(z)
\]

\[
+ f_n(x\alpha y\beta z) \ldots (2)
\]

Compare (1) and (2) we get:

\[
f_n(x\alpha y\beta z) = f_n(z)\beta x\alpha y + \sum_{i+j+r=n}^i i^n f_i(z)\beta d_i(y)\alpha d_r(x)
\]

vi) Replace \((x + z)\) for \(x\) in definition 2.1(iii) we have:

\[
f_n((x + z)\alpha y \beta(x + z)) = f_n(x + z)\beta(x + z)\alpha y + \sum_{i+j+r=n}^i i^n f_i(x + z)\beta d_i(y)\alpha d_r(x + z)
\]

\[
= (f_n(x) + f_n(z))\beta(x + z)\alpha y + \sum_{i+j+r=n}^i i^n (f_i(x) + f_i(z))\beta d_i(y)\alpha (d_r(x) + d_r(z))
\]

\[
= f_n(x)\beta x\alpha y + f_n(z)\beta x\alpha y + f_n(x)\beta z\alpha y + f_n(z)\beta z\alpha y
\]

\[
+ \sum_{i+j+r=n}^i i^n f_i(x)\beta d_i(y)\alpha d_r(x) + f_i(z)\beta d_i(y)\alpha d_r(x) + f_i(x)\beta d_i(y)\alpha d_r(z) + f_i(z)\beta d_i(y)\alpha d_r(z) \ldots .(1)
\]

On the other hand:

\[
f_n((x + z)\alpha y \beta (x + z)) = f_n(x\alpha y\beta x + x\alpha y\beta z + z\alpha y\beta x + z\alpha y\beta z)
\]

\[
= f_n(x\alpha y\beta x + z\alpha y\beta x) + f_n(x\alpha y\beta z + z\alpha y\beta z)
\]

\[
= f_n(x)\beta x\alpha y + \sum_{i+j+r=n}^i i^n f_i(x)\beta d_i(y)\alpha d_r(x)
\]

\[
+ f_n(z)\beta z\alpha y + \sum_{i+j+r=n}^i i^n f_i(z)\beta d_i(y)\alpha d_r(z) + f_n(x\alpha y\beta z + z\alpha y\beta x) \ldots .(2)
\]

Compare (1) and (2) we get the require result
Definition 2.4:
Let $F = (f_i)_{i \in \mathbb{N}}$ be a Jordan generalized higher reverse derivation of a Γ-ring M, then for all $x, y \in M$ and $\alpha \in \Gamma$ we define:

$$\delta_n(x, y)_\alpha = f_n(x\alpha y) - \sum_{i+j=n} f_i(y)\alpha d_j(x)$$

In the following lemma introduce some properties of $\delta_n(x, y)_\alpha$

Lemma 2.5

If $F = (f_i)_{i \in \mathbb{N}}$ is a Jordan generalized higher reverse derivation of Γ-ring M then for all $x, y, z \in M$, $\alpha, \beta \in \Gamma$ and $n \in \mathbb{N}$:

i. $\delta_n(x, y)_\alpha = -\delta_n(y, x)_\alpha$

ii. $\delta_n(x + y, z)_\alpha = \delta_n(x, z)_\alpha + \delta_n(y, z)_\alpha$

iii. $\delta_n(x, y + z)_\alpha = \delta_n(x, y)_\alpha + \delta_n(x, z)_\alpha$

Proof:

i. by lemma 2.3 (i) and since f_n is additive mapping of M we get:

$$f_n(x\alpha y + y\alpha x) = \sum_{i+j=n} f_i(y)\alpha d_j(x) + f_i(x)\alpha d_j(y)$$

$$f_n(x\alpha y) + f_n(y\alpha x) = \sum_{i+j=n} f_i(y)\alpha d_j(x) + \sum_{i+j=n} f_i(x)\alpha d_j(y)$$

$$f_n(x\alpha y) - \sum_{i+j=n} f_i(y)\alpha d_j(x) = -f_n(y\alpha x) + \sum_{i+j=n} f_i(x)\alpha d_j(y)$$

$$f_n(x\alpha y) - \sum_{i+j=n} f_i(y)\alpha d_j(x) = -(f_n(y\alpha x) - \sum_{i+j=n} f_i(x)\alpha d_j(y))$$

$$\delta_n(x, y)_\alpha = -\delta_n(y, x)_\alpha.$$

ii. $\delta_n(x + y, z)_\alpha = f_n((x + y)\alpha z) - \sum_{i+j=n} f_i(z)\alpha d_j(x + y)$

$$= f_n(x\alpha z + y\alpha z) - (\sum_{i+j=n} f_i(z)\alpha d_j(x) + f_i(z)\alpha d_j(y))$$

$$= f_n(x\alpha z) - \sum_{i+j=n} f_i(z)\alpha d_j(x) + f_n(y\alpha z) - \sum_{i+j=n} f_i(z)\alpha d_j(y)$$

$$= \delta_n(x, z)_\alpha + \delta_n(y, z)_\alpha.$$

iii. $\delta_n(x, y + z)_\alpha = f_n(x\alpha (y + z)) - \sum_{i+j=n} f_i(y + z)\alpha d_j(x)$

$$= f_n(x\alpha y + x\alpha z) - \sum_{i+j=n} f_i(y)\alpha d_j(x) - f_i(z)\alpha d_j(x)$$

Since f_n is additive mapping of M then we have:

www.iosrjournals.org
\[\begin{align*}
&= f_n(x\alpha y) - \sum_{i+j=n} f_i(y)\alpha d_j(x) + f_n(x\alpha z) - \sum_{i+j=n} f_i(z)\alpha d_j(x) \\
&= \delta_n(x, y)_\alpha + \delta_n(x, z)_\alpha.
\end{align*}\]

iv.
\[\begin{align*}
\delta_n(x, y)_{\alpha + \beta} &= f_n(x(\alpha + \beta)y) - \sum_{i+j=n} f_i(y)(\alpha + \beta)d_j(x) \\
&= f_n(x\alpha y + x\beta y) - \sum_{i+j=n} f_i(y)\alpha d_j(x) - f_i(y)\beta d_j(x) \\
\text{Since } f_n \text{ is additive mapping} \\
&= f_n(x\alpha y) - \sum_{i+j=n} f_i(y)\alpha d_j(x) + f_n(x\beta y) - \sum_{i+j=n} f_i(y)\beta d_j(x) \\
&= \delta_n(x, y)_\alpha + \delta_n(x, y)_\beta.
\end{align*}\]

Remark 2.6:
Note that \(F = (f_i)_{i\in N} \) is generalized higher reverse derivation of a \(\Gamma \)-ring \(M \) if and only if \(\delta_n(x, y)_\alpha = 0 \) for all \(x, y \in M, \alpha \in \Gamma \) and \(n \in N \).

III. The Main Results

In this section we present the main results of this paper.

Theorem 3.1:
Let \(F = (f_i)_{i\in N} \) be a Jordan generalized higher reverse derivation of \(M \) then \(\delta_n(x, y)_\alpha = 0 \) for all \(x, y \in M, \alpha \in \Gamma \) and \(n \in N \).

Proof:
By lemma 2.3 (i) we get:
\[f_n(x\alpha y + y\alpha x) = \sum_{i+j=n} f_i(y)\alpha d_j(x) + f_i(x)\alpha d_j(y) \ldots \ldots \ (1)\]

On the other hand:
Since \(f_n \) is additive mapping of the \(\Gamma \)-ring \(M \) we have:
\[f_n(x\alpha y + y\alpha x) = f_n(x\alpha y) + f_n(y\alpha x) = f_n(x\alpha y) + \sum_{i+j=n} f_i(x)\alpha d_j(y) \ldots \ldots \ldots \ (2)\]

Compare (1) and (2) we get:
\[f_n(x\alpha y) = \sum_{i+j=n} f_i(y)\alpha d_j(x)\]
\[f_n(x\alpha y) - \sum_{i+j=n} f_i(y)\alpha d_j(x) = 0\]

By definition 2.5 we get:
\[\delta_n(x, y)_\alpha = 0\]
Corollary 3.2:
Every Jordan generalized higher reverse derivation of \(\Gamma \)-ring \(M \) is generalized higher reverse derivation of \(M \).

Proof:

By theorem 3.1 we get \(\delta_n(x, y) = 0 \) and by Remark 2.6 we get the require result.

Proposition 3.3
Every Jordan generalized higher reverse derivation of a 2-torsion free \(\Gamma \)-ring \(M \) such that \(x\alpha yz = x\beta yz \) and \(y \in Z(M) \) is Jordan generalized triple higher reverse derivation of \(M \).

Proof:

Let \(F = (f_i)_{i \in \mathbb{N}} \) be a Jordan generalized higher reverse derivation of \(M \).

Replace \(y \) by \((x\beta y + y\beta x)\) in lemma 2.3 (i) we get

\[
f_n(x\alpha(x\beta y + y\beta x) + (x\beta y + y\beta x)\alpha x) = f_n((x\alpha(x\beta y) + x\alpha(y\beta x) + (x\beta y)\alpha x) + (y\beta)\alpha x)
= f_n((x\alpha x)\beta y + (x\alpha y)\beta x + (x\beta y)\alpha x + (y\beta)\alpha x)
\]

\[
= \sum_{i+j=n} f_i(y)\beta d_i(x\alpha x) + f_i(x)\beta d_j(x\alpha y) + f_i(x)\alpha d_i(y\beta x) + f_i(x)\alpha d_j(y\beta x)
\]

\[
= \sum_{i+j+n} f_i(y)\beta d_i(x)\alpha d_i(x) + f_i(x)\beta d_j(y)\alpha d_j(x) + f_i(x)\alpha d_i(y)\beta d_i(x) + f_i(x)\alpha d_j(y)\beta d_i(x)
\]

\[
= f_n(y)\beta x\alpha x + \sum_{i+j+n} f_i(y)\beta d_i(x)\alpha d_i(x) + f_n(x)\beta x\alpha y + \sum_{i+j+n} f_i(x)\beta d_i(y)\alpha d_i(x) + f_n(x)\alpha y\beta x + \sum_{i+j+n} f_i(x)\alpha d_i(y)\beta d_i(x)
\]

\[
\text{On the other hand:}
\]

\[
f_n(x\alpha(x\beta y + y\beta x) + (x\beta y + y\beta x)\alpha x) = f_n(x\alpha x\beta y + x\alpha y\beta x + x\beta y\alpha x + y\beta x\alpha x)
= f_n(x\alpha x\beta y + y\beta x\alpha x) + f_n(x\alpha y\beta x + x\beta y\alpha x)
\]

\[
= f_n(y)\beta x\alpha x + \sum_{i+j+n} f_i(y)\beta d_i(x)\alpha d_i(x)
+ f_n(x)\alpha y\beta x + \sum_{i+j+n} f_i(x)\alpha d_i(x)\beta d_i(x)
\]

\[
\text{Compare (1) and (2) and since } x\alpha yz = x\beta yz \text{ we get}
\]

\[
f_n(x\alpha y\beta x + x\alpha y\beta x) = 2(f_n(x\alpha y\beta x))
= 2(f_n(x)\beta x\alpha y + \sum_{i+j+n} f_i(x)\beta d_i(y)\alpha d_i(x))
\]

Since \(M \) is a 2-torsion free then we have:

\[
f_n(x\alpha y\beta x) = f_n(x)\beta x\alpha y + \sum_{i+j+n} f_i(x)\beta d_i(y)\alpha d_i(x)
\]
References

