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Abstract: This research work is an exhaustic survey of some basic results and ideas in the theory of one 

dimensional dynamical systems. We have looked at the eventual behaviour of the iterates of the quadratic family 

f(x) = x (1-x), where  is parameter value,  0 <  x < 1 and 1 < µ< 3.  In contrast to the graphical approach 
outlined in Devaney, we gave an analytical approach as means of justifying the convergence of the sequence of 

iterates to the fixed points.    
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I. Introduction 
In modern times, there is no shortage of information of any kind no matter how simple or complex a 

system might be. Mathematical science has remained the backbone of modern technological and scientific 
advancement. In particular discrete dynamics and by extension the analysis of discrete dynamical systems have 

provided a gate way to both graphical and analytical solution  to real-life problems. It is against this back drop 

that informed the need to holistically isolate and analyze the dynamics of the quadratic family, f(x) = x (1-x). 

 

Proportion 5.1 Given fµ(x) = µx(1-x), µ > 1 then  

i. fµ(0) = fµ(1)=0 and  

ii. there exists pµ such that fµ(pµ)=pµ,  

Where  and  0 < pµ < 1  Devaney, (1986) 

Proof: conditions i, essentially gives the zeros of fµ(x) = µx (1-x) 

obtained by setting µx(1-x) = 0,that is x = 0 or  x= 1 since µ > 1.                       Thus fµ(0) = fµ(1) = 0 implies, by 

Rolle’s theorem, the existence of a critical points 0 < c < 1 Such that  Consequently f (c) = µ -2 

µc =0 i.e, x = c = ½. May (1976) and Yuguda (1998). 

Hence the graph of fµ(x) being a quadratic, opens down wards and so fµ increases on (0,½) and 

decreases on(½, 1). 

For the fixed points, we have fµ(pµ) = pµ  µpµ(1-pµ) - pµ= 0 

  pµ (µ (1-pµ) -1) = 0 that is  
pµ = 0 or µ(1-pµ) – 1 = 0 or - µpµ = 1 - µ    

 pµ =  

ii.  if µ > 1 then pµ =   > 0,  i.e  pµ    = 1 -  

 Thus 0<  pµ < 1. This establishes the result.  

 

Proposition 5.2: The sequence of iterates (x)  -   as n   whenever  

x < 0  or x > 1, and for µ >1.  Devaney, (1986)  

Proof: suppose x < 0,  

then fµ(x) – x = µx(1- x) – x = x (µ-1) - µ x2.   

Now x (µ-1) < 0 since x < 0 and µ -1 > 0.  

Also µx2 > 0 since x2 > 0.  Hence x (µ-1) - µ x2 < 0 that is µx(1-x) < x. 

Hence fµ(x) < x and  (x) = fµ(f µ(x)) < fµ(x) < x 

Thus inductively  (x) =  (x)) , . .  , fµ(fµ(x)) <fµ(x) <x. 
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This shows that (x) is a decreasing sequence of n which cannot converge to p otherwise we would 

have (x)   (p) = k < p where as (x)  p 

this is a contradiction and f(x) cannot be bounded below.  

Hence (x)  -  as n  .  

Now if x > 1, then  (x) = x(1 –x) < 0, since 1 – x < 0.  

Hence µ x(1- x) < x that is x) < x and  (x) = f (f (x)) < f (x) < x and by the previous argument, 

we deduce that  (x)  -  as   n as well. We shall now look at the dynamics proper of (x) as the 

parameter value  is varied accordingly in the next proposition. 

 

Proposition 5.3 suppose 1 <  < 3 then  

i.  f has an attracting fixed point at p  =  and a repelling fixed point at 0. 

 ii.  if 0 < x <1, then lim (x) = p    Devaney, (1986) 

              n  
 

Proof: Under the analysis of the proof of proposition 5.3, the fixed points were actually found to be p =  0 and 

p =   it remains to prove that  p =   is attracting and p = 0 is  repelling. 

   Using the notion of hyperbolicity we see that  

 (p) =  - 2   = - 2  + 2 = 2 - . 

And   (p) = 2 -  and for 1 <  < 3, we have -1 > -  > - 3 if and only if  

2 -1 > 2 -  > 2 -3 that is 1 > 2 -  > -1 that is 2 -< 1. Hence we conclude that 

   (p) =  2 -  < 1 and p is an attracting fixed point. 

In case of p = 0, we have   - 2 . 0 =  > 0 since 1 <  < 3 and 

  (0)  =   =  > 1 and so 0 is a repelling fixed point.  

In order to prove (ii), we first consider the case 1 < < 2 in which   > ½ and 1 -  < 1 – ½ that is  = 

p <  ½, and since  > 0,  0 < p < ½   

Now for x  (0, p),  > 0 and so f is increasing 

0 < x < p < ½ , thus 0 < f(x) < p. We shall show that (x) is an increasing sequence of n on (0, p) that is 

f(x) – x > 0.    

But f(x) – x  = x (1-x) – x 

  = x (-1) - x2 

  =   

  =    

  =    

  = x(p - x) > 0 since x < p, 

Therefore x(1-x) > x. Hence f (x) > x  

and so  (x) = f (f(x)) > f(x) > x > 0. 
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And inductively p > (x) > . . . > f (f (x)) > f (x) > 0. Thus (x)is an increasing sequence of n. Now 

suppose there is a least upper bound (lub) 

 pa < p for the sequence. Then we have  (x)  pa and 

 (x) = f  f(pa) > pa 

This is a contradiction since we cannot have (x)  k > pa if pa is as defined. So there exists no such lub. pa. 

Hence p must be the least upper bound. Consequently  (x)  p as n   for all x(0, p) 

 
Fig  1: The graph of )1()( xxxf   for 21  

 
 

For x  (p  ½), f (x) –x =  x(p -x) < 0 

Since x > p so that  x (1 – x) < x.  Hence (x)  < x. Note that in this case  (x)  =  (1– 2x) > 0 

therefore f(x) is still increasing  on (p, ½) with 

 f(p) < f(x) <f(½) that is p < f (x) <  <  . But f (x) < x  

implies (x) =  f(f (x)) < f(x) < ½      

Hence p <  (x) < . . . < f(f(x)) < f(x)< ½ . 

Now suppose there exists a greatest lower bound (glb) pa > p for this sequence Then we have    

pa and (x) = f( (x))  f(pa)  <pa 

A clear contradiction. Since we cannot have (x)  k < pa if pa is as defined. 

So there exists no such greatest lower bound (glb) pa. Therefore p  is the glb. Consequently (x)  

p as n  for all x  (p ½). But then 

 (0, ½ ) = (0, p]  [p ½ ). Therefore (x)  p for all x (0, ½) as n  . 

When x € ( ½, 1), (x) = µ - 2x = µ (1-2 x) < 0. 

Therefore fµ(x) is decreasing on ( ½ , 1) so 0 = fµ(1) < fµ(x) <  fµ ( ½ ) =  <   Therefore 0 < fµ(x) < ½ . 

Thus fµ(x) maps the interval fµ( ½ , 1) into  

 

the interval (0, ½ ) . But (x)  = ( (x))  (x) = ( ) where 

 x1 =f (x) (0, ½ )  and so lim (x)  = pµ. thus for 1 < µ < 2,  

              n→∞ 

lim (x)  = pµ, 

n→∞  

If µ = 2, then pµ =  = ½  and f2( ½ ) = ½ . 

Therefore for x  (0, ½ ], f2(x) is increasing with x so 0 < f2(x) < 1/2 . 
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Also f2 (x) – x = x (1 – 2x) > 0, so f2(x) > x i.e (x) > f2 (x) > x > 0. Hence 

 ½ >  >  . . . > f2(x) > x > 0. We claim that this sequence is converging to ½ since its bounded above 

by ½ . For otherwise suppose there exist a lub (least upper bound) pa < ½ , then (x)  → pa but  (x) = 

f2( (x) → f(pa) = k > pa. this is a contradiction. Thus ½ must be the lub.  

Therefore (x) → ½ , for all x  (0, ½]. 

For x  [ ½, 1), f2(x) is decreasing with x  
Since f2 (x) = 2 (1 – 2x) < 0. Therefore 0 = f2(1) < f2 (x) < f2( ½ ) = ½  

i.e 0 < f2 (x) < ½ . thus f2 (x) map the interval ( ½, 1) on to (0, ½ ], but on  

(0, ½], (x) → ½ . Therefore x  [ ½ 1 ), x = f2(x) (0, ½] and 

 (x) = (x ) → ½  and since [0, 1) = (0, ½ )  (1/2, 1)  [½], the result follows for all x (0, 1). 

Consequently (x)  ½ as n    

 

 

In the case 2 < µ< 3, we have  > 1/3 if and only if -   < -   that is  

1 -   - 1/3   pµ < 2/3 

Also,     1/2  > - 1/2  i.e  

i.e 1 – 
1
/ > 1 - ½    = p > ½  ½ < pµ < 

2
/3 < 1. 

Now let pµ be the unique point in (0, ½ ) which is mapped on to pµ by fµ that is fµ(p) pµ. As shown on the 

diagram below   

This is possible since f(x) is a quadratic polynomial. Now (p,  p), contains the critical point ½ at 

which fµ(x) is maximum. Therefore f(x) is monotonically increasing on (   ½ ). Since (x) =  (1-2 x) > 0 

for all  

x   [p, ½]. 

So that fµ[ pµ] = fµ  

We can specifically write  

fµ[  ½ ]= [fµ[( ), f(½ )] = [   ] 

^ ^ 

^ 

^ 

^ 

^ 

^ 

^ 
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Also fµ is decreasing on ( ½, pµ] since (x) = µ (1 – 2 x) < 0 for all  

x [½, pµ]  
So that we can also write  

fµ [ ½, pµ] = [fµ (p), fµ ( ½ )] = [pµ, 
µ
/4] 

Therefore f [ ] = [pµ, µ/4]  [pµ, µ/4] = [pµ, µ/4] with pµ < fµ (x) < µ/4 . But since fµ(x) is decreasing on [pµ 

], we have   f  

However, if x < pµ, fµ (x) – x = µx (pµ – x) > 0 

And so fµ(x) > x so that (x) > fµ(x) > x,  x < pµ.  

therefore f (
µ/4) =  ( ½ ) > fµ( ½ ) > ½  

and ½ < pµ. Consequently  (x) maps the interval [pµ, pµ] inside  

[½ , pµ]. Now  (x) is increasing with n on [½, P] and 

 ½ < µ/4 = fµ( ½ ) < fµ(x) < pµ. That is ½, < fµ (x) < pµ, and for the sequence of interates of n, pµ > (x) >  . . > 

fµ(x) > x  > ½ . Therefore pµ is an upper bound (ub) of the sequence. 

We now suppose there exists a least upper bound (lub) pa < pµ such that (x)→ . But then  (x) = 

fµ( (x)) → fµ(pa) = k > pa. A clear contradiction of the assertion that pa is a lub. And so pµ is the lub 

Thus  (x)→pµ as n →∞ for x  [ ½, pµ] and consequently for all x ].  

  However, if x < pµ, then (x)  - x = µx (pµ -x) > 0 i.e (x) is an increasing sequence of n which 

cannot be bounded above by  since  

fµ  = pµ >  and since pµ is the lub for the sequence (x). when  

x < pµ, there exist k > 0 such that (x)   ].   

 And → p as n → ∞. 

Finally  if x   (pµ, 1), then f(x) is decreasing with respect to x on       

(pµ, 1), so, 0 = fµ(1) < fµ(x) < pµ. i.e 0 < f (x) < p  and so f(x) maps the interval (pµ 1) on to (0, pµ). Thus (x) 

= (x1 ) → pµ as n →∞, where  

x1 = fµ(x)  (0,p) and x (pµ, 1). 

Hence in all cases, we have (x)  →pµ as n →∞, since  

(0, 1) = (0,    pµ]  ( pµ 1). 

Now putting the three cases together 1 < µ < 2, µ = 2 and 2 < µ < 3  fµ has only two fixed points and all 

other points in (0, 1) are asymptotic to pµ. 

 

II. Summary 
We used the quadratic family to study in details one dimensional dynamics. We begin in earnest by 

proposition 5.3 which essentially gives the zeros and fixed points of the map leading to proposition 5.2 which 

shows what happens when iterating the quadratic family out side the unit interval. Then of course proposition 

5.3 is a true analysis of the behaviour of the map when    1< < 3. 

 

III. Conclusion 

In proposition 5.3 we established that for 1 <  < 3 and  x[0, 1], f (x) has only two fixed points, one 

at x = 0 and the other at x  =  , where   , and all other points in the interval [0,1] are asymptotic 

to the fixed point  

^ 

^ 

^ 

^ ^ 

^ 

^ 

^ 

^ 

^ ^ 
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