On $M_{n}^{* *}$-Manifold

Shalini Singh

Department of Applied Mathematics JSS Academy of Technical Education, Noida-201301, India

```
Abstract: In the present paper, after defining an integrated contact metric structure manifold [3] I have defined \(M_{n}^{* *}\) and nearly \(M_{n}^{* *}\) manifold. It has been shown that \(M_{n}^{* *}\) is integrable. Several useful theorems on these manifolds have also been derived.
Mathematics Subject Classification: 53
```

Keywords and Phrases: C^{∞}-manifold, integrated contact structure, integrated contact metric structure, Riemannian metric, Riemannian connection.

I. Introduction

Let M_{n} be a differentiable manifold of differentiability class C^{∞}. Let there exist in M_{n} a vector valued C^{∞} - linear function Φ, a C^{∞} - vector field η and a C^{∞}-one form ξ such that

$$
\begin{equation*}
\Phi^{2}(X)=a^{2} X-c \xi(X) \eta \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
(\bar{\eta})=0, \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
G(\bar{X}, \bar{Y})=a^{2} G(X, Y)-c \xi(X) \xi(Y) \tag{1.3}
\end{equation*}
$$

Where $\Phi(X)=\bar{X}, a$ is a nonzero complex number and c is an integer.
Let us agree to say that Φ gives to M_{n} a differentiable structure define by algebraic equation (1.1). We shall call (Φ, η, a, c, ξ) as an integrated contact structure.

Remark 1.1: The manifold M_{n} equipped with an integrated contact structure (Φ, η, a, c, ξ) will be called an integrated contact structure manifold.

Remark 1.2: The C^{∞} manifold M_{n} satisfying (1.1), (1.2) and (1.3) is called an integrated contact metric structure manifold (Φ, η, a, c, G, ξ)

Agreement 1.1: All the equations which follow will hold for arbitrary vector field $X, Y, Z, \ldots \ldots$ etc.
It is easy to calculate in M_{n} that

$$
\begin{equation*}
\xi(\eta)=\frac{a^{2}}{c} \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\Phi(\bar{X})=0 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
G(X, \eta) \xlongequal{\operatorname{def}} \xi(X) \tag{1.6}
\end{equation*}
$$

Remark 1.3: The integrated contact metric structure manifold (Φ, η, a, c, G, ξ) gives an almost norden contact metric manifold [2], Lorentzian Para-contact manifold [1] or an almost Para-contact Riemannian manifold [4] according as $\left(a^{2}=-1, c=1\right),\left(a^{2}=1, c=-1\right)$ or $\left(a^{2}=1, c=1\right)$

Agreement 1.2: An integrated contact metric structure manifold will be denoted by M_{n}. In the sequel, arbitrary vector fields will be denoted by $X, Y, Z, \ldots \ldots$.etc.

Definition 1.1: A C^{∞}-manifold M_{n} satisfying

$$
\begin{equation*}
\bar{X}=D_{X} \eta \tag{1.7}
\end{equation*}
$$

will be denoted by M_{n}^{*}. It is easy to calculate in M_{n}^{*}

$$
\begin{equation*}
\left(D_{X} \xi\right)(Y)=`(X, Y) \tag{1.8}
\end{equation*}
$$

where

$$
\begin{align*}
& ' \Phi(X, Y) \xlongequal{\text { def }} G(\bar{X}, Y)=G(X, \bar{Y}) \tag{1.9}\\
& \left(D_{X} \xi\right)(Y)-\left(D_{Y} \xi\right)(X)=0 \tag{1.10}
\end{align*}
$$

Definition 1.2: A C^{∞}-manifold M_{n}^{*} satisfying

$$
\begin{equation*}
\left(D_{X} \xi\right)(\bar{Y})=-\left(D_{\bar{X}} \xi\right)(Y)=-\left(D_{Y} \xi\right)(\bar{X}) ; D_{\eta} ` \Phi=0 \tag{1.11}
\end{equation*}
$$

will be called $M_{n}^{* *}$-manifold if

$$
\begin{equation*}
\left(D_{X} \Phi\right)(Y)=-\xi(Y)\left(D_{\bar{X}} \eta\right)+\left(D_{Y} \xi\right)(\bar{X}) \eta \tag{1.12}
\end{equation*}
$$

and will be called nearly $M_{n}^{* *}$-manifold if

$$
\begin{equation*}
\left(D_{X} \Phi\right)(Y)+\left(D_{Y} \Phi\right)(X)=-\xi(Y) D_{\bar{X}} \eta-\xi(X) D_{\bar{Y}} \eta \tag{1.13}
\end{equation*}
$$

where D is a Riemannian connection.
The Nijenhuis tensor N with respect to Φ is given by

$$
\begin{equation*}
N(X, Y) \xlongequal{\text { def }}[\bar{X}, \bar{Y}]+\overline{\overline{[X, Y}]}-\overline{[\bar{X}, Y]}-\overline{[X, \bar{Y}]} \tag{1.14}
\end{equation*}
$$

which yields

$$
\begin{equation*}
N(X, Y)=\left(D_{\bar{X}} \Phi\right)(Y)-\left(D_{\bar{Y}} \Phi\right)(X)-\overline{\left(D_{X} \Phi\right)(Y)}+\overline{\left(D_{Y} \Phi\right)(X)} \tag{1.15}
\end{equation*}
$$

and

$$
\begin{align*}
& ` N(X, Y, Z)=\left(D_{\bar{X}} ` \Phi\right)(Y, Z)-\left(D_{\bar{Y}} ` \Phi\right)(X, Z) \tag{1.16}\\
& -\left(D_{X} ` \Phi\right)(Y, Z)+\left(D_{Y} ` \Phi\right)(X, Z)
\end{align*}
$$

where

$$
\begin{equation*}
N(X, Y, Z) \xlongequal{\text { def }} G(N(X, Y), Z) \tag{1.17}
\end{equation*}
$$

II. On $M_{n}^{* *}$-Manifold

Theorem 2.1: $\operatorname{In} M_{n}^{*}$, we have

$$
\begin{gather*}
\left(D_{X} ` \Phi\right)(Y, Z)=-\xi(Y) ` \Phi(\bar{X}, Z)+\left(D_{Y} \xi\right)(\bar{X}) \xi(Z) \tag{2.1a}\\
\begin{array}{c}
\left(D_{X} ` \Phi\right)(Y, Z)+\left(D_{Y} ` \Phi\right)(X, Z)=a^{2}[\xi(Y) G(X, Z)+\xi(X) G(Y, Z)] \\
+2 c \xi(X) \xi(Y) \xi(Z)
\end{array} \tag{2.1b}
\end{gather*}
$$

$$
\begin{equation*}
\left(D_{X} ` \Phi\right)(\bar{Y}, Z)+\left(D_{Y} ` \Phi\right)(Y, \bar{Z})=\left[\left(D_{\bar{Y}} \xi\right)(\bar{X}) \xi(Z)+a^{2} \xi(Y) ` \Phi(X, Z)\right] \tag{2.1c}
\end{equation*}
$$

Proof: (1.9) yields
(2.2) $\quad\left(D_{X}{ }^{`} \Phi\right)(Y, Z)=G\left(\left(D_{X} \Phi\right)(Y), Z\right)$

Operating G on both sides of (1.12) and using (1.3) (1.6) and (2.2), we get

$$
\begin{equation*}
\left(D_{X} \backslash \Phi\right)(Y, Z)=-\xi(Y) G\left(D_{\bar{X}} \eta, Z\right)+\left(D_{Y} \xi\right)(\bar{X}) \xi(Z) \tag{2.3}
\end{equation*}
$$

Using (1.7) and (1.9) in the above equation, we get (2.1a). Using (1.9) and (1.1) in (2.1a), we get

$$
\begin{equation*}
\left(D_{X} ` \Phi\right)(Y, Z)=a^{2} \xi(Y) G(X, Z)+c \xi(X) \xi(Y) \xi(Z)+\left(D_{Y} \xi\right)(\bar{X}) \xi(Z) \tag{2.4}
\end{equation*}
$$

Interchanging X and Y in above equation, we get

$$
\begin{equation*}
\left(D_{Y} \backslash \Phi\right)(X, Z)=a^{2} \xi(X) G(Y, Z)+c \xi(Y) \xi(X) \xi(Z)+\left(D_{X} \xi\right)(\bar{Y}) \xi(Z) \tag{2.5}
\end{equation*}
$$

adding (2.4) and (2.5) and using (1.11), we get (2.1b). Barring Y in (2.4) and using (1.5), we get

$$
\begin{equation*}
\left(D_{X}{ }^{`} \Phi\right)(\bar{Y}, Z)=\left(D_{\bar{Y}} \xi\right)(\bar{X}) \xi(Z) \tag{2.6}
\end{equation*}
$$

Barring Z in (2.4) and using (1.5) and (1.9), we get

$$
\begin{equation*}
\left(D_{X}{ }^{`} \Phi\right)(Y, \bar{Z})=a^{2} \xi(Y) ` \Phi(X, Z) \tag{2.7}
\end{equation*}
$$

adding (2.6) and (2.7), we get (2.1c).
Corollary 2.1: $\operatorname{In} M_{n}^{* *}$, we have

$$
\begin{equation*}
\left(D_{X}{ }^{`} \Phi\right)(Y, \bar{Z})=-a^{2} \xi(Y) ` \Phi(X, Z) \tag{2.8a}
\end{equation*}
$$

$$
\begin{equation*}
\left(D_{X} ` \Phi\right)(\bar{Y}, \bar{Z})=0 \tag{2.8b}
\end{equation*}
$$

$$
\begin{equation*}
\left(D_{\bar{X}} ` \Phi\right)(Y, Z)+\left(D_{Y} ` \Phi\right)(\bar{X}, Z)-\left(D_{X} ` \Phi\right)(Y, \bar{Z})=0 \tag{2.8c}
\end{equation*}
$$

$$
\begin{equation*}
\left(D_{\bar{X}}{ }^{`} \Phi\right)(\bar{Y}, Z)+\left(D_{\bar{Y}}{ }^{`} \Phi\right)(\bar{X}, Z)=0 \tag{2.8d}
\end{equation*}
$$

Proof: Barring Z in (2.1a) and using (1.5), (1.9), (1.1), (1.3), we get (2.8a). Barring Y in (2.8a) and using (1.5), we get (2.8b). Barring X in (2.1b) and using (1.5) and (2.8a), we get (2.8c). Barring X and Y both in (2.1b) and using (1.5), we get (2.8d).

Theorem 2.2: $M_{n}^{* *}$ is integrable.
Proof: Barring X in (1.12), we get

$$
\begin{equation*}
\left(D_{\bar{X}} \Phi\right)(Y)=-\xi(Y)\left(D_{\bar{X}} \eta\right)+\left(D_{Y} \xi\right)(\overline{\bar{X}}) \eta \tag{2.9}
\end{equation*}
$$

Barring both sides of (1.12) and using (1.2), we get

$$
\begin{equation*}
\overline{\left(D_{X} \Phi\right)(Y)}=-\xi(Y) \overline{\left(D_{\bar{X}} \eta\right)} \tag{2.10}
\end{equation*}
$$

Interchanging X and Y in (2.9) and (2.10) separately, we get

$$
\begin{equation*}
\left(D_{\bar{Y}} \Phi\right)(X)=-\xi(X)\left(D_{\bar{Y}} \eta\right)+\left(D_{X} \xi\right)(\overline{\bar{Y}}) \eta \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\left(D_{Y} \Phi\right)(X)}=-\xi(X) \overline{\left(D_{\bar{Y}} \eta\right)} \tag{2.12}
\end{equation*}
$$

Using (2.9), (2.10), (2.11), (2.12) and (1.7) in (1.15), we get

$$
\begin{equation*}
N(X, Y)=\left[\left(D_{Y} \xi\right)(\overline{\bar{X}})-\left(D_{X} \xi\right)(\overline{\bar{Y}})\right] \eta \tag{2.13}
\end{equation*}
$$

(1.1) yields

$$
\begin{equation*}
\xi(\overline{\bar{Y}})=\xi\left(a^{2} Y-c \xi(Y) \eta\right) \tag{2.14}
\end{equation*}
$$

Differentiating corollary (2.14) covariantly along the vector X and using (1.4), we get

$$
\begin{equation*}
\left(D_{X} \xi\right)(\overline{\bar{Y}})=a^{2}\left(D_{X} \xi\right)(Y) \tag{2.15}
\end{equation*}
$$

Integrating X and Y in the above equation, we get

$$
\begin{equation*}
\left(D_{Y} \xi\right)(\overline{\bar{X}})=a^{2}\left(D_{Y} \xi\right)(X) \tag{2.16}
\end{equation*}
$$

Using (2.15), (2.16) and (1.10) in (2.13), we get
(2.17)

$$
N(X, Y)=0
$$

which proves the theorem.

Corollary 2.2: In $M_{n}^{* *}$, we have

$$
\begin{align*}
& \left(D_{X} \Phi\right)(Y)=-a^{2} \xi(Y) X+c \xi(X) \xi(Y) \eta+\left(D_{Y} \xi\right)(\bar{X}) \eta \tag{2.18}\\
& c \xi\left(\left(D_{X} \Phi\right)(Y)\right)=-a^{2}\left(D_{Y} \xi\right)(\bar{X}) \tag{2.19}\\
& \wedge N(X, Y, Z)=0 \tag{2.20}
\end{align*}
$$

Proof: Using (1.7) and (1.1) in (1.12), we get (2.18). Operating ξ on both the sides of (2.18) and using (1.4), we get (2.19). Operating G on both the sides of (2.17) and using (1.17), we get (2.20).

III. Affine Connection

Let B be an affine connection in $M_{n}^{* *}$ defined by

$$
\begin{equation*}
B_{X} Y \xlongequal{\text { def }} D_{X} Y+H(X, Y) \tag{3.1}
\end{equation*}
$$

where $H(X, Y)$ is a vector valued bilinear function. If S be the torsion tensor of the connection B, we have

$$
\begin{equation*}
S(X, Y)=H(X, Y)-H(Y, X) \tag{3.2}
\end{equation*}
$$

If $H(X, Y)$ is skew-symmetric, we have

$$
\begin{equation*}
S(X, Y)=2 H(X, Y)=-2 H(Y, X) \tag{3.3}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
S(X, Y, Z)=2 ` H(X, Y, Z)=-2 ` H(Y, X, Z) \text {, } \tag{3.4}
\end{equation*}
$$

where
(3.5a) $S(X, Y, Z) \xlongequal{\text { def }} G(S(X, Y), Z)$,
and

$$
\begin{equation*}
H(X, Y, Z) \xlongequal{\text { def }} G(H(X, Y), Z) \tag{3.5b}
\end{equation*}
$$

Theorem 3.1: On $M_{n}^{* *}$, we have

$$
\begin{align*}
& \left(B_{X} \Phi\right)(Y)+\xi(Y)\left(B_{\bar{X}} \eta\right)-\left(B_{Y} \xi\right)(\bar{X}) \eta=H(X, \bar{Y})-\overline{H(X, Y)} \tag{3.6}\\
& +\xi(Y) H(\bar{X}, \eta)+\xi(H(Y, \bar{X})) \eta
\end{align*}
$$

Proof: Using (1.5) in (1.12) and $\Phi(X)=\bar{X}$, we get

$$
\begin{equation*}
D_{X} \bar{Y}-\overline{D_{X} Y}=-\xi(Y)\left(D_{\bar{X}} \eta\right)-\xi\left(D_{Y} \bar{X}\right) \eta \tag{3.7}
\end{equation*}
$$

Using (3.1) in the above, we get (3.6).
Theorem 3.2: On $M_{n}^{* *}$, we have

$$
\begin{equation*}
\left(B_{X} \xi\right)(\bar{Y})=-\left(B_{\bar{X}} \xi\right)(Y)=-\left(B_{Y} \xi\right)(\bar{X}) \tag{3.8}
\end{equation*}
$$

if

$$
\begin{equation*}
\xi(H(X, \bar{Y}))=0 \tag{3.9a}
\end{equation*}
$$

and
(3.9b) $\quad H(X, Y)$ is skew-symmetric

Proof: Using (1.5) in (1.11), we have

$$
\xi\left(D_{X} \bar{Y}\right)=-\xi\left(D_{Y} \bar{X}\right)
$$

Using (3.1) in the above equation, we get

$$
\begin{equation*}
\xi\left(B_{X} \bar{Y}\right)+\xi\left(B_{Y} \bar{X}\right)=\xi(H(X, \bar{Y}))+\xi(H(Y, \bar{X})) \tag{3.10}
\end{equation*}
$$

From (3.9b), we have

$$
\begin{equation*}
\xi(H(\bar{X}, Y))=-\xi(H(Y, \bar{X})) \tag{3.11}
\end{equation*}
$$

From (1.5), we get

$$
\begin{equation*}
\xi\left(B_{X} \bar{Y}\right)=-\left(B_{X} \xi\right)(\bar{Y}) \tag{3.12}
\end{equation*}
$$

From (3.10), (3.11) and (3.12), we get

$$
\begin{equation*}
\left(B_{X} \xi\right)(\bar{Y})+\left(B_{Y} \xi\right)(\bar{X})=-\xi(H(X, \bar{Y}))+\xi(H(\bar{X}, Y)) \tag{3.13}
\end{equation*}
$$

(1.11) yields

$$
\begin{equation*}
\xi\left(D_{X} \bar{Y}\right)=\bar{X} \xi(Y)-\xi\left(D_{X} Y\right) \tag{3.14}
\end{equation*}
$$

Using (3.1) in above, we get

$$
\begin{equation*}
\left(B_{X} \xi\right)(\bar{Y})+\left(B_{\bar{X}} \xi\right)(Y)=-\xi(H(X, \bar{Y}))-\xi(H(\bar{X}, Y)) \tag{3.15}
\end{equation*}
$$

Thus using (3.9a), (3.9b) in (3.13) and (3.15), we get (3.8).
Theorem 3.3: On $M_{n}^{* *}$, we have

$$
\begin{equation*}
\xi\left(B_{X} \overline{\bar{Y}}\right)+\xi\left(B_{\bar{X}} \bar{Y}\right)=\xi(H(\bar{X}, \bar{Y}))+a^{2} \xi(H(X, Y))-c \xi(Y) \xi(H(X, \eta)) \tag{3.16}
\end{equation*}
$$

Proof: (1.11) yields

$$
\xi\left(D_{X} \bar{Y}\right)=\bar{X}(\xi(Y))-\xi\left(D_{\bar{X}} Y\right)
$$

Using (3.1) in the above equation, we get

$$
\xi\left(D_{X} \bar{Y}\right)+\xi\left(B_{\bar{X}} Y\right)=\bar{X}(\xi(Y))+\xi(H(X, \bar{Y}))+\xi(H(\bar{X}, Y))
$$

Barring Y in the above equation and using (1.1), (1.2), we get (3.16).
Theorem 3.4: In $M_{n}^{* *}$, we have

$$
\begin{align*}
& \left(D_{X} ` \Phi\right)(Y, Z)+\left(D_{Y} ` \Phi\right)(Z, X)+\left(D_{Z} ` \Phi\right)(X, Y)=2\left[\xi(X)\left(D_{X} \xi\right)(\bar{Y})\right. \tag{3.17}\\
& \left.+\xi(Y)\left(D_{X} \xi\right)(\bar{Z})+\xi(Z)\left(D_{Y} \xi\right)(\bar{X})\right]
\end{align*}
$$

Proof: From (1.7), (1.8) and (1.9), we have

$$
\begin{equation*}
\left(D_{X} \xi\right)(Y)=G\left(D_{X} \eta, Y\right) \tag{3.18}
\end{equation*}
$$

Barring X in (3.18), we get

$$
\begin{equation*}
\left(D_{\bar{X}} \xi\right)(Y)=G\left(D_{\bar{X}} \eta, Y\right) \tag{3.19}
\end{equation*}
$$

Using (3.19) in (2.3), we get

$$
\begin{equation*}
\left(D_{X} ` \Phi\right)(Y, Z)=-\xi(Y)\left(D_{\bar{X}} \xi\right)(Z)+\left(D_{\gamma} \xi\right)(\bar{X}) \xi(Z) \tag{3.20}
\end{equation*}
$$

By the cyclic permutation of X, Y, Z, we also have

$$
\begin{align*}
& \left(D_{Y} ` \Phi\right)(Z, X)=-\xi(Z)\left(D_{\bar{Y}} \xi\right)(X)+\left(D_{Z} \xi\right)(\bar{Y}) \xi(X) \tag{3.21}\\
& \left(D_{Z} \cdot \Phi\right)(X, Y)=-\xi(X)\left(D_{\bar{Z}} \xi\right)(Y)+\left(D_{X} \xi\right)(\bar{Z}) \xi(Y) \tag{3.22}
\end{align*}
$$

adding (3.20), (3.21) and (3.22) and using (1.11), we get (3.17).

Theorem 3.5: $M_{n}^{* *}$ is necessarily nearly $M_{n}^{* *}$.

Proof: In $M_{n}^{* *}$, we have a result (3.21). Interchanging X and Z in (3.21), we get

$$
\begin{equation*}
\left(D_{Y} ` \Phi\right)(X, Z)=-\xi(X)\left(\left(D_{\bar{Y}} \xi\right)(Z)\right)+\left(D_{X} \xi\right)(\bar{Y}) \xi(Z) \tag{3.23}
\end{equation*}
$$

adding (3.20) and (3.23) and using (1.11), we get

$$
\begin{equation*}
\left(D_{X} ` \Phi\right)(Y, Z)+\left(D_{Y} ` \Phi\right)(X, Z)=-\xi(Y)\left(D_{\bar{X}} \xi\right)(Z)-\xi(X)\left(D_{\bar{Y}} \xi\right)(Z) \tag{3.24}
\end{equation*}
$$

Using (2.2) and (3.19) in the above equation, we get

$$
G\left(\left(D_{X} \Phi\right) Y, Z\right)+G\left(\left(D_{Y} \Phi\right) X, Z\right)=-\xi(Y) G\left(D_{\bar{X}} \eta, Z\right)-\xi(X) G\left(D_{\bar{Y}} \eta, Z\right)
$$

which yield (1.13). Hence $M_{n}^{* *}$ is necessarily nearly $M_{n}^{* *}$.

References

[1] K. Matsumoto., On Lorentzian Paracontact manifolds, Bull. Yamogata Univ. Nat. Sci., 12, 1989, 151-156.
[2] S. D. Singh and D. Singh., Tensor of the type (0,4) in an almost Norden contact metric manifold, Acta Cincia Indica, India, 18 M(1), 1997, 11-16.
[3] Shalini Singh, Holomorphic sectional curvature on an integrated contact metric structure manifold, Ultra scientist of physical sciences, 21 (3)M, 2009, 655-658.
[4] T. Adati and K. Matsumoto, On almost paracontact Riemannian manifold, T.R.U. Maths.,13(2), 1977, 22-39.

